
Chapter 4	
	

	 Page	68	
	

PARTICLE SWARM OPTIMIZATION

The non-linear optimization models developed in the previous chapter

require an optimization method to search for the optimal solutions for each

type of riprap stone revetment. The term optimization refers to the procedure

of detecting attributes, configurations or parameters of a system that produces

the desirable response. In order to apply an optimization procedure, the

physical/ engineering problems need to be translated into mathematical

models and they must represent all key features of the original system that are

under consideration and its accurate simulation. Thus, models offer

mathematical means of identifying and modifying the system’s properties to

produce the most desirable response even without actual construction of the

system, thereby they save time and cost as well. The difficulty level in solving

an optimization problem relies on the form and mathematical properties of the

objective function. It rises sharply up with increasing number of decision

variables. The exponential growth of the search space with the problem’s

dimension is the reason of rise in difficulty level. In such cases, algorithmic

procedures that take advantage of modern computing systems can be resorted

to, however, only approximate solutions can be obtained under such cases.

Thus, computational accuracy, time availability, and implementation efforts

become prime determinants while applying computational optimization

algorithms.

Chapter 4
	

	 Page	69	
	

4.1. Swarm Intelligence

The stream of artificial intelligence that studies the collective behavior

and evolving properties of complex, self-organized but decentralized systems

with living organism societal structure constitutes swarm intelligence. These

systems comprises of simple interacting agents organized in small colonies/

swarms. Each constituent element of the society has a limited action space

with no centralized control. The aggregated behaviour of the swarm exhibits

fascinating traits of intelligence to respond appropriately towards

environmental changes and decision-making capacities. The primary

motivation behind the development of swarm intelligence based algorithms

stems out from the imitation of the behaviour of societies of living organism in

nature. Fish schools, bird flocks, and ant colonies etc amazingly manifest self-

organized, collision-free, synchronized and intelligent collective behaviors,

which cannot be produced by simply aggregating the behavior of each

constituent member. The flight of a bird flock can be imitated with reasonable

similarity by maintaining the dynamic distance between a bird and

its immediate neighbours. The distance between the two birds varies with the

size of a flock. Similarly, an element from a fish school maintains a relatively

larger mutual distance while swimming freely. These fish schools (see Fig. 4.1)

move together in a close group in the presence of predators. They react to

Chapter 4
	

	 Page	70	
	

external threats by rapidly changing their form, and breaking in smaller

subgroups and re-uniting.

They also demonstrate a remarkable ability to respond collectively

to the external stimuli to preserve personal integrity. Despite the physical or

structural differences in groups of such species, these living groups possess

common properties that are identified as primary attributes of swarm

intelligence (Parsopoulos and Vrahatis 2010; Millonas 1994). The first attribute

is proximity that refers to the ability of the group members to perform space

and time computations. The second is quality that relates to the group ability to

respond to environmental quality factors. The third is referred to as diverse

response, which is the ability to produce a plurality of different responses.

The fourth is termed as stability, which ensures the group members

ability to retain robust behaviors under mild environmental changes, and finally

the fifth is adaptability that reflects the ability to change behaviour when it is

dictated by external factors.

In mid-90’s a different category of algorithms under the name of swarm

intelligence appeared. They replicate the societal structure and aggregating

behaviour of organized colonies of simple organisms such as ants, bees,

and fish. These search algorithms mimic the behaviour of populations of

species that interact for their livelihood and/or survival. The constituent

Chapter 4
	

	 Page	71	
	

elements of these societies display a limited range of their individual

responses but their society as a whole exhibit a fascinating behavior with

identifiable traits of intelligence. The societal dynamics of these algorithms

were modeled by the mathematical equations involving stochastic processes.

One such swarm intelligence based search algorithm is particle swarm

optimization, which is applied for solving the non-linear optimization problem in

the present work.

