Chapter 6

Bessel Wavelet Transform on the

Spaces with Exponential Growth

6.1 Introduction

Hankel transform is an important tool which is used by many mathematician to
solve various problems on different types of functional and distributional spaces.
Zemanian[35, 38|, Koh[14, 15|, Pandey|[8|, Pathak[17] and others investigated the

aforesaid spaces in many research papers and studied their properties.

The space of type H,,(I) which is introduced by Zemanian[38]. He showed that
the Hankel transform h, is an automorphism on H, (/). He also proved that the
generalized Hankel transformation h; is an automorphism on HL(I ). Several other
properties of the Hankel transformation are studied by Zemanian [34, 37] and others.
The spaces of exponential growth of U, types were given by Pathak[17] and he ob-

tained their algebraic & topological properties using the theory of Hankel transform.

To study the Hankel transform on the space of exponential growth, Betancor

and Mesa[2] defined the x,(I) and Q,(I) spaces. Involving Hankel transform and
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Hankel convolution theory, it is shown that Hankel transformation is an isomorphism
from x,,(I) onto Q,,(I) space for 1 > —21. From the Hankel convolution tool, he also

discussed many other properties.

In the present chapter, motivated from the work of Betancor and Mesa[2], the
Bessel wavelet transforms on x, (/) and Q,,(I) spaces are investigated and it is shown
that Bessel wavelet transforms By, : x,({) — xu,({ X I), By : Q. (1) — Q,(I x I)
are linear and continuous. Applying the above continuity properties of the Bessel
wavelet transform, some properties of Hankel convolution are studied. The theory
of Bessel wavelet transform on y,(I) space is suitably used on Fredholm integral
equation associated with Hankel convolution and obtained the solution of integral
equations.

Now, we are stating the various definitions and properties which are related to our
present work.
The space x,(I) consists of all smooth complex-valued function ¢(x), x € I satisfies

the following norm

d\" 1
@) = s e (a8 ) @ o) < (6.1.1)
’ 2€(0,00) dx
for every k,m € Nj.
The semi norm for ¢ € x,(I) is given by
Mon(0) = sup |eFPr7 28T g(x)|,  k,m € Ny, (6.1.2)

z€(0,00)

where S, = x_“_%%x%“%x_“_%, induces on x, (/) the same topology as defined

o
by {/ykvm}k,mENo‘
The space of multipliers of x,(/) is denoted by 6, and is defined as a function
f € 0y, whenever f¢ € x,(I) for every ¢ € x,(I). Thus a function f € 6, if and

only if

(i) f is smooth on I, and
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(ii) for every m € N there exist £ € N and C' > 0 such that
1d\"
‘ (5%> f(@)

The space Q,,(I) consists of all complex-valued functions ® which satisfy the follow-

<Ce* rel.

ing two conditions

(i) z7#~2®(z) is an even entire function.

(ii) For every k,m € Ny, the following norm is given by

Wi (@) = sup (14 [2)™]z7#72(2)] < . (6.1.3)

[Im z|<k

Bessel functions .J, satisfies the following boundedness properties which are very

useful in our investigation.

(i). |27 Ju(2)] celm# zecC (6.1.4)

(ii). |zl/2H£L1)(z)| < Ce '™z 2eC e > 1, (6.1.5)

IN

where H, ,81) denotes the Hankel function of the first kind of order p and C'is a positive
constant depending on 4 in (6.1.4) and (6.1.5).

6.2 The Bessel Wavelet Transform on the Spaces
Xu(I) and Q,(I)

In this section, the properties of Bessel wavelet transform on x, (/) and Q,(I) type

spaces are studied.
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Lemma 6.2.1. If¢ € x,(I),I = (0,00), then we have the following estimate

q

<“1%) q (hya) (a(€ +i(k + 1>>’ <2 @ CLa 372 |¢ ik + 1)

r=0

Ver10(0)T (20 — 2r 4+ 2¢ + 1),

1
2

Apr =+ ) +5=2)(p+ 3 —2(r = 1)).

where a > O, > r —q— 5 and C, = C x A,, with arbitrary constant C and

Proof. We have

(740) i) -

</ d\?, _ _
— / v 1%> (v T, (oy) " TY2) gy 2y () dy
0

LR (ol

oI 2y iy it 2 () dy. (6.2.1)
Since

(_1)q—rv—(u+q—r) Y T (vy) (6.2.2)

VRS
|
—
=~
~_
(=]
!
—
QI
=
.:kl
—~
S
Ny
S—
SN—
Il

and

" 1 1 1 1
(74 ) 7 = G g+ g~ Dt = 20— D, (623)
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putting values of (6.2.2) and (6.2.3) in (6.2.1), we get

(74) G

dv
oo 4 q
= [ () (ot o
r=0
1 1 1 pts—2r —p, put1/2
()t 5 =2)(ut 5 =20 = 1)) y Yyt (y) dy

q 00
q _p _ _ —opp L 1_o,
/ ()(—1)‘1 (o) 0T T (o) R AL 0 () dy
0

r

I
-
Q ||M
[en)

q - 1_op = - —r —2r41
r=0 0

Taking the absolute value of the above equation, we have

(4) G

a o0
q 1o, _ -
SZ(T)AW\W i / [(0g)™ D (09)
r=0

Y2 (y) | dy.

