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APPLICATION OF FISH SHOAL OPTIMIZATION: RESULTS AND 

DISCUSSION  

The actual problem of riprap riveted earthen channel design has 5D 

Euclidean search space and it was solved by pre-assigning a particular type of 

riprap stone for the channel design. Since the fish shoal optimization algorithm 

can handle all types of riprap stones in its single computational program, 

therefore, the objective function of the problem turned out to be a 6D problem. 

The additional sixth dimension was meant to characterize the type of riprap 

stone which fish shoal optimization algorithm will search to identify the best 

type of riprap stone for revetment purpose. Therefore, the model for the actual 

problem needs was revised to suit the characteristic of fish shoal optimization 

method. The revised model, its dimensionless form, application procedure for 

fish shoal optimization algorithm, results and discussions, and conclusions 

drawn out of the comparison of performances of fish shoal optimization 

algorithm with published data and results of particle swarm optimization 

method are described in the following subsections.   

7.1 The Model  

In order to determine the cross sectional dimensions of a minimum cost 

earthen trapezoidal canal having side slopes lined with loose riprap stones and 

unlined bottom, the size of riprap stones, and the most suitable type of stones, 

the objective function (Cost, $/m) was formulated as:   
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Minimize )( ( ) TcPcPcPcAcDymmbCost ssst 33.22.21.2121 ||||,,,,, ++=φ  (7.1) 

where  
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c1, c2.1, c2.2, c2.3, and c3 are the cost of earth excavation per unit volume ($/m3), 

costs of three types of riprap stones ($/m2), and the land acquisition cost 

($/m2) per unit length of the canal, respectively. Symbol (||) represents ‘or’ 

logical operation. At, Ps, and T denote the total excavated area, wetted 

perimeter corresponding to the side slopes, and top width of the canal, 

respectively, including freeboard. It may be noted that the objective function 

(Eq. 7.1) is now having 6D search space. 

7.1.1 Constraints 

The non-linear minimization objective function for the least cost of canal is 

subjected to the constraints on flow rate, and shear stresses acting on stable 

riprap stones laid on the canal side slopes as: 
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7.2. Dimensionless Problem Statement 

The non-linear optimization problem was transformed to a dimensionless form. 

A repeating variable λ in terms of the problem associated parameters were 

defined in chapter 3 and the same was applied for non-dimensionalizing 

purpose as:   

  

5/12

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ogS
Q

λ
       

(7.8)
 

The involved physical variables were transformed dimensionless as: 
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The combination of cost of earth excavation (c1) and non-dimensionalizing 

parameter (λ) were applied to transform the cost (per unit length) function of 

the canal in dimensionless form as: 
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Manning’s roughness coefficients were non-dimensionalized as:
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The use of dimensionless Manning’s roughness coefficient (Eq. 7.13) in Eq. 

7.5 yielded:
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Hence, the dimensionless problem statement formulated using Eqs. 7.1, 7.5-

7.7 took on the following form: 

Minimize )( ( ) **3**3.2**2.2**1.2***21** ||||,,,,, TcPcPcPcADyzzbC ssst ++=φ  (7.15) 
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= is a dimensionless critical side slope shear-stress 

coefficient (Froehlich 2011a). The non-dimensionalization translates the 

problem independent of units and scales down the actual Euclidean space into 
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a virtually squeezed down search space that makes the search operation 

easier and more efficient. However, Jain et al. (2004) and Reddy and Adarsh 

(2011) applied dimensionless cost coefficients in their objective functions for 

the design of minimum cost lined canals. 

7.3 Application of Fish Shoal Optimization 

 An augmented cost function transformed the constrained minimization 

problem into an unconstrained problem as:  

Minimize ∑
=
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1
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j
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where j  (=1, 2, and 3) refers to constraint Eqs. 7.16, 7.17, and 7.18, 

respectively. The penalty parameter βj was defined as: 
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 A tolerance limit (ε) was set as 10-6 for the violation of flow rate and 

shear stress constraint equations. To ensure a sufficient exploration of search 

space at initial stage with enhanced efficiency at later stage, a sequentially 

increasing penalty function (η) is: 
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 The value of constant ‘a’ is in Table 7.1. Eqs. 7.16, 7.17 and 7.18, 

respectively, yielded residuals R1, R2 and R3 that arise out of violation of 

constraint equations as: 
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 These residuals, multiplied with penalty parameters, were added to the 

objective function (Eq. 7.15) to get an augmented cost function for Fish Shoal 

Optimization to evaluate the performance of each shoal member.  

