
Chapter 7

Abelian Theorems of the Bessel

Wavelet Transform

7.1 Introduction

Abelian theorems of integral transforms are widely used in solving the boundary

values problems of mathematical physics. Mathematicians studied Abelian theorems

for different types of integral transforms. Griffith[10] proved an Abelian theorem by

exploiting the theory of Hankel transform in ordinary sense. Zemanian introduced

Abelian theorems for the Hankel transform in ordinary and distributional sense

both. Using the technique of Fourier transform, Pathak[20] discussed the Abelian

theorems of the wavelet transform in both ordinary and distributional sense.

Motivated from the above results, in the present chapter we prove the Abelian

theorems of the Bessel wavelet transform in ordinary and distributional sense both.
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7.2 Abelian Theorems for the Bessel Wavelet

Transform of Functions

In the present section, initial and final value theorems for the Bessel wavelet trans-

form are given.

We assume that

(hµψ)(ω) = 0(ωµ), ω → 0+ (7.2.1)

and set ∫ ∞
0

(hµψ)(ω)ω1/2−η = H(η),
3

2
< η < µ+ 2. (7.2.2)

Theorem 7.2.1. Let 3
2
< η < µ + 2. Assume that ω1/2−η(hµψ)(ω) ∈ L1(0,∞),

|(hµψ)(ω)| < M,M > 0 and ω−µ−
1
2 (hµf)(ω) ∈ L1(δ,∞),∀δ > 0. If

lim
ω→0

ωη−
1
2 (hµf)(ω) = α (7.2.3)

then

lim
a→∞

a3/2−η(Bψf)(b, a) = αH(η). (7.2.4)

Proof. Using the arguments of (7.2.1) and (7.2.2), we get

∣∣a3/2−η(Bψf)(b, a)− αH(η)
∣∣

=

∣∣∣∣a3/2−η
∫ ∞

0

(bω)1/2Jµ(bω)(hµψ)(aω)ω−µ−
1
2 (hµf)(ω)

−α
∫ ∞

0

(hµψ)(aω)(aω)1/2−ηadω

∣∣∣∣
=

∣∣∣∣∫ ∞
0

[
(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α

]
(aω)1/2−η(hµψ)(aω)a dω

∣∣∣∣
≤

∫ ∞
0

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∣∣∣(aω)1/2−η(hµψ)(aω)

∣∣∣ a dω
≤ sup

0<ω<δ

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∫ δ

0

∣∣∣(aω)1/2−η(hµψ)(aω)
∣∣∣ a dω

+Ma3/2−η
∫ ∞
δ

∣∣∣(bω)1/2Jµ(bω)ω−µ−
1
2 (hµf)(ω)− αω

1
2
−η
∣∣∣ dω.
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∣∣a3/2−η(Bψf)(b, a)− αH(η)
∣∣

≤ sup
0<ω<δ

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∫ ∞

0

∣∣∣(aω)1/2−η(hµψ)(aω)
∣∣∣ a dω

+Ma3/2−η
∫ ∞
δ

∣∣∣(bω)1/2Jµ(bω)ω−µ−
1
2 (hµf)(ω)− αω

1
2
−η
∣∣∣ dω. (7.2.5)

In (7.2.5), the first of the above two integrals is convergent. Therefore, for given ε

the first term can be made less than ε
2

by choosing δ small enough. Since η > 3
2
,

keeping δ fixed the second term in (7.2.5) can be made less than ε
2

for all sufficiently

large a.

Theorem 7.2.2. Let 3
2
< η < µ+ 2, µ > 0. Assume that ω

1
2
−η(hµψ)(ω) ∈ L1(0,∞)

and ω−µ−
1
2 (hµf)(ω) ∈ L1(0, X), X > 0. If

lim
ω→∞

(bω)1/2Jµ(bω)ωη−
1
2 (hµf)(ω) = α, (7.2.6)

then

lim
a→0

a3/2−η(Bψf)(b, a) = αH(η). (7.2.7)