4.2 Early Precursor of Particle Swarm Optimization

 The early version of PSO was developed by Russell C. Eberhart

(Purdue School of Engineering and Technology, Purdue

University, Indianapolis) and James Kennedy (Bureau of Labor Statistics,

Washington, DC) as simulators of social behaviour of bird flocks. The primary

rules employed by them to produce swarming behavior were matching the

velocities of nearest neighbours and acceleration by distance in their search of

food. Having realized the potential of their simulation models, Eberhart and

Kennedy refined their model and published the first version of PSO in 1995

(Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995).

For expressing the optimization problem in a mathematical framework,

say A ∈ Rn be the search space, and f: A→Y ⊆ R be the objective function.

To keep the problem rather simple, it can be presumed that A is a

Chapter 4
	

	 Page	72	
	

feasible space of the problem with no further explicit constraints posed on the

solution members. No additional assumptions are also imposed regarding the

form of the objective function and search space. The algorithm employs a

population of feasible solutions that moves stochastically in the search space

to explore the search space. The population is referred to as the swarm and its

elements are called as the particles. The swarm is defined as a set:

 },.........,{ 21 NxxxS = of N particles

where a particle is defined as:

 ,)..,,.........,(21 Axxxx T
iniii ∈= i=1, 2, ….., N

Indices are arbitrarily assigned to particles, while N is a user-defined

parameter of the algorithm and it shows the number of particles in a swarm.

The objective function f(x) is assumed to be available for all points in A.

Therefore, each particle has a unique function value, fi = f(xi) ⊆Y and they

move within the search space (A) iteratively. This is achieved by adjusting the

position of particles by a proper position shift referred to as velocity. It is

denoted as:

 T
iniii vvvv)..,,.........,(21= i=1, 2,….., N

Chapter 4
	

	 Page	73	
	

The velocities of the particles are also adapted iteratively to enable

them capable of potentially visiting any region of A. If t represents the iteration

counter, then the current position of the i-th particle and its velocity will

henceforth be denoted as xi(t) and vi(t), respectively. The velocity of a particle

is updated according to the information obtained during the previous iteration

of the algorithm. This is implemented in terms of a memory, where each

particle can store the best position it has ever visited during its search. For this

purpose, besides the swarm (S) which contains the current positions of the

particles, PSO also maintains a memory set defined as:

 }..,,.........,{ 21 NpppP =

It contains the best positions of the particles and is given as:

 Apppp T
iniii ∈=),.....,,(21 for i = 1, 2,…, N ever visited by each particle.

These positions are defined as:

 ()tftp i
t

i minarg)(=

where t stands for the iteration counter.

Since the PSO is based on simulation models of social behavior,

therefore, an information exchange mechanism will exist between the particles

that allows them mutually communicate their experience. The algorithm

Chapter 4
	

	 Page	74	
	

approximates the global minimizer with the best position ever visited by all

particles, therefore, this crucial information needs to be shared among all the

particles. Let g be the index of the best global position with the minimum

function value in P at a given iteration t,

 ())(minarg)(tpftp i
t

g =

Then, the early version of PSO is described by the following

mathematical equations (Eberhart & Kennedy, 1995; Eberhart et al., 1996;

Kennedy & Eberhart, 1995):

 ()))()(()()()()1(2211 txtprctxtprctvtv igiiii −+−+=+ (4.1)

)1()()1(++=+ tvtxtx iii ∀ i = 1, 2,…, N (4.2)

where t denotes the iteration counter. r1 and r2 are uniformly distributed

random variables within [0,1]; and c1 and c2 are weighting factors referred to as

the cognitive and social parameter, respectively.

In the first version of PSO, a single weight, c = c1 = c2, which was called

as acceleration constant was used instead of the two distinct weights in

equation (4.1). However, it was different in later version of PSO that offered a

better control on the algorithm. Best positions (memory) are updated at each

Chapter 4
	

	 Page	75	
	

iteration after the update and evaluation of particles. Thus, the new best

position of xi at iteration t+1 is defined as follows:

⎭
⎬
⎫

⎩
⎨
⎧ ≤++

=+
otherwisetp

tpftxfiftx
tp

i

iii
i)(

))(())1(()1(
)1((4.3)

The new determination of index g for the updated best positions

completes an iteration of PSO. The operational steps of PSO are shown

below:

 Step 1. Set 0←t

 Step 2. Initialize S and Set P ≡ S

 Step 3. Evaluate S and P, and define index g of the best position

 Step 4. While (termination criterion not met)

 Step 5. Update S using equations (4.1) and (4.2)

 Step 6. Evaluate S

 Step 7. Update P and redefine index g

 Step 8. Set 1+← tt

 Step 9. End of loop

 Step 10. Print best position found.