 

7.3.1 Flow chart and creation of subgroups  

Figure 7.1 shows the flow chart for Fish Shoal Optimization application. 

For accommodating three types of riprap stones, i.e., rounded, subrounded 

and subangular, and angular, range of the sixth dimension place [0, 1] is 

divided into three class-intervals, i.e., [0, 0.33], ]0.33, 0.67], and ]0.67, 1]. 

Lower limits for the second and third subgroups are ‘>0.33’ and ‘>0.67’, 

therefore their lower limits are shown as open-ended bracket ‘]’. Thus, fish 

shoal optimization algorithm invoked all kinds of riprap stones to create a 

population that mimics the social character of a fish shoal. The flow chart 

reveals that the shoal character sustained at all stages of optimization process 
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and it required one program code to choose the best riprap stone for the 

minimum cost design of earthen canal. Each solution array gave the size 

specifications of a canal and riprap stone, and the type of riprap stone as well.  

7.3.2 Parameter setting 

 The shoal comprised three types of riprap stones (fish 

species/subgroups), therefore, the search space expected to engross three 

different promising zones of optimality. In order to facilitate global leader to 

emerge out from any subgroup, fish shoal optimization algorithm was initialized 

with a somewhat balanced value of the cognitive parameter (c1=1.957), i.e., 

approximately half (1.957) of the sum of cognitive and social parameter values 

(4.1). Based on the character (type of riprap stone) of global leader (which may 

change in successive generations), the shoal is driven in varying directions 

according to the number of promising zones. This facilitated an effective 

exploration of the search space. The value of ψ is 4.1 as per the suggestion of 

Clerc and Kennedy (2002) and the inertia weight was varied linearly in the 

range of [1, 0]. The maximum number of iterations (300) was the convergence 

criterion.   

To avoid singularity or overshoot, a limit [10-5, 1] was imposed on the 

range of random numbers. Size of the shoal was 60 to accommodate 

approximately 20 solutions in each subgroup at the initial stage. The random 

number generator was initialized with the default setting of the HP ProBook 

4510s laptop.  
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7.3.3 Range of variables 

 Based on the preliminary results, the range of canal width was set as 

2.5 to15 m. The flow depth was in the range of [0.5, 5.0] in conformance with 

Gupta and Singh (2012) suggestion. Lower limits for the side slopes were set 

on the basis of real values (not imaginary) obtained from Eqs. 3.19-3.20. Since 

rounded stones are perceived desirable by the designers, therefore, the upper 

limit for the side slopes was set to be 3.0 than 2.5 recommended by Blackler 

and Guo (2009) to facilitate a relatively more conducive environment for the 

rounded stone to prove its superiority. The range of riprap stone size was set 

in a commercially viable interval of 0.1 to 1.0 m. A summary of the range of 

variables applied for solving the problem is in Table 7.2.  

7.3.4 Manning’s roughness coefficients for canal bottom 

 Unknown variables (Froude and Reynolds numbers) involved in Eq. 

3.35 were determined by considering the canal to be an earthen canal without 

any riprap revetment with bed sediment size 1 mm. The canal cross-sectional 

features (area and perimeter) were determined using randomly generated 

solutions and Froude number was calculated. Manning’s roughness coefficient 

for canal bottom (nb) was determined by applying value of the Froude number. 

The actual flow rate through the canal whose sides were riveted with loose 

riprap and bottom was unlined was calculated using Eq. 3.17. The supercritical 

flow characteristic in earthen canal is not acceptable, therefore, a constant 

value of nb = 0.025 (Froehlich 2011a) was set to fulfill the requirement of the 
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“if-else” loop of the program for Froude number value above 2, however, Table 

7.3 shows that this condition never arose during computational run.  

7.3.5 Cost calculation 

 Randomly generated initial solutions provided the trial mean-sizes of 

riprap stones (D) and the thickness of riprap layer on the side slopes was 

chosen to be 1.5 times the D (NCHRP Rep. 568, p. C4). The cost of riprap in 

$/m3 (round: 41; subround and subangular: 36.6; and angular stone: 31.4 

$/m3) was multiplied by the riprap layer thickness (1.5 times the mean size) to 

determine the cost of riprap stones per square meter of coverage area ($/m2). 