From (6.1.4), we get the following estimate

() oo
<

q o0
q 1_opn _opyl )
5= (%) ur iprire [T play, i lomel <k
r=0 0
q 00
<> <z> Ay C o]t / Ry 202y () ()| dy
r=0 0
q
< Z (Q) Cu |U|u+%—2r sup ) (Ic—l—l)y ‘/ 2u+2q 27"+1dy
r=0 r yG(0,00)
5 (¢ =2 b T(2u —2r +2¢ + 1
= , Cy |v[FT2 7k+1,0(w> (2 —2r +2q +1).
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Putting v = a ({ +i(k + 1)), we have

d
la(§+i(k+1

(fate+ i+ 0 =) O (ale+ i+ 1)

q
< Z (g) Cuau_%ur% 1§ +i(k + 1)|“+§72T ’yl’jﬂp(@/}) C(2u —2r +2q + 1).
r=0

Hence

<a—1%)q<hm> (ale + ik + 1))

1

q
1 —2r+3 - —2r+2
< Z (r) Cruah ™25 ¢ ik + 1) 20N ()02 — 20 + 29 + 1),
r=0

O
Theorem 6.2.2. Bessel wavelet transform By, is a continuous linear map from x,(I)
to xu(I x I) for p > —1.

Proof. Let ¢ € x,(I). Then by using (1.4.4), we have

() e 00

= () 0 [T 000 (000 () () )
= [T (7)) 0700 5 (57 (1,0 () () )
= (02 [Tt 00} (7 (,0) () () ()

— /OOO b*u*qxq+%Ju+q(bx) (x*#% (h,9) (a:)) (h,) (az)dz.

Using [2, Theorem 2.1}, we get

(7). = [ a0+ i)

o
—0o0

((6+im) 78 (hu) (€ +im) ) () (alg + im))de.
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Therefore,

‘<_1>q (1) (7Y s

<5 [ s et B0 i) (€4 i o) 6+ )|

dg

(a12) ) et i)

& 1
- / bhT s
—00

(& +im (€ +in) ™7 (huo) (€+im))|

(bl +im)FHL, (b(E + im))|

dg

(«12) ) ate i)

vt [ gt (€ im o (o) €+ i)

(412 ) ot it

Using Lemma 6.2.1, we get

|<_1>q () () v By

o0

S rIiCe™ / }(§+z‘n>q (& +im) ¥ (o) (€ +z‘n)”

—00

l
l . 1
(Z (T> C,y a2 8 |¢ 4 ip|tte 2 o) T2 — 2r + 21 + 1)) d¢

r=0

l
1 1 )
< CYHT g ey (T> Cou o) T2 — 2r + 21 + 1)
r=0

/_Z ‘(g + Z'n)ll*2r+2l+CI+% [(5 + z‘n)w*% (huo) (€ + Z'TI)} ‘ d.
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Putting n = k + 1, we have

l
b (w%) (b 1;}) b~""2(By)(b, a)

l
1 1 l
< CO.C, b H i 2t ( ) Vo) T(2p = 2r + 20+ 1)
>, ,
=0

[l P i+ )77 () (64 i+ 1) de

—00

Now let z = & 4+ i(k + 1), we have

(di) (175) v i)

< C;Lb—u—q—aau 2r+3 b Z ( ) 7k+1 W) T (2p —2r+204+1)

o0
—00

!
, l
<Oy ety ( ) o) T (20— 2r + 20+ 1)
7« b
r=0

7 (huo) (2)| dz

[P e (1 ) [ (10) ()] a2

l
/ 1 1 l
< CLhr g e § : ( ) Y1o() T2 — 2r + 21 + 1)

sup (1 + ]2|2)m
[Im z|<k+1

qu ‘ / 1+ |Z’ |Z’u—2r+2l+q+%dz_
The last integral is convergent for large value of m. Then

(di) (145) v ey

T2p—2r+204+1) sup (1+[z)"
[Im z|<k+1

l
/ 1 1 l
< Cub—u—q—gau—%”rie—b § < ) 7’5“ 0(1/;)
T k]

r=0

275 (ho) (2)] -
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Using [2, Theorem 2.1}, we get

(di) (1 jb) b} (B)(b,a)

l
< Ol ety ( )7 ST (2p— 20 +20 1 1)
T

r=0

{771/:+2,0(¢) + 7];:—{-27m(¢)} .