Chapter 4
	

	 Page	76	
	

Particles of the swarm are initialized randomly over the search space

(A) by following a uniform distribution. The choice of uniform distribution treats

every region of A equally capable of having global minimum. Therefore, it is

preferred for all cases where there is no information on the form of the search

space or the objective function are available. Since all modern computer

systems are equipped with a uniform random number generator, therefore, it

can be implemented easily. The previous velocity term vi(t) in the right-hand

side of equation (4.1) provides a means of inertial movement to the particle by

accounting its previous position shift into consideration. This property can

prevent it from becoming biased towards the involved best positions that may

entrap it into local minima. Furthermore, the previous velocity term serves as a

perturbation for the global best particle, xg. In fact, if a particle xi discovers a

new position with lower function value than the best one, it becomes the global

best (i.e., g←i). Its best position pi in the next iteration will coincide with pg and

xi. Thus, the two stochastic terms in equation (4.1) will vanish. If there had

been no previous velocity term in equation (4.1), the aforementioned particle

would stay at the same position for several iterations, until a new best position

is detected by another particle. The velocity term thus allows this particle

to continue its search, following its previous position shift. The values of c1 and

c2 affect the search ability of PSO by biasing the sampled new positions of a

particle xi towards the best positions pi and pg, respectively, as well as by

changing the magnitude of search. If a better global exploration is required,

Chapter 4
	

	 Page	77	
	

then high values of c1 and c2 provide new points in relatively distant regions of

the search space. On the other hand, a more refined local search around the

best positions achieved so far would require the selection of smaller values for

the two parameters c1 and c2. A relatively higher value of c1 than c2 would

cause the sample to be bias towards the direction of pi, while in opposite case,

i.e., c1 is less than c2 would shift the population towards the direction of pg. This

feature can be utilized in cases where there is special information is available

regarding the form of the objective function. For example, a choice of c1 less

than c2 promotes sampling closer to pg, which will make the optimization

algorithm to be more efficient for the problem having convex unimodal

objective function, provided it is combined with a proper search magnitude.

In most of the optimization problems, it is very essential that the

particles always lye within the feasible search space. To ensure this, bounds

are imposed on the position of each particle xi to restrict it within the search

space. If a particle acquires a value out of the search space after the

application of equation (4.2), it is immediately dragged to its boundary. In a

simple case, where the search space is defined as a box:

 [] [] [] []nn babababaA ××××=332211 (4.4)

with aj, bj ∈R, j = 1, 2,…, n, the particles are restricted as follows:

Chapter 4
	

	 Page	78	
	

⎭
⎬
⎫

⎩
⎨
⎧

>+

<+
=+

jij

jij
i btxifb

atxifa
tx

)1(
)1(

)1(i=1, 2, …N (4.5)

Alternatively, a bouncing movement off the boundary back into the

search space has been considered,similarly to a ball bounced off a wall (Kao

et al., 2007). This approach is less popular because it requires the modeling of

particle motion with complex physical equations. For the cases where A cannot

be described as a box, special problem-dependent conditions may be

necessary to restrict particles going out of the search domain.

Early PSO variants performed reasonably well for simple optimization

problem but their crucial deficiencies were revealed when they were applied on

relatively harder problems with a larger search spaces and multitude of local

minima. Thus, early version of particle swarm optimization required

refinements to address its deficiencies.

