Chapter 4

Integrability of the Continuum
Bessel Wavelet Kernel

4.1 Introduction

The kernel of any integral transform is important because it plays a decisive role to
determine the nature of the solution of differential equation. The continuum wavelet
was studied by Pinsky [28], by using the Fourier transform analysis. With the help
of the aforesaid transform integrability conditions of the continuum wavelet kernel

is investigated by the same author in [29] and many useful results are obtained.

The Bessel wavelet kernel is an important tool because it is a generalization of
the Bessel function of first kind which is used as a kernel of the Hankel transform

by Hirschman Jr. [12], Haimo [11] and others.

In the present chapter, our main objective is to explore the integrability condi-
tions of the continuum Bessel wavelet kernel by using the theory of Hankel transform

and Hankel convolution.

The content of this chapter has been published as a research paper in International Journal
of Wavelets, Multiresolution and Information Processing, (5)13 (2015) 1550032(13

pages).
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4.2 Properties of the Continuous Bessel Wavelet

Transform

In this section, we discuss some properties of the continuous Bessel wavelet transform
which are helpful to give the sufficient conditions for the integrability of the Bessel

wavelet kernel.

Definition 4.2.1. A function ¢ € L2(I) is a normalized continuum Bessel wavelet

if |||, = 1 and its Hankel transform satisfies the admissibility condition

Ay = /000 Mda(u}) < 00. (4.2.1)

w2n+1

The admissibility condition (4.2.1) requires that (h,1)(0) = 0 for existence of the

integral. If h,1 is continuous, then
()0) = [ dutatyiasts (422)

implies that (h,¥)(0) = 0= [~ ¥ (t)do(t).
By rescaling the spatial coordinate, we may assume that both |||, , = 1 and Ay=1.

Then, for any ¢ € L2(I) with Ay < oo, we can define

1 Elly|32+
(h,ud)new) (f) = W h#¢ (A—l, . (423)

It is clear that ||k, Ynewlly , = [[¥newll,, = 1 and (Ay)* Ay,.., = 1. Using assumption
Ay =1, we have Ay, = 1. This shows that (4.2.3) is a renormalized continuum

Bessel wavelet.

We define L? norm

00 1/2
N(a)—(/o \<Bwf><b,a>rzda<b>) B, (424)
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Lemma 4.2.2. Let ¢ € L2(I) be a renormalized continuum Bessel wavelet and

f € Li(I). Then

(i)

((Byf)(b,a)] < a™

1 ll20 (4.2.5)

(ii) For a > 0,b — (Byf)(b,a) is in L2(I) and the norm N(a) holds the following
equality

[ B v~ ([T meneoram) S
= [Ifl3,- (4.2.6)

Proof. From (1.2.5), we have

((Byf)(b,a)] = [(f#1a)()]
< I #Yall s -

From (1.1.12), we have

((Bpf) (@)l < [ fllog [[Pallz0

—2pu—1
= [fllooa™> ¥l
—2pu—1
= a7 [[flly,

as [[¢]ly, = 1.

To prove (ii), we take f € LL(I) N L2(I). Then (h,f)(&) € LX(I).

NP = / T (Bof) (b, a) P do(h)
- /Oool(f#%)(b)l2d0(b)-
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From Parseval’s relation of the Hankel transform (1.1.14), we have further

N@P = / T (40 ()P do(e)
- / ()P () (6) P (€)

— il | (i) € Pr(e)
0
= Ve Il

< Q.

In particular, b — By f(b,a) € L2(I) for every a > 0.

Now,

[ wvare = [T ([T i@ o Pao).

Using Fubini’s theorem, we have

[ = [Cimaner( /OOO%MCZU(@)) 4o (€)

s / S\ PO do(e).

Exploiting Parseval’s relation (1.1.14), we get

> d
[ =, w41

This proves (4.2.6), for f € LL(I) N L2(I). In particular, @ — ||Byf|>_ is finite
everywhere.
Now, if f € L3(I) and f,, € Ly(I) N L2(I) with ||f — full,, — 0, then from (4.2.5),

we have the pointwise bound

|Byf(b,a) = By fu(b,a)| < ||f = fally, = 0. (4.2.7)

This shows that By, f,, converges uniformly to By f.
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On the other hand, applying (4.2.6) to f, — fn, we see that B, f, is a Cauchy

sequence in the Hilbert space L? <I 2 %) .

Hence, there exists a limit F' in this space for which

[ i O~ [ [,

= Tim |12,

2
= 2 -

Now, take a subsequence that converges a.e. Along this subsequence we also have
the uniform convergence to B, f. Hence we conclude that F' = B, f a.e. Taking
n — oo, we get (4.2.6). Thus, (4.2.6) holds for f € L2(I).

In particular, [ |(Byf)(b, a)|* do(b) < oo for almost all a > 0, and hence the proof

is complete. O

4.3 Kernel of the Inverse Transform

In this section, motivated from the results of Pinsky [29], we introduce the par-
tial inverse transform associated with the Bessel wavelet transform and study their

properties.
Definition 4.3.1. The partial inverse transform is defined as

s = [ ([ @ano.aumin) Sl wa

for e > 0.