The cost calculated in terms of $/m2 was applied in Eq. 7.15. These costs were 

updated during the computational process according to the updated sizes of 

riprap stones. Realistic data for average costs of earth excavation (4.052 $/m3) 

and land acquisition (2.84 $/m2) were obtained from an Arizona (USA) canal 

project under U.S. Bureau of Reclamation.  

7.4 Results and Discussion 

 The published problem of Froehlich (2011a) was adopted to validate the 

proposed optimization algorithm.  

7.4.1  Shoal convergence characteristic  

Figure 7.2 shows the characteristic of shoal population during flow rate 

convergence. The presence of three markers (red� , blue+, green×) at all 

stages with varying markers’ concentration along the x-axis reveals the 

existence of members from all three subgroups with increasing population of 
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dominating subgroup members (subround and subangular, and angular riprap 

stones) that may result in the minimum cost canal. Rounded stone dominated 

the initial shoal, whereas the angular stone subgroup finds prominence in 

converged shoal (see Figure 7.2). It further reveals that the fish shoal, while 

maneuvering towards the global minimum, encounters various local sub-

optimal zones, and hence acclimatizes its character to fit with the en route 

local environment. Therefore, the majority of the shoal members maneuver 

towards the subgroup to which global leader associates. Thus, changes in the 

concentration of members from different subgroups occur with successive 

iterations (see Figure 7.2). 

Figure 7.3 displays the convergence characteristics of local best cost, 

mean shoal cost, and the global minimum cost members obtained so far with 

iterations for three freeboard scenarios. Involvement of members from different 

subgroups with significant cost difference did not allow the mean shoal cost at 

initial iterations to converge until the computational run crosses about 230 

iterations (see Figure 7.3). Another reason for this feature is associated with 

the incremental increase in the penalty parameters’ values with iteration 

numbers that forces the mean shoal cost to rise up initially due to the presence 

of larger residuals. However, the initial non-converging characteristic helps in 

maintaining sufficient heterogeneity in the shoal population that spreads 

across the spectrum of different subgroups. The population heterogeneity 

builds up additional pressure on shoal members to perform their best to locate 
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the global optima. The occurrence of convergence of the mean shoal cost 

curve close to the end of iterations (see Figure 7.3) reflects a relatively more 

homogeneous population dominated by specific subgroup members. Thus, the 

shoal population tends to become less heterogeneous by eliminating the 

poorly performing subgroup members (see Figure 7.2). Further, the significant 

cost variation between the members of different subgroups did not allow mean 

shoal cost to converge with the global minimum curve as the shoal maintains 

heterogeneity even after the end of iterations.    

7.4.2 Changing global leader and operational philosophy 

The varying subgroup of global leader with iterations is shown in Figure 

7.4. Red, pink, and green color markers (� , + and ×) represent global leader 

from rounded, subround-and-subangular, and angular riprap subgroups, 

respectively. Based on the local best cost and cost of global leader, global 

leader and/or its associated subgroup may or may not change with iterations 

(see Figure 7.4). The emerging global leader (say, angular stone subgroup) 

causes other subgroup (rounded and subround-and-subangular) members to 

go in minority (see iterations 250 to 300 in Figure 7.2) and attempts to make 

them extinct during subsequent iterations, if it continues to drive the shoal 

movement. However, successive iterations may produce a new global leader 

from other subgroup (see Figure 7.4) that may cause the shoal character to 

change as per its personal subgroup, thus, a new breed of shoal population 

comes up in majority. The emergence of global leader from subround-and-
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subangular riprap subgroup during the middle of iterations (see pink symbol + 

in Figure 7.4) and its effect on shoal character is evident from the increased 

concentration of blue color marker (+) in Figure 7.2.   

Similar to its ancestor, fish shoal optimization also persuades the shoal 

to track the movement of global leader emerging out from any subgroup. A stiff 

competition between the members from the subgroup of global leader and the 

shoal members from other subgroups always prevails. The global leader acts 

as a monarch that forces the other subgroup members to go into extinction, 

and this condition compels the members from other subgroups to perform their 

best to acquire the position of leader for the survival of their 

community/subgroup. Thus, fish shoal optimization promotes the population 

outburst of the fittest subgroup members in tune with Genetic Algorithms that 

works on the premise of survival of the fittest. This way, fish shoal optimization 

acquires a unified strength of Genetic Algorithms and Particle Swarm 

Optimization techniques. 