Proof. As in the previous theorem, for X > 0, we have

∣∣a3/2−η(Bψf)(b, a)− αH(η)
∣∣

≤ a

∫
ω<X

∣∣∣[(bω)1/2Jµ(bω)ω−µ−
1
2 (hµf)(ω)ωη−

1
2 − α

]
(aω)

1
2
−η(hµψ)(aω)

∣∣∣ dω
+ a

∫
ω>X

∣∣∣[(bω)1/2Jµ(bω)ω−µ−
1
2 (hµf)(ω)ωη−

1
2 − α

]
(aω)

1
2
−η(hµψ)(aω)

∣∣∣ dω
≤ a3/2−η

∫ X

0

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∣∣∣ω 1

2
−η(hµψ)(aω)

∣∣∣ dω
+ sup

ω>X

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∫ ∞

0

∣∣∣ω 1
2
−η(hµψ)(ω)

∣∣∣ dω. (7.2.8)

In view of the asymptotic behaviour (7.2.1), there exists a constant A > 0 such that

|(hµψ)(aω)| ≤ A(aω)µ.
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Hence

∣∣a3/2−η(Bψf)(b, a)− αH(η)
∣∣

≤ A a3/2−η+µ

∫ X

0

∣∣(bω)1/2 Jµ(bω) ω−µ+η−1 (hµf)(ω)− α
∣∣ ω−η+µ+ 1

2 dω

+ sup
ω>X

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∫ ∞

0

∣∣∣ω 1
2
−η(hµψ)(ω)

∣∣∣ dω
≤ Aa3/2−η+µ

∫ X

0

∣∣∣(bω)1/2Jµ(bω)ω−µ−
1
2 (hµf)(ω)− αω

1
2
−η
∣∣∣ωµdω

+ sup
ω>X

∣∣(bω)1/2Jµ(bω)ω−µ+η−1(hµf)(ω)− α
∣∣ ∫ ∞

0

∣∣∣ω 1
2
−η(hµψ)(ω)

∣∣∣ dω.
(7.2.9)

Since both the integrals on the right hand side of (7.2.9) are convergent and second

term is independent of a, for given ε > 0, the second term can be made less than

ε/2 by choosing X sufficiently large. Then there will exist B > 0 such that when

η < 3
2

+ µ the first term is less than ε/2 for 0 < a < B.

7.3 Abelian Theorems for Bessel wavelet Trans-

form of Distributions

In this section, we study the Bessel wavelet transform of distributions and its various

properties.

Now, we take ψ(x) ∈ Hµ(I). Then hµψ ∈ Hµ(I) and (bω)1/2Jµ(bω)ω−µ−
1
2 (hµψ)(ω) ∈

Hµ(I). Let f ∈ H′µ(I). Then hµf ∈ H
′
µ(I).

We can define the Bessel wavelet transform of f ∈ H′µ(I) by the following way:

(Bψf)(b, a) =
〈

(hµf)(ω), (bω)1/2Jµ(bω)ω−µ−
1
2 (hµψ)(aω)

〉
. (7.3.1)
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Theorem 7.3.1. The function (Bψf)(b, a) is differentiable and for each i, j ∈ N0,

we have

(
b−1 ∂

∂b

)j (
a−1 ∂

∂a

)i
b−µ−

1
2 (Bψf)(b, a)

=

〈
(hµf)(ω),

(
a−1 ∂

∂a

)i
(−1)iω2j(bω)−(µ+j)Jµ+j(bω)(hµψ)(aω)

〉
. (7.3.2)

Proof. First we prove the differentiability of (Bψf)(b, a) with respect to the variable

a > 0. For h > 0, we have

1

h
[(Bψf)(b, a+ h)− (Bψf)(b, a)]−

〈
(hµf)(ω),

∂

∂a
ω−µ−

1
2 (bω)1/2Jµ(bω)(hµψ)(aω)

〉
=

〈
(hµf)(ω),

(bω)1/2Jµ(bω)ω−µ−
1
2

{
1

h

(
(hµψ)((a+ h)ω)− (hµψ)(aω)

)
− ∂

∂a
(hµψ)(aω)

}〉
.