Theorem 4.3.2. The partial inverse transform (4.3.1) can be expressed as

S0 = [ (Boftin (0 G (432)
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Proof. We write

/0 T (Buf) b, a)a(a)do ()

:/ (Byf) ba{ /w(zD<——z) } a(b)
= o M) { |
([0 (%) a0 (%) it10(9)) doe)  aot

By applying Fubini’s theorem, we have

N

/0 T (Buf) (b, a)ina(x)do(b)

= e [Canea{ [T ([ v@icone)

Ju a d
= [Cwnmaf [ (%) (2
= ([T (%) aow) ([t (2) o)

= w2 [Tl @aneal () teen () we.

Putting % = w, we get

/f(Bwf)(b,a)wb,a(w)da(b) / " (B f) (b, @) ] ) (20)dor ()
o {h (Bof) (b a) ]} (2)

[(By.f) (b, )34l ().

Thus, from (4.3.1), we have
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Theorem 4.3.3. Let ¢ € L2(I) be a renormalized continuum wavelet. Let € > 0,
f € L2(I) and x € I. Then the integral (4.3.1) converges absolutely and has the

following pointwise bound

1Sef (@) < Ac |l (4.3.3)

where Ac = ([ o, =72 da) "2 Furthermore, S.f € LZ(I) and ||Scf — flly, — 0 as

e — 0.

Proof. In the integrand of (4.3.2) by using the Cauchy-Schwarz inequality (1.1.16),

we have the following pointwise bound

By f#bao(x)] < [(Byf)(a )l o [Yaolly,
191,

(a2u+1)1/2

N(a)
= ez 191y, =

= N(a)

Thus, we have estimate (4.3.2) by the following way

do(a)
1Sef(x)] < / a2,u+1 1/2 a2n+1

IN

From (4.2.6), we have

551 < o ([ mempto@)

1 1/2
< Ul ([ et
a>e

= ||f||27o- AEa (434)

where A, = (fa>e 7T da) and for each € > 0, A, is convergent for u > —1/2.

To prove that S.f € L2(I), we take f € LL(I)NL?(I). Then from the properties of
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Hankel convolution [26], we have

HBwf#%Hz,a < HBwf‘|1,aH¢a|l2,a

1By fll;
< (a2 +1)1/2 ( ||¢||2,a = 1)

1 #ally,

(a2w+1)1/2

Using the argument of [19, p. 1732], we have

Byl < ol (435)

Applying the generalized Minkowski inequality to (4.3.1), we get

do(a
I, < Wil [ 22

da
< -
= ”f”l,a l>€ az,H_Q
= |fll. A

< 0oQ.
Multiplying (4.3.1) by g € L2(I), we obtain

(Sef,g9) = /Ooosef(ﬂc)mda(x)

- / [ Bpmatmae >d(’%‘1”

and

S d 1/2
I5ifl, = sup s ([ 7 ipusmar I )
< Sl < oo (4.3.6)
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Thus S.f € L2(I) for f € LL(I)NL2(I). For f € L2(I), let f, € LL(I)NL2(I) with
|f = fall, — 0. Then from (4.3.6), we find that

HSEfn_SemeQ,g < ||fn_fm||2,g — 0. (4'3'7)

Hence, (4.3.7) shows that S, f,, is a Cauchy sequence in L2(I) and converges in L2 ([);

in particular a subsequence converges pointwise a.e. Using (4.3.4) we have,

|Sef () = Sefu(@)] < Acllf = fulloo = 0

as n — oo with fixed ¢ > 0. This indicates that S.f,(z) converges to S.f(x)
uniformly in L2(7) when n — oo with fixed e. Using the above arguments, we have
S.f € LE(D) with bounds [|S.f ], < If1l,.

Finally, to prove the L? convergence when € — 0, we use the L? isometry (4.2.6) to

write

(f.9) = / / (By.f)(b, a)(Byg)(b, )dagﬁ(),

i-sta) = [ [ Bano.oBae.oHe,

w-ssal < ([ [ mep e >) ol

1 = Sefll, = sup & —5el-9)]
’ 970 ||9||20

([ o)™

which tends to zero by the dominated convergence theorem. This completes the

IN

proof of the theorem. n

Theorem 4.3.4. For ¢ € L2(I), if

Ko = [ gm [(@#000©) Dy e, s
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then K.(x,y) is bounded and it represents the kernel of the partial inverse Bessel

wavelet transform.

Proof. We can write (4.3.8) as

Kol < [ { [ 1049100} Dy 2o
su [ 6#0)0)] [ s { [ d0(©)} Doy 1o

IA

Since (Y#1)(€) € L (1), then the above expression becomes

/OO # (/ da(f)) D(z,y, 2)do(2)

</ 2n-1/2 F£2; + 1/2)d5) D(z,y,z)do(2)

( L20+1 >D(x y, 2)do(z)
A

s

|K5(13, y)’ S

Z2,u+1

22““ 20121 (u+1/2) (2u—|—1)

DY
26172 (i + 1/2) 2M+1/ (2,9, 2)do (2).