7.4.3 Global leader’s characteristic for flow rate convergence 

Figure 7.5 shows the changing character (subgroup) of global leader 

during convergence process of flow rate with iterations for three freeboard 

scenarios to avoid confusion arising out of the overlap of different curves. The 

initial search spread over the range of 0-125 m3/s with rounded and subround 

and subangular riprap which eventually narrowed down to the target of 60 m3/s 

flow rate at the end of iterations. Earlier convergence of ‘f = 0’ scenario curve 
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relative to f = 0.5 and f = 0.5y0.25 in sequence reveals that the inclusion of an 

additional freeboard parameter delays the convergence because of the shift of 

promising zone and/or extension of the search space. The varying subgroup of 

global leader with iterations portrays the capability of fish shoal optimization to 

accommodate three types of riprap stones at all stages of iterations to choose 

the most suitable type of riprap stone that yields the minimum cost. The 

change in subgroup of global leader with iterations may not necessarily be in 

sequence from round to subround-and-subangular to angular, and a member 

from any subgroup can emerge out as global leader to drive the movement of 

shoal towards global minimum. Thus, a thorough exploration of the search 

space with varying direction of shoal maneuver occurring due to changing of 

global leader ensured a stiff competition among the members from different 

subgroups. The successive iterations generated more members from better 

subgroup (angular riprap) for competition which is similar to a characteristic of 

Genetic Algorithms where fittest members are picked up for crossover 

operation in successive iterations to generate better off springs for stiff 

competition.  

7.4.4 Global leader’s characteristic for shear stress convergence 

Figures 7.6 (a) and (b) show the convergence characteristic of the 

global leader emerging out from different subgroups during the iterative 

process for shear stress residual convergence obtained from the calculation of 

left hand side (LHS) of Eqs. 7.6 and 7.7, respectively. The convergence 
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characteristic for only three freeboard scenarios [f = 0 (blue line), 0.5 (black 

line) and 0.5y0.25 (red line)] are meant to avoid the confusion arising out of the 

excessive overlap of curves and/or points. The changing subgroup of global 

leader ensured a healthy competition among different subgroup members. It 

also confirmed that the parameter settings of fish shoal optimization with 

sequentially increasing penalty functions are effective to diminish the shear 

stress residuals to zero (see Figure 7.6). Positive magnitude of shear stress 

residuals obtained for global leader at all iterations implies that the exploration 

of Euclidean search space occurred where riprap stones remain stable. 

Hence, almost all points lie above the x-axis.     

7.4.5 Shoal characteristic at the end of iterations  

The characteristics of converged shoal- cost of canal, summation of 

residuals (R1+R2+R3), and type of stones, at the end of iterations are shown in 

Figures 7.7-7.11 for five different freeboard scenarios. The x-, y-, and z- axis 

represent the type of riprap stones, cost of construction and the sum of 

residuals, respectively. Figures 7.7 and 7.9-7.11 reveal that the better 

performing subgroups of riprap stones (subround-and-subangular and angular 

stones) that remain alive and they forced round stone subgroup to go into 

extinction. The converged shoal comprised the largest population of angular 

stone subgroup than other types and they yielded the minimum cost canal (see 

red points ‘*’ relating to angular stones on the x-y plane in Figures 7.7-7.11). 

Members of the shoal display a varying degree of constraint violation with 
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decreasing magnitude of summation of residuals (R1+R2+R3) that result in cost 

reduction. Figure 7.8, drawn for f = 0.5, shows the shoal after 300 iterations 

comprised all types of riprap stones with smallest population size of round 

stone subgroup and the largest subgroup of angular stone that has relatively 

the lowest cost. The subround and subangular riprap stands next to the 

angular stone with a relatively higher cost and different canal dimension. The 

round riprap stone stands the last for giving the costliest canal.  