Now, we show that

(bω)1/2Jµ(bω)ω−µ−
1
2

{
1
h

(
(hµψ)((a+ h)ω)− (hµψ)(aω)

)
− ∂

∂a
(hµψ)(aω)

}
→ 0

as h→ 0 in Hµ(I).

Denoting ω−µ−
1
2 (hµψ)(aω) by Ψ̂(aω) and

(
ω−1 ∂

∂ω

)r (
ω−µ−

1
2 (hµψ)(aω)

)
by Ψ̂r(aω),

we have∣∣∣∣ωk (ω−1 ∂

∂ω

)m
ω−µ−

1
2

[
(bω)1/2Jµ(bω)

{
1

h

(
Ψ̂((a+ h)ω)− Ψ̂(ω)

)
− ∂

∂a
Ψ̂(ω)

}]∣∣∣∣
=

∣∣∣∣ωkb1/2

m∑
r=0

(
m

r

)(
ω−1 ∂

∂ω

)m−r (
ω−µJµ(bω)

)
(
ω−1 ∂

∂ω

)r {
1

h

(
Ψ̂((a+ h)ω)− Ψ̂(ω)

)
− ∂

∂a
Ψ̂(ω)

} ∣∣∣∣
=

∣∣∣∣ωkb1/2

m∑
r=0

(
m

r

)
(−1)m−rω−(µ+m−r)bm−rJµ+m−r(bω){

1

h

(
Ψ̂r((a+ h)ω)− Ψ̂r(ω)

)
− ∂

∂a
Ψ̂r(ω)

} ∣∣∣∣



Chapter 7. Abelian Theorems of the Bessel Wavelet Transform 84

=
m∑
r=0

(
m

r

)
bµ+2m−2r+ 1

2

∣∣(bω)−(µ+m−r)Jµ+m−r(bω)
∣∣ωk∣∣∣∣{1

h

(
Ψ̂r((a+ h)ω)− Ψ̂r(ω)

)
− ∂

∂a
Ψ̂r(ω)

}∣∣∣∣
≤

m∑
r=0

(
m

r

)
bµ+2m−2r+ 1

2 M ωk
1

h

∣∣∣∣∫ a+h

a

∂

∂t
Ψ̂r(tω)dt−

∫ a+h

a

∂

∂a
Ψ̂r(aω)dt

∣∣∣∣
=

m∑
r=0

(
m

r

)
bµ+2m−2r+ 1

2 M ωk

∣∣∣∣∣1h
∫ a+h

a

∫ h

a

(
∂

∂u

)2

Ψ̂r(uω)du dt

∣∣∣∣∣
≤

m∑
r=0

(
m

r

)
bµ+2m−2r+ 1

2 M h sup
a≤u≤a+h

∣∣∣∣∣ωk
(
∂

∂u

)2(
ω−1 ∂

∂ω

)r (
ω−µ−

1
2 (hµψ)(aω)

)∣∣∣∣∣
≤

m∑
r=0

(
m

r

)
bµ+2m−2r+ 1

2 M h sup
z∈I

∣∣∣∣∣zk+4

(
z−1 ∂

∂z

)r+2

z−µ−
1
2 (hµψ)(z)

∣∣∣∣∣ sup
a≤u≤a+h

u2r+µ−k− 3
2

≤ h
m∑
r=0

(
m

r

)
bµ+2m−2r+ 1

2 M γµk+4,r+2(hµψ) sup
a≤u≤a+h

u2r+µ−k− 3
2 .

Thus, we get

lim
h→0

(Bψf)(b, a+ h)− (Bψf)(b, a)

h
=

〈
(hµf)(ω),

∂

∂a
ω−µ−

1
2 (bω)1/2Jµ(bω)(hµψ)(aω)

〉
.

Similarly, we can prove the differentiability with respect to the variable b and in

general we have (7.3.2).

Next, we obtain asymptotic order of (Bψf)(b, a).

