
Chapter 5

Linear Time Invariant Filter

associated with Bessel Wavelet

Transform

5.1 Introduction

Fourier transform plays an important role to design the various type of filters. Filter

can be represented in the form of “ black box ” that takes an input signal, processes

it, and then returns an output signal that in some way modifies the input signal. In

signal processing, filter is used to remove the unwanted frequency components from

the signal to enhance the wanted ones.

The concept of linear time invariant filter is given in [3] and it is shown that the

output signal from a linear time invariant filter of a sinusoidal input signal is also

sinusoidal with the same frequency. Using the aforesaid result, linear time invari-

ant filter is expressed in terms of convolution by exploiting the Fourier transform

technique.
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Now, our main aim in this chapter is to introduce the theory of linear time

invariant filter associated with Hankel transform and Hankel convolution. Using

aforesaid transform theory, linear time invariant filter can be expressed in terms of

the Bessel wavelet transform [21].

From [3, p.180], we introduce the following concepts of filter which are useful

for further discussion and investigation.

A filter L is said to be linear if it satisfy the following properties

(i)Additivity: L [f + g] = L [f ] + L [g] .

(ii)Homogeneity: L [cf ] = cL [f ] , where c is a constant.

A filter L is said to be time invariant if for any signal f and any non-negative real

number a

L [fa] (t) = (Lf) (t, a), (5.1.1)

where fa(t) = f(t, a) =
∫∞

0
f(z)D(t, a, z)dσ(z).

Now, (Lf)(t, a) is defined by

(Lf)(t, a) =

∫ ∞
0

(Lf)(z)D(t, a, z)dσ(z). (5.1.2)

For the linear time invariant filter L, we can write the following representation

L

[∫ ∞
0

f(z)D(t, a, z)dσ(z)

]
=

∫ ∞
0

(Lf)(z)D(t, a, z)dσ(z). (5.1.3)

5.2 Linear Time Invariant Filter

In this section, we are studying the properties of linear time invariant filter involving

Hankel transform and Hankel convolution.
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Lemma 5.2.1. Let L be a linear time invariant transformation and λ be any fixed

non-negative real number, then there exists a function h, such that

L[jµ(λt)] = (hµh)(λ)jµ(λt). (5.2.1)

Proof. Let hλ(t) = L[jµ(λt)]. Since L is time invariant, then we have

L[jµ(λt)jµ(λa)] = hλ(t, a), (5.2.2)

for each non-negative real number a.

L is linear, then from the properties of homogeneity, we get the following expression

L[jµ(λa)jµ(λt)] = jµ(λa)L[jµ(λt)]

= jµ(λa)hλ(t). (5.2.3)

From (5.2.2) and (5.2.3), we get

hλ(t, a) = jµ(λa)hλ(t). (5.2.4)

Setting t = 0 in (5.2.4), we get

hλ(0, a) = jµ(λa)hλ(0).

This implies

hλ(a) = jµ(λa)hλ(0).

If we set a = t, then

hλ(t) = jµ(λt)hλ(0).

Letting hλ(0) = (hµh)(λ), then we have

L[jµ(λt)] = hλ(t) = (hµh)(λ)jµ(λt).
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Theorem 5.2.2. Let L be a linear time invariant transformation on the space of sig-

nals that are piecewise continuous function. Then there exits an integrable function

h, such that

L(f) = f#h, (5.2.5)

for all signals f .

Proof. With the help the Hankel inversion formula (1.1.4), we have

f(t) = h−1
µ [hµf ](t)

=

∫ ∞
0

(hµf)(λ)jµ(λt)dσ(λ).

Now,

(Lf)(t) = L

[∫ ∞
0

(hµf)(λ)jµ(λt)dσ(λ)

]
≈ L

[∑
j

(hµf)(λj)jµ(λjt)4λ

]
=

∑
j

(hµf)(λj)L(jµ(λjt))4λ.

The Riemann sum on right hand side of the above expression can be converted into

an integral

(Lf)(t) =

∫ ∞
0

(hµf)(λ)L(jµ(λt))dσ(λ).

Using Lemma 5.2.1, we have

(Lf)(t) =

∫ ∞
0

(hµf)(λ)(hµh)(λ)jµ(λt)dσ(λ).