]

Theorem 6.2.3. The Bessel wavelet transform By, is a continuous linear mapping

from Q,(I) to Q,(I x I).

Proof. Let ¢ € Q,(I). Suppose (By¢) (z,a) = ®(z,a), where z = b+ib, b,b € I
and a € I. From (1.4.4), we have

et P /Ooo(zx)“Ju(Zx)(Zw)wé (huo) (@)z ™" 2< h) (az)dz
= /Ooo(zz)_“Ju(zx)ZEw% (huo) (x)(az)” ha ) (ax)d

Therefore,
bz daa) < [ ) ) [ (o) @) [fan) o () 0|

Using (6.1.4), we have

)a‘“_%z_”_%é(z, a)‘ < C’/OO elimal | pits (hu9) (:17)‘ ‘(ax)_“_% (hu) (cm)‘ dz.

0
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For |[Imz| < k, we can write the above expression

‘a*”*%z*“*% D(z,a)

<c [T et e o) <x>H<asc>*ﬂ*% (1) (a) | dr

/ e—axk’ 2u+1
0

k272 (o) (w)

< Csuple
zel

sup (e
zel

Then

‘a*“*%z*“*%q)(z, a) ‘

1 ' 1
< C'sup e (az) "2 (hya) (ax) %.

zel

sup
zel

e (hyo) ()

In the view of [2, Theorem 2.1, pp.38-39], we have

I'(2 1
< CWII:HJ(@ Wgﬂ,z(w)%a (6.2.4)

aFTry d(z,a)

forx>landl>u+%.
For x € (0, 1), using the arguments of [2, Theorem 2.1, pp.38-39], we have

F'ep+1)

a_'u_%Z_u_%¢(Zaa) SCWﬁn(gb)wu (¢)W’

1n

(6.2.5)

where n € N and n > p + 1.
Taking (6.2.4) and (6.2.5), By, is a continuous mapping from Q,(I) to Q, (I xI). O

Lemma 6.2.4. Let ¢» € x,(I) be a Bessel wavelet, then it can be written in the

terms of Hankel transform as

Ttba() = V2R, [(bu) Ty (bu) (hth) (au)] (2), (6.2.6)

where a, b are dilation and translation parameters, respectively.
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Proof. From (1.4.3), we have
(o) = (£ b)
:a“_/ U(z <— — z) dz
e oo ([ (8 () 4 )
0 0 a a a a

(zt)éJM(zt)dt) dz.

Putting i = u, we have

) =t [Tt ([t

(zau)% Ju(zau)adu> dz
:/0 (/0 (zau)

= [ b e ) 00 () )
= 02 by, [(bu) " Tu(bu) (bt (au)] (2).

NI

Ju(wu)(bu)? T, (bu)

[NIES

Ju(zau)w(z)dz) w2 (zu) 2 J(zu) (bu)% J,,(bu)du

Theorem 6.2.5. If f € X;L(]) and v € x,(I) then (1 + a?)Lhrz (Byf) (b,a) €
Oy, , where X/u(]) and 0, denote the dual and multiplier of x,(I), respectively.

Proof. Suppose f € x,,(I) and ¢ € x,(I). Since f € x,,, from [2] there exist r € N

and essentially bounded functions f; on I, 0 < k < r, such that

= Z S,lf(er%_“_%fk)-
k=0
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Therefore,

(Buf) (b,a) = (f#¢a) (b)
= <f>7—bwa>

)
5=0

= <Z T rhE Tb(5ﬁ¢a)>
k=0

= Z/ emx_”_%fk(x)Tb(Sl’jwa)(x)dx
k=00
From Lemma 6.2.4 and [16], we have

Bup)ba) =Y [ e
k=00
hy [(08) 7 J,u(b) hy(She) (at)] (x)dx
= ) € aTHE fi(z)b R
>
hy [(b8) 7" T, (0t) (at)? (hy))(at)] (a)de,
o o) ) = S [

0

hy [(0) 7 T (008 (hy) (at)] (w)dx

(6‘1%> b2 (Byf) (b a%/ ey P
0

B [(08) 7" T (0T (B0 (at)] () da.