Theorem 7.3.2. Let (Bψf)(b, a) be the wavelet transform of f ∈ H′µ(I) defined by

(7.3.1). Then, for large k, we have

(Bψf)(b, a) = O(a−2kb2N), a→ 0

= O(a2N), a→∞

= O
(
(1 + a2)ka2(N−k)

)
, b→ 0

= O
(
a−2k(1 + a2)kb2N

)
, b→∞,

where N ≥ k + µ+ 1
2
.
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Proof. From the boundedness property of generalized functions [33, p.111] there

exists a constant C > 0 and a non-negative integer k depending on f such that

|(Bψf)(b, a)| ≤ C sup
ω

∣∣∣∣∣(1 + ω2)k
(
ω−1 d

dω

)k
ω−µ−

1
2 (bω)1/2Jµ(bω)ω−µ−

1
2 (hµψ)(aω)

∣∣∣∣∣
= C sup

ω

∣∣∣∣(1 + ω2)kb1/2

k∑
s=0

(
k

s

)(
ω−1 d

dω

)k−s (
ω−µJµ(bω)

)
(
ω−1 d

dω

)s (
ω−µ−

1
2 (hµψ)(aω)

) ∣∣∣∣
= C sup

ω

∣∣∣∣(1 + ω2)k b2k−2s+µ+1/2

k∑
s=0

(
k

s

)
(bω)−(µ+k−s)Jµ+k−s(bω)(

ω−1 d

dω

)s (
ω−µ−

1
2 (hµψ)(aω)

) ∣∣∣∣.
Let

∣∣(bω)−(µ+k−s)Jµ+k−s(bω)
∣∣ ≤M, M > 0. Then we have

|(Bψf)(b, a)| ≤ CM sup
ω

∣∣∣∣ k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
ω2r

(
ω−1 d

dω

)s (
ω−µ−

1
2 (hµψ)(aω)

) ∣∣∣∣
b2k−2s+µ+1/2

= C
′

k∑
s=0

k∑
r=0

(
k

s

)(
k

r

) ∣∣∣∣sup
ω
z2r

(
z−1 d

dz

)s (
z−µ−

1
2 (hµψ)(z)

)∣∣∣∣
a2s−2r+µ+1/2 b2k−2s+µ+1/2

= C
′

k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
γµ2r,s

(
(hµψ)(ω)

)
a2s−2r+µ+1/2 b2k−2s+µ+1/2

= C
′

k∑
s=0

k∑
r=0

(
k

s

)(
k

r

)
a2s−2r+µ+1/2 b2k−2s+µ+1/2

= C
′

k∑
r=0

(
k

r

)
a−2r (a2 + b2)kaµ+ 1

2 bµ+ 1
2

= C
′
(1 + a−2)k(a2 + b2)kaµ+ 1

2 bµ+ 1
2 .

Since aµ+ 1
2 bµ+ 1

2 ≤ (a2 + b2)µ+ 1
2 ,

|(Bψf)(b, a)| ≤ C
′
(1 + a−2)k(a2 + b2)k+µ+ 1

2 .
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Choosing N ≥ k + µ+ 1
2
, we have

|(Bψf)(b, a)| ≤ C
′
(1 + a−2)k(a2 + b2)N . (7.3.3)

From (7.3.3), we get the result.

Theorem 7.3.3. Let ψ ∈ Hµ(I) and f ∈ H′µ(I) be a distribution of compact support

in I. Then

(Bψf)(b, a) =
〈

(hµf)(ω), (bω)1/2Jµ(bω)ω−µ−
1
2 (hµψ)(aω)

〉
,

is a smooth function on I × I and satisfies

(Bψf)(b, a) = O(aµ(1 + b)N), a→ 0. (7.3.4)

Proof. Let ψ ∈ Hµ(I). Then from [38, Theorem 5.4-1], hµψ ∈ Hµ(I) and as a

function of ω, (bω)1/2Jµ(bω)(hµψ)(ω) ∈ E(I). Let f ∈ H′µ(I), then hµf ∈ H
′
µ(I)

is of compact support K ⊆ I. Now, we take λ ∈ D(I) such that λ(ω) = 1 in a

neighbourhood of K.

Therefore,

(Bψf)(b, a) =
〈

(hµf)(ω), (bω)1/2Jµ(bω)ω−µ−
1
2 (hµψ)(aω)

〉
=

〈
(hµf)(ω), λ(ω)(bω)1/2Jµ(bω)ω−µ−

1
2 (hµψ)(aω)

〉
.