4.3 Swarm Explosion and Velocity Clamping

The first significant issue related to the swarm explosion effect that

referred to the uncontrolled increase in the magnitude of the velocities, which

resulted in swarm divergence. Lack of a velocity control mechanism in early

particle swarm optimization was the root of this deficiency. It is addressed by

using strict bounds for velocity clamping at desirable levels that prevents

particles from taking extremely large steps from their current position. A user-

Chapter 4
	

	 Page	79	
	

defined maximum velocity threshold vmax > 0 is normally considered. After

determining the new velocity of each particle by equation (4.1), the following

restrictions are applied prior to the position update with equation (4.2):

 |vi(t+1)| ≤ vmax for i = 1, 2,…, N

In case of violation, the velocity component of a particle is set directly to

the closest velocity bound as:

⎭
⎬
⎫

⎩
⎨
⎧

−<+−

>+
=+

maxmax

maxmax

)1(
)1(

)1(
vtvifv
vtvifv

tv
i

i
i

 (4.6)

However, different velocity bounds as per the direction component can

also be used. The value of vmax is usually taken as a fraction of the search

space size per direction. If the search space is defined as given in equation

(4.4), a common maximum velocity for all directions can be defined as:

{ }
k

ab
v

iii
−

=
min

max (4.7)

where the value of k = 2 is usually adopted. In case, a problem requires

smaller particle steps, a relatively higher value of k is adopted. However, if the

search space has a multitude of minimizers with narrow regions of promising

zones close to each other, the magnitude of k should assume adequately large

value to prevent particles from overflying the several attractive zones. At the

Chapter 4
	

	 Page	80	
	

same time, k should not take a very small or large value that hampers the

satisfactory exploration of the search space.

The velocity clamping provision offered an efficient solution to the

problem of swarm explosion but it did not address the problem of

convergence. The particles are now able to fluctuate around their best

positions but they were unable to achieve convergence on a promising

zone/position or perform a further refined search around the promising zone.

This issue was resolved by the introduction of a new parameter in the original

particle swarm optimization model as described below.

4.4 Concept of Inertia Weight

The application of a maximum velocity threshold improved the

performance of early particle swarm optimization but it could not render the

algorithm efficient for complex optimization problems. Despite the

elimination of swarm explosion, the swarm could not concentrate its particles

around the most promising zones in the last phase of the optimization

procedure. Thus, no further refinement in solutions could be obtained even

after the detection of promising zone of the search space, which, in turn,

causes particles to oscillating on wide trajectories around their best

positions. The reason for this deficiency was associated to the disability of the

algorithm to control the velocities. A refined search in promising zones requires

Chapter 4
	

	 Page	81	
	

a strong attraction of the particles towards them and small position shifts that

prohibit particles to escape from close vicinity. This is possible by reducing

the perturbations that shift particles away from best positions. Therefore, the

effect of previous velocity on the current iteration velocity needs to fade away

with iterations for each particle. Thus, a new parameter (w) referred to as

inertia weight was introduced in equation (4.1), and the resulting version of

particle swarm optimization (Eberhart & Shi, 1998; Shi & Eberhart, 1998a; Shi

& Eberhart, 1998b) takes the following form:

 ()))()(()()()()1(2211 txtprctxtprctwvtv igiiii −+−+=+ (4.8)

)1()()1(++=+ tvtxtx iii ∀ i = 1, 2, …, N (4.9)

The rest of the parameters remain the same as for the early particle

swarm optimization variant shown by equations (4.1) and (4.2). The value of

the inertia weight will be selected in such a manner that the effect of vi(t) fades

away during the execution of the algorithm. Thus, a decreasing value of w with

time is preferable. Therefore, a common practice is to initialize w by a value

slightly greater than 1.0 (say, 1.2) to promote exploration in early stages with

gradual reduction towards the value of zero in later stages to eliminate

oscillatory behaviour. A strictly positive lower bound on w (e.g., 0.1) is used to

prevent the previous velocity term from vanishing. A linearly decreasing

scheme for w can be described as:

Chapter 4
	

	 Page	82	
	

T
twwwtw lowupup)()(−−= (4.10)

where t stands for the iteration counter; wlow and wup are the desirable lower

and upper bounds of w; and T is the total allowable number of iterations.