From (1.1.10), we get

(Lf)(t) =

∫ ∞
0

hµ (f#h) (λ)jµ(λt)dσ(λ).
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Using (1.1.4), we write

(Lf)(t) = h−1
µ [hµ(f#h)] (t)

= (f#h)(t).

Therefore,

L (f) = f#h.

Now we are giving an example in the support of Theorem 5.2.2.

Example 5.2.1. Let l(t) be a function that has finite support. For a signal f, let

(Lf) (t) = (l#f) (t)

=

∫ ∞
0

l(t, x)f(x)dσ(x). (5.2.6)

This linear operator is time invariant because for any a ≥ 0,

(Lf) (t, a) =

∫ ∞
0

(Lf) (z)D(t, a, z)dσ(z).

From (5.2.6), we get

(Lf) (t, a) =

∫ ∞
0

(∫ ∞
0

l(z, x)f(x)dσ(x)

)
D(t, a, z)dσ(z)

=

∫ ∞
0

(∫ ∞
0

{∫ ∞
0

l(y)D(z, x, y)dσ(y)

}
f(x)dσ(x)

)
D(t, a, z)dσ(z)

=

∫ ∞
0

(∫ ∞
0

{∫ ∞
0

f(x)D(z, x, y)dσ(x)

}
l(y)dσ(y)

)
D(t, a, z)dσ(z)

=

∫ ∞
0

(∫ ∞
0

f(z, y)l(y)dσ(y)

)
D(t, a, z)dσ(z)

=

∫ ∞
0

(∫ ∞
0

f(z, y)D(t, a, z)dσ(z)

)
l(y)dσ(y)

=

∫ ∞
0

f(t, a, y)l(y)dσ(y)
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=

∫ ∞
0

fa(t, y)l(y)dσ(y)

= (Lfa) (t).

Physical Interpretation : Both h(t) and (hµh)(λ) have physical interpretations.

Assuming that h(t) is continuous and integrable function on I = (0,∞) and δ is

small positive real number.

Now, we define impulse signal

fδ(t) =


2µ−1/2 Γ(µ+1/2)(2µ+1)

δ2µ+1 t≤ δ, µ > −1/2,

0, otherwise.

If δ is small, then fδ represents a strong signal but only lasts a short period of

time (such as sound signal generated by hammer blow). Now, we can easily find∫ δ
0
fδ(t)dσ(t) = 1.

Applying L to fδ and using (5.2.6), we obtain

(Lfδ) (t) =

∫ ∞
0

fδ(τ)h(t, τ)dσ(τ)

=

∫ δ

0

fδ(τ)h(t, τ)dσ(τ).

Since h is continuous, h(t, τ) is approximately equal to h(t) for τ ≤ δ.

Therefore,

(Lfδ) (t) ≈ h(t)

∫ δ

0

fδ(τ)dσ(τ) = h(t).

Thus, h(t) is the approximate response obtained by applying L to an input signal

that is an impulse on half plane. For that reason h(t) is called impulse response

function.

Since from Lemma 5.2.1, (hµh) (λ) is the amplitude of the response to a “pure

frequency” signal jµ(λt) so (hµh) (λ) is called the system function.
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Theorem 5.2.3. Let f ∈ L2
σ(I) and ψa ∈ L2

σ(I). Then Bessel wavelet transform

can be expressed as

(Bψf) (t, a) = (Lf)(t), (5.2.7)

where L is a time invariant linear filter.

Proof. From (1.2.5), we have

(Bψf) (t, a) = (f#ψa) (t)

= h−1
µ [(hµf) (λ) (hµψa) (λ)] (t)

=

∫ ∞
0

jµ(λt) (hµf) (λ) (hµψa) (λ)dσ(λ)

=

∫ ∞
0

[jµ(λt) (hµψa) (λ)] (hµf) (λ)dσ(λ).

Using Lemma 5.2.1, we see

(Bψf) (t, a) =

∫ ∞
0

L [jµ(λt)] (hµf) (λ)dσ(λ)

=
∑
j

L [jµ(λjt)] (hµf) (λj)4(λ)

= L
∑
j

[jµ(λjt)] (hµf) (λj)4(λ)

= L

(∫ ∞
0

jµ (λt) (hµf) (λ)dσ(λ)

)
.

From (1.1.4), we have

(Bψf) (t, a) = (Lf) (t).