Now, we can estimate the following expression

LAY
(r5) im0
Sza%z

k=0 0

b a3 fi(@)hy, [(08) T T (08) () (at )25 )] (g;)‘ dx
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< sup
zel

Za% /00 |@_xfk(1’>‘ dr
k=0 0

gy (B g (B () (at)] ()]

e(’"‘*‘l)xx_“_%hu [(bt)_u_n‘]u+n(bt)t2(k+n) (Rut)) (at)} (z) ‘

< sup
zel

ra* /OO le_mfk(x)| dx.
0

This implies that

‘ (b%) b4 (Buf) (b,0)

etV ()T (BT (By) (at) @)’ '

!/
< Ca* sup
xel

Since ¢ € x,(I), then from [2, Theorem 2.1] (h,v)(at) € Q,(I). From [2, p.40]
(bt)~H " Jyuqn(bt) € g, . Therefore, from the definition of multipliers
2R () =Hn T (08) (Rut) (at) € Q. (1) and there exist [, m € N such that

‘(b%)%w (f#52) <b>>! < O, (PO (b8 (00) () )

Using (6.1.4), we have

d

‘(blw"(bﬂm (F#0a) <b>>‘ < C@ Wi (Ruth(at)) €
S C/Cﬂ,m,k,n a2relb’
‘(b%)”u )b A(B ) (boa)| < D'

This shows that (1+ a*)~'6=#"1/2(B, f)(b,a) € 0, . O



Chapter 6. Bessel Wawvelet Transform on the Spaces with Exponential Growth T4

6.3 Applications

In this section, motivated from [7, p.214], we introduce the Fredholm integral equa-
tion associated with Hankel convolution on y, () space.

The Fredholm integral equation is defined by

/0 T F gl )t + A () = u(a), (6.3.1)

where g(z) and u(z) are given functions and A is a known parameter.

From (1.3.4), we can write (6.3.1) as,

(f#9)(x) + Af(2) = u(2). (6.3.2)

Theorem 6.3.1. Let f € L'(0,00) and g € L'(0,00). Then solution of (6.3.2) is

o) = [ a0 (633)

Proof. Hankel transform of (6.3.2) is

hu[(f#9)1(E) + ARy f)(E) = (huu)(E).

Using (1.3.10), we get

772 (hy () (hug) (€) + Alhuf)(€) = (hyu)(€)

(hu)(E) €72 (hug) () +A| = (hu)(©)
() (©)

hf)(€) = 1 . 6.3.4
N RS
From the inversion formula (1.0.3), we can find the solution of (6.3.2)
) — = eV T (g l(huu>(§) de. ]
1) = [ @ ) oy e
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Theorem 6.3.2. Let f,g € x,(I). Then

(f#g) () + Af(x) € xu(l). (6.3.5)

Proof. From [2, Proposition 3.2], the Hankel convolution is a continuous linear map-
ping from yx,, X x, into x,. This implies that (f#g) € x,.(1).
Since f € x,(I), therefore

(f#g) () + Af(x) € xu(l).

The above theorem can be justified with the following example.

Example 6.3.1. We take u(x) = z#t2e79" with Rea > 0,Rep > —1 and f = g
in (6.3.1). Then from (6.5.4),we have

(P = g5 by (w37 (g)
B 52,u+1 6_52/411
T Q) '

From [9, p.29], we have

f(z) = 23 girtlgm2ar?

Thus, z*t'e=2%" ¢ x,(I) and the solution f(x) = 2t phtle—2a2® ¢ Xu(1).

Theorem 6.3.3. Let ¢ € x, C L*(0,00) be a Bessel wavelet. Then

= [ J,(6) (06) 2 (R )(€) de. 6.3.6
RN RRAGIT TR (6.3.6)

Proof. Putting g = 1,(b) in (6.3.2), we have

(f#3a) (0) + AS(b) = u(D)
(Byf)(b,a) + Af(b) = u(b). (6.3.7)



Chapter 6. Bessel Wawvelet Transform on the Spaces with Exponential Growth 76

Taking the Hankel transform to the both sides of (6.3.7), we get

() (hya) ©) + Ay )(E) = () (€)
(B () [€7H () () + 2] = () (€)

i)
N TR ICES T

With the help of inversion formula of Hankel transform, we have

b) — OOJ bE) (he) /2 1”‘#“)(5) de.
0 / 090 e

[
Example 6.3.2. Solve the integral equation
[ s (42) ar =,
where Y(x) = 2T (v + )a™"~ H,,H(x)
Solution. From (6.3.8) and [9, p.26], we get
1
hy = (hyu -
N8 = ) S T+ e o))
1
= (hMU)(OW’ Rev > —1,Reu > —1.
Taking v = (u + %)
(hef)() = () (©)[1 — (€))7 =. (6.3.9)

Since [9, p.32], we have

1

h, (W_I/QZ_“F(I /2~ u)xﬂ—%smx) (af) = €31 — (af)? 3, (6.3.10)
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where —1 < Rep < %
Using (6.3.10) in (6.3.9), we get

(huf)(€) = E+ 4 h)(©) by, (727 T(1/2 = p)a?~bsinz) (as)
=h, (u#W_I/QZ_‘T(l/Q — 1) <$>M_é sm£> (&)

a a

N|=

h—

f(z) =u#a"Y227rT(1/2 — p) (2) sing.