From (1.1.6), we get

A
< .
|Ke(z,y)] < 20121 (4 1/2) (2u + 1)

This implies that K (x,y) is bounded. O

Theorem 4.3.5. If ¢ € L2(I), then we have

W(E) = h,K(€) :/ 1 Wda(a). (4.3.9)

Further, S.f(z) can be expressed in the following form

/ K (z,y)f(y)do(y), (4.3.10)

where K (x,y) is given by (4.3.8).
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Proof. We have

/dea(a) _ / WH ()
_ / oLl U)o
= / fiu( Ziﬁ o(u)

- [ ([ 0w ano) ) deto)

Changing the order of integration, the above expression yields

/a . L0 )OI 45 ) / ) (# / >§<w#w><s>da<o) o (u€)do(w),

where

1

K(w) = | G#0)(©)do(6) (43.11)

Then

/>1 w#dg(a) = /OOO K(u)j,(u€)do(u)

Further, by the definition of the Hankel translation (1.1.7), we have

Ko = [ KDy 2ol
- [ —{ / (H#D)Edo(€) | Doy 2)do ).

Therefore,

[ wwnrmane) = [T [ g ([ osnem)

D (x,y,2) do(2)} f(y)do(y)
= S.f(z).
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This completes the proof of (4.3.10). O

4.4 Properties of the Continuum Bessel Wavelet
Kernel

The present section is devoted to the discussion of various properties of the Bessel

wavelet kernel using (4.3.9).

Proposition 4.4.1. Let ) € L2(I) be a renormalized continuum wavelet and (&) =
h, K (&) which is defined in (4.5.9). Then ¥ € LL(I), ¥ is continuous with ¥(0) =1
and ¥(§) — 0 when & — oo.

Proof. From (4.3.9), we have

| w@nae - [ 4o ()

) /000 N (/& 2172 Fi: T 1/2)d5) o)

() ()
= /0 312D (ot 172) W)

p2p+1

/ |(h“w>(y)’2d0<l/)
v>€

1 2
= h
1 2
2#‘1/2 T (,U + 1/2) ||¢||2,0’
< 0oQ.

The above expression implies that ¥ € L!(I). By (4.3.9), it is clear that ¥ is

continuous with

W(0) = h, K(0) = / o (u) = 1. (4.4.1)
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For & — oo, we get |hab(u)|* € LL(I). From the dominated convergence theorem

we find that V() — 0 as £ — oo. O

The following theorems give sufficient conditions for the integrability of the Bessel

wavelet kernel.

Theorem 4.4.2. Suppose that 1 € L:(I) is a renormalized continuum Bessel
wavelet for which the associated wavelet kernel is non-negative: K(x) > 0 for
v € I. Then [;°K(z)do(x) = 1; in particular, K(z) € LL(I). Hence, for
any bounded uniformly continuous f, we have ||S.f — f||

f c Lg([)j 1< p < 00, then ||Sef - pr,o‘ — 0.

— 0 when ¢ — 0. If

00,0

Proof. Applying Parseval’s identity to the Fejér kernel, we have

/OM (1 — %) K(x)do(x) = /OOO hy, (1 — %) (&) (h K)(€)do (£).

From simple calculation, the right hand side of the above integral becomes

AM<L“%>K®Md@Sﬂﬁwiéw@u+ﬁbu+mW@Md©'

The last integral is bounded for ;1 > —1/2 because ¥ is bounded and continuous

at £ = 0 with ¥(0) = 1. Fatou’s Lemma and the Fejér kernel gives the following

expression

/000 K(z)do(z) < J\}linoo OM (1 _ %) K(z)do(z) = 1.

With help of the dominated convergence theorem we can conclude that

AMK@Md@:L
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Theorem 4.4.3. Let 1 € L2(I) be a renormalized continuum Bessel wavelet with
fm>1 log(z |¢#¢ |da ) < 0o. Then wavelet kernel K € LL(I) and fo x)do(x)
= 1. Hence for any bounded uniformly continuous f, we have ||Scf — fH — 0

when € — 0. If f € LE(I),1 < p < oo, then |[Scf — fll,, = 0

Proof. The integrability condition implies that ¢¥#(z) € LL(I), in particular that
¥ € LL(I) by Fubini’s theorem. But ¢ € L(I) implies that [;°(V#¢)(z)do(z) = 0.

Thus, we use this to write the equivalent formula of (4.3.11)

K@) = o [ @#DE)

= o [ D) - o [ AR

- o | D) (442)

Since K is continuous, we have that [ _ |K(z)|do(z) < oo.

With the help of (4.4.2), we get

/x>1|K(x)|da(x) S/ (2%1/ [#)(2)| do(= )da(m)
=/ (W#0)(2)] do(2) /f_@

1 20 1/21139 17 | (V#0) (2)| do(2)

8\

)

which proves that K € L (I).
From (4.4.1) it follows that