By Theorem 7.3.1, (Bψf)(b, a) is infinitely differentiable with respect to the variables

b and a.

Using the boundedness property [33, p.111], we have

|(Bψf)(b, a)| =
∣∣∣〈(hµf)(ω), λ(ω)(bω)1/2Jµ(bω)ω−µ−

1
2 (hµψ)(aω)

〉∣∣∣
≤ C max

r
sup
ω∈K

∣∣∣Dr
ω

{
λ(ω)(bω)1/2Jµ(bω)ω−µ−

1
2 (hµψ)(aω)

}∣∣∣
= C b1/2 max

r
sup
ω∈K

r∑
n=0

(
r

n

) ∣∣Dr−n
ω λ(ω)

∣∣ ∣∣∣Dn
ω

{
ω−µJµ(bω)(hµψ)(aω)

}∣∣∣



Chapter 7. Abelian Theorems of the Bessel Wavelet Transform 87

= C b1/2 max
r

sup
ω∈K

r∑
n=0

(
r

n

) ∣∣Dr−n
ω λ(ω)

∣∣
n∑
s=0

(
n

s

) ∣∣∣Dn−s
ω

(
ω−µJµ(bω)

)
Ds
ω

(
(hµψ)(aω)

)∣∣∣
= C b1/2 max

r
sup
ω∈K

r∑
n=0

(
r

n

) ∣∣Dr−n
ω λ(ω)

∣∣
n∑
s=0

(
n

s

) ∣∣(−1)n−sbn−sω−µJµ+n−s(bω)
∣∣ ∣∣∣Ds

ω

(
(hµψ)(aω)

)∣∣∣ .
Assume that

Ds
ω[(hµψ)(aω)] = O(ωµ), ω → 0, ∀s ∈ N0. (7.3.5)

Then

|(Bψf)(b, a)| ≤ C
′
b1/2 max

r
sup
ω∈K

r∑
n=0

n∑
s=0

(
r

n

)(
n

s

) ∣∣Dr−n
ω λ(ω)

∣∣∣∣bn−s+µ(bω)−µJµ+n−s(bω)
∣∣ aµ+sωµ

≤ C
′′

max
r

r∑
n=0

n∑
s=0

(
r

n

)(
n

s

)
bη−s+µ+1/2aµ+s

= C
′′

max
r

r∑
n=0

(
r

n

)( n∑
s=0

(
n

s

)
bn−sas

)
bµ+1/2aµ

= C
′′

max
r

r∑
n=0

(
r

n

)
(a+ b)n b1/2+µaµ

= C
′′

max
r

(1 + a+ b)r b1/2+µaµ

≤ C
′′

max
r

(1 + a+ b)r+µ+1/2aµ

≤ C
′′

max
r

(1 + a+ b)Naµ, where N ≥ r + µ+ 1/2. (7.3.6)

From (7.3.6), we get the required result.

The initial value theorem for the distributional Bessel wavelet transform is given

below:

Theorem 7.3.4. Let hµf ∈ H
′
µ(I). Then it can be decomposed into hµf = hµf1 +

hµf2, where hµf1 is an ordinary function and hµf2 ∈ E
′
(I) is of order k. Now, we
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take the real numbers µ and η such that 3
2

+ 2N < η < 2 + µ, where N ≥ k+ µ+ 1
2
.

Now, we again assume that ω1−η(hµψ)(ω) ∈ L1(I) and ω−µ−
1
2 (hµf1)(ω) ∈ L1(δ,∞)

∀δ > 0. Then (Bψf)(b, a) is the distributional Bessel wavelet transform of f which

is defined by (7.3.1) can be written in the following form

lim
a→∞

a
3
2
−η(Bψf)(b, a) = H(η) lim

ω→0
ωη−

1
2 (hµf)(ω). (7.3.7)

Proof. From Theorems 7.3.1 and 7.3.2 ,

(Bψf2)(b, a) =
〈

(hµf2)(ω), (bω)1/2Jµ(bω)ω−µ−
1
2 (hµψ)(aω)

〉
is an infinitely differentiable function on I × I and (Bψf2)(b, a) = O(a2N), a→∞.