Equation (4.10) produces a linearly decreasing time-dependent inertia weight

with starting value wup at iteration t = 0, and final value wlow at the last iteration

t = T.

The amazing improvement in the performance of particle swarm

optimization gained by using the inertia weight with velocity clamping (see

Figure 4.1), rendered it to become the most popular particle swarm

optimization method. Although particles were able to avoid swarm explosion

and converge around the best positions but they were still getting easily

trapped in local minima, especially in complex problems.

4.5 Standard Particle Swarm Optimization

The efficiency of particle swarm optimization variants attracted the interest of

the scientific community. Ozcan and Mohan (1999) published the first

theoretical investigation of particle swarm optimization for multi-dimensional

space problem and provided closed-form equations for particle trajectories.

Their study focused on the early equations (4.1) and (4.2) of particle swarm

optimization, and they showed that the particles were actually moving on

Chapter 4
	

	 Page	83	
	

sinusoidal waves per coordinate of the search space, while stochasticity

offered a means to manipulate its frequency and amplitude. A few years later,

this interesting result was followed by a thorough investigation by Clerc and

Kennedy (2002), who considered different generalized particle swarm

optimization models to perform a dynamic system analysis of their

convergence. They offered a solid theoretical background to the algorithm, and

established one of the investigated models as the default contemporary

particle swarm optimization variant. This model is expressed by the following

equations:

 ()[]))()(()()()()1(2211 txtprctxtprctvtv igiiii −+−+=+ χ (4.11)

)1()()1(++=+ tvtxtx iii ∀ i = 1, 2,…, N (4.12)

where χ is referred to as constriction coefficient or constriction factor. It

is distinguished in literature due to its theoretical properties that imply the

following explicit relation among its parameters (Clerc & Kennedy, 2002):

ψψψ
χ

42
2

2 −−−
= (4.13)

where ψ =c1 + c2>4

Chapter 4
	

	 Page	84	
	

Based on this equation, the setting: χ = 0.729, c1 = c2 = 2.05, is usually

viewed as the default parameter setting of the constriction coefficient particle

swarm optimization variant.

 The stochastic parameters, r1 and r2, are considered to be uniformly

distributed within the range [0, 1]. Alternatively, r1 and r2 can be

uniformly distributed within a sphere centered at the origin, with radius equal to

1. A different approach suggests that r1 and r2 can be normally distributed with

a Gaussian distribution, N(µ,σ2). In this case, the distribution of new

prospective positions significantly differ from the previous two cases,

depending heavily on the values of µ and σ, which, in turn, are usually

dependent on the parameters c1 and c2. The aforesaid distribution was applied

in the vast majority of optimization works with the rectangular one being the

most popular. Application of different distributions are also available but with

less frequency. Although they have shown potential for enhanced efficiency in

specific problems, these approaches cannot be characterized as standard

particle swarm optimization variants. The case of rectangular distributions

offers a simple and efficient default choice. The case of spherical distributions

is quite similar to the rectangular one but it restricts the range of possible new

particle positions. On the other hand, the use of Gaussian distributions offers a

completely different capability to the algorithm. Depending on the values of

parameters, a particle can move in a direction opposite to that of the best

Chapter 4
	

	 Page	85	
	

positions, which exhibits a completely different dynamics than the standard

particle swarm optimization models. The efficiency of such model always

depends on the problem at hand. If the particle swarm optimization has

detected the most promising zones of the search space, the application of

Gaussian distribution can slow down the convergence rate. If there are several

local minima with narrow basins of attraction, located closely to the

global minimum, this approach works effectively for the algorithm. Since the

type of distribution applied in the problem has significant effect on

performance, therefore, a careful selection is essential for the convergence of

the swarm to the global minimum.

Chapter 4
	

	 Page	86	
	

Fig. 4.1 A fish school dividing into two groups for their survival in the presence

of a predator

Fig. 4.2 Swarm diversity during search with (solid line) and without (dotted

line) inertia weight (Adopted from Parsopoulos and Vrahatis 2010)	