7.4.6  Impact of freeboard scenarios on fish shoal optimization algorithm 

performance  

Comparison of the results involving two different parameter settings 

(see Table 7.1) revealed that fish shoal optimization could not yield good 

results for the depth dependent freeboard scenarios (f = 0.5y0.25, 0.25+y0.25, 

and 0.25+y0.5) with parameter setting-1 but better results were obtained for the 

first two freeboard scenarios. Parameter setting-2 for fish shoal optimization 

gave better results for the three depth dependent freeboard scenarios but it 

trapped into local sub-optimal zone comprised by the subround and 

subangular stone for f = 0 scenario. It shows that a different set of penalty 

functions for each freeboard scenario should be applied instead of applying a 

single set of penalty functions for all scenarios, and it seems logical. Thus, 

results for the initial two sets of freeboard scenarios were taken up from the 
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parameter setting 1 and the other three were adopted from the parameter 

setting 2 for analysis purpose.  

7.4.7 Selection criteria for the global leader and results  

Table 7.3 presents a pair of solutions for each freeboard scenario. 

These solutions were selected based on the global minimum cost and the 

lowest sum of all residuals. These solutions emerging out from only angular 

stone subgroup do not differ significantly from each other and the costs of 

construction are almost the same. The same size of stones applied for the 

revetment of either side of a canal caused fish shoal optimization to yield the 

zero/negligible shear stress residuals, hence all solutions (see columns 6-7) 

provided symmetric cross sections to yield minimum cost canal. The reason of 

the best performance of angular riprap stone lies in its ability to remain stable 

on the steeper side slopes because of higher mass angle of repose (Gupta 

and Singh 2012) and interlocking capability that further enhances stability on 

steeper slopes similar to what it does in road pavements. They afford to 

sustain even more shear stresses than that induced by the flowing water. This 

finding is in conformity with the findings of Gupta and Singh (2012) and Gupta 

et al. (2014). The steeper side slope decreased the top width, hence land 

acquisition cost. The scope of sustaining higher shear stresses by angular 

riprap stones allowed fish shoal optimization to proceed for acquiring higher 

flow velocity, which, in turn, squeezes the cross sectional area to reduce the 

excavation cost as well. Additional benefit arises from the reduction in the cost 
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of clearing, grubbing, moving and relocation activities required over reduced 

land width/right of way. The lesser requirements of earth excavation, land 

area, and clearing, grubbing, moving and relocation activities reduce the 

construction time significantly. Thus, the type of riprap stone used for lining the 

canal side slopes also plays a vital role to affect the cost, performance, and 

time of completion of the canal construction project.  

7.4.7.1 Canals with and without freeboard  

 Comparison of canal configurations for f = 0 and 0.5 shows that the 

canal with fixed magnitude of freeboard (0.5m) possesses a larger bottom 

width (7.9272 m), top width (17.9463 m) and side slope length (12.1988 m), 

lower flow depth (2.9795 m) and excavated area (36.3999 m2), steeper side 

slopes (1.4398), higher flow velocity (1.6479 m/s), and a relatively larger cost 

(293.0276 $/m) as compared to that having no freeboard (compare initial two 

rows in Table 3 for parameter setting-1). Fish shoal optimization reduced the 

length of canal sidewalls and top width by acquiring steeper side slopes and 

reduced flow depth but increased the bottom width and flow velocity with a 

reduced flow area to accommodate the required flow rate (compare data in 

column 12 of the first two rows in Table 7.3). Provision of freeboard with canal 

section resulted in both the increased top width and length of sidewalls but the 

finding of squeezed cross section area conforms to the findings of Guo and 

Hughes (1984) for hydraulically most efficient channel. Table 7.3 (compare the 
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first scenario with the remaing four) further illustrates that the cost of canal 

without freeboard provision is lower than that with freeboard. 

7.4.7.2 Effect of land area cost in objective function  

The relatively reduced flow areas achieved by the canals riveted with 

angular riprap stones permitted higher flow velocities, which in turn, made 

them hydraulically efficient. The inclusion of top width (land area) with flow 

area and perimeter in objective function yielded not only the cost effective but 

also a most hydraulically efficient canal section. The involvement of three 

canal features in minimization process put an additional pressure on fish shoal 

optimization to minimize the magnitudes of involved physical variables b, m1, 

m2, and y for the minimum cost canal. The costs associated with the 

excavated area, perimeter and top width can be viewed as a weighting factor 

applied to the three terms, and thus, the objective function serves as a unified 

expression for both the maximization of hydraulic efficiency and the 

minimization of cost.  