Hence, there exists a constant A > 0 such that

∣∣∣a 3
2
−η(Bψf2)(b, a)

∣∣∣ ≤ Aa2N+ 3
2
−η → 0, as a→∞.

Also, since the support of hµf2 ∈ E
′
(I) is a compact support of I,

lim
ω→0

ωη−
1
2 (hµψ)(ω) = 0.

Thus theorem follows by an application of Theorem 7.2.1 with (hµf)(ω) replaced by

(hµf1)(ω).

Final value theorem for the distributional Bessel wavelet transform is the following:

Theorem 7.3.5. Let 3
2
< η < µ + 2. Assume that hµf ∈ H

′
µ(I) can be de-

composed into hµf = hµf1 + hµf2, where hµf1 is an ordinary function satisfying

ω−µ−
1
2 (hµf1)(ω) ∈ L1(0, X) ∀X > 0 and hµf2 ∈ E

′
(I). If (Bψf)(b, a) is the distri-

butional Bessel wavelet transform of f , then

lim
a→0

a
3
2
−η(Bψf)(b, a) = H(η) lim

ω→∞
(bω)1/2Jµ(bω)ωη−

1
2 (hµf)(ω). (7.3.8)
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Proof. From Theorems 7.3.1 and 7.3.3,

(Bψf2)(b, a) =
〈

(hµf2)(ω), (bω)1/2Jµ(bω)ω−µ−
1
2 (hµψ)(aω)

〉
is a smooth function on I × I and (Bψf2)(b, a) ≤ Aaµ(1 + b)N , for a → 0, A being

a large constant.

Since 3
2
− η + µ > 0,

a
3
2
−η |(Bψf)(b, a)| ≤ Aaµ−η+µ(1 + b)N → 0 as a→ 0.

The final result follows with the help of Theorem 7.2.2 with hµf replaced by hµf1.

7.4 An Application

We apply the preceding theorems to the Bessel wavelet transform defined by function

ψ(x) = xµ+ 1
2 e−αx

2
with α > 0, Re µ > −1. The Hankel transform of ψ is (hµψ)(ω) =

ωµ+
1
2

(2α)µ+1 e
−(ω

2

4α
) and (hµψ)(ω) = O(ωµ+1), ω → 0.

Assuming α = 1, we have

H(η) =

∫ ∞
0

(hµψ)(ω)ω1/2−ηdω

=

∫ ∞
0

ωµ+ 1
2

2µ+1
e−

ω2

4 ω1/2−ηdω

= 2−η−1Γ

(
µ− η + 2

2

)
, η < µ+ 2 (7.4.1)

and

(Bψf)(b, a) =

∫ ∞
0

(bω)1/2Jµ(bω)
(aω)µ+ 1

2

2µ+1
e−

(aω)2

4 ω−µ−
1
2 (hµf)(ω)

=
aµ+ 1

2

2µ+1

∫ ∞
0

(bω)1/2Jµ(bω)e−
(aω)2

4 (hµf)(ω). (7.4.2)
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Therefore, by a modification of Theorem 7.2.1 for η < µ + 2 and e−
(aω)2

4 (hµf)(ω) ∈

L1(δ,∞), we have

lim
a→∞

a3/2−η(Bψf)(b, a) = 2−η−1Γ

(
µ− η + 2

2

)
lim
ω→0

ωη−
1
2 (hµf)(ω). (7.4.3)

By Theorem 7.2.2, η < µ+ 2 and e−
(aω)2

4 (hµf)(ω) ∈ L1(0, X), we have

lim
a→0

a3/2−η(Bψf)(b, a) = 2−η−1Γ

(
µ− η + 2

2

)
lim
ω→∞

(bω)1/2Jµ(bω)ωη−
1
2 (hµf)(ω).

(7.4.4)

Since in the present case kernel (hµψ)(ω) is exponentially decreasing, hence condi-

tions of validity of initial and final value theorems are relaxed. Results corresponding

to Theorem 7.3.4 and Theorem 7.3.5 can be obtained using results (7.4.3) and (7.4.4).