7.4.7.3 Depth dependent versus fixed magnitude freeboard scenario  

An intra-comparison of the results for three depth dependent freeboard 

scenarios given in Table 7.3 (parameter setting 2) shows that the bottom 

widths, flow depths, side slopes, and flow velocities are marginally different for 

them, hence their cost. Thus, it can be inferred that the most optimal zone for 

depth dependent freeboard scenarios remains closer in Euclidean search 
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space and it shifts away for other two freeboard ( f = 0 and 0.5m) scenarios 

independent of flow depth (see significantly different values of b, y, m1 and 

m2). Therefore, freeboard scenarios affected the search process and optimal 

canal configurations that raised a need of two different parameter settings for 

depth dependent and independent freeboard scenarios.   

7.4.7.4 Comparison of the results with earlier published works 

The present results obtained for the minimum cost canals without 

freeboard (Af = 36.8223 m2, Pf = 17.9108 m, D = 0.1029 m) are found far 

superior to that obtained by Gupta and Singh (2012) for the most hydraulically 

efficient canal applying area minimization (Af = 47.2621 m2, Pf = 19.9496 m, D 

= 0.1182 m) and perimeter minimization ( Af = 45.7289 m2, Pf = 20.2965 m, D 

= 0.0940 m) separately (refer to solution numbers 11-12 in their Tables 7.1-

7.2). Further, construction costs of hydraulically most efficient canal obtained 

by Froehlich (2011a) are calculated as 295.9 and 303.6 $/m for angular and 

subround-and-subangular stones revetment, respectively. It is important to 

note that the cost obtained by fish shoal optimization for the canal without 

freeboard (253.6108 $/m) comes out  to be 14.29 and 16.47% less than that of 

Froehlich (2011a) canal having angular and subround and subangular stones 

revetment, respectively.  
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7.5 Comparison of Results with Those Obtained by Particle Swarm 

Optimization  

It is evident from the results of particle swarm optimization method that the 

sediment-laden flow condition near channel bottom yield lower cost of 

construction, therefore, sediment–laden flow condition was applied for the 

application of fish shoal optimization algorithm. Since the fish shoal 

optimization algorithm resulted in solutions relating to the angular stone 

revetment, therefore, angular stone revetment cases from the application of 

particle swarm optimization can only be compared. Table 7.3 (Parameter 

setting1, column 15, rows 1-4) reveals that the cost of channel construction for 

the freeboard scenarios f = 0 and f = 0.5 are 253.6108 and 293.0299$, 

respectively. These costs are less than those obtained (256.9989, 308.1187 $) 

by the application of particle swarm optimization method (see Table 5.5, Case 

II, column 15, rows 1-2) for the freeboard scenarios f=0 and f=0.5, 

respectively. Similarly, the costs of channels obtained by fish shoal 

optimization algorithm for other freeboard scenarios (f = 0.5 y0.25, f = 0.25+ 

0.25 y0.25, f = 0.25 + 0.25 y0.5) are 310.0780, 302.6389 and 312.5735$, 

respectively. However, the application of particle swarm optimization method 

yielded cost of channels as 324.4233, 316.1790, and 326.9636$, respectively 

for the other freeboard scenarios f = 0.5 y0.25, f = 0.25+ 0.25 y0.25, and f = 0.25 

+ 0.25 y0.5. Therefore, it can be inferred that the application of fish shoal 

optimization algorithm resulted in lower construction costs than those obtained 
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by the application of particle swarm optimization method. Hence, the fish shoal 

optimization algorithm performed better than the particle swarm optimization 

method. It is also clear from the Tables 7.3 and 5.5 that the flow velocities in 

the channels are approximately the same for both the cases. Hence, fish shoal 

optimization performed well for the design of the minimum cost riprap riveted 

earthen channels.  

7.6 Concluding Remarks 

The fish shoal optimization has been found to be a powerful tool that 

can handle a variety of solution subgroups in its single computational run as 

against the particle swarm optimization that can involve only one type of riprap 

stone for the minimum cost riprap riveted earthen canal. However, particle 

swarm optimization would have needed three separate programs for solving 

three different solution models with varying penalty functions for three 

subgroups of riprap stones. It is also recommended to design a riveted earthen 

canal with inclusion of cost of land to obtain a most hydraulically efficient least 

cost canal.  

 

	


