Chapter 3

The Bessel Wavelet Convolution

involving Hankel Transform

3.1 Introduction

In recent years, many properties of the wavelet convolution are studied by exploiting
the theory of Fourier transform. The wavelet convolution product is an important
tool to explore the various characterizations of the wavelet transform which is ex-
tensively given in the book [24]. This theory helps to define the wavelet convolution

associated with the wavelet transform [27].

In [26], the properties of Bessel wavelet convolution product is studied and its
certain estimates are obtained by using the theory of Bessel wavelet transform. In
this chapter, our main focus is to expose the Bessel wavelet convolution associated

with the Bessel wavelet transform.

In the present chapter, we discuss the various properties of the Bessel wavelet
convolution by taking the Bessel wavelet transform and the Hankel transform tools.
The boundedness on generalized Sobolev space Bg w(I),1 < p < oo, associated with

the normalized Bessel wavelet transform is obtained.
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3.2 The Bessel Wavelet Convolution

In this section, using the Hirschmanian theory of Hankel transform[12] various results

of the Bessel wavelet convolution are obtained.

Theorem 3.2.1. If (h,)(aw)(h,f)(w) € LL(I) and (h,¢)(aw)(h,g)(w) € LL(1),
(hy)(aw) # 0 for a € I and (Byf)(b,a) = (Byg)(b,a)V(b,a) € I x I. Then f =g

a.e.
Proof. Given that
(Byf)(b,a) = (Byg)(b,a) ¥Y(b,a) € I x I. (3.2.1)

Then from (1.2.6), we have

B [T (@) (£ O] ) = B [T (@) ()] ). (32:2)

From [11, Corollary 2.9], we get

(h)(aw) (hf) (@) = (D) (aw)(hug) (@) ace.

Since (h,Y)(aw) # 0, then we get

(huf)(w) = (hug)(w).

Again from [11, Corollary 2.9], we get

f=g a.e.

Theorem 3.2.2. Let f,g € LL(I) and ¢ € LL(I), then

By(f ®g)(b,a) = (By f)(b, a)(Byg)(b, a) (3.2.3)
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holds.
Proof. In view of [26, p.271], we have

(huth)(aw) by [(f ® 9)] (w) = [(hut) (@) (R f ) () F# (Ryt0) (@) (hug) ()] (). (3.2.4)

Multiplying both sides of the above equation by j,(bw) and integrating over I, we
get

/0 " 3 0) () (a) By [(F ® )] (w)do(w)

J
Ji #

(e 9]

5 (b0) () (@) () ()2 () (@) () ()] () ()
() [ / / 1ot (a2) () (2). () (ay) () (9)

D(w, v, z)da(y)da(z)] do(w)

= [ [ ([ utonten o)) Gz b))

(hy) (ay) (hyug) (y)do (y)do(2).

From (1.1.5), we have

/ Ju(y0)ju(20) (hy0) (a2) (hyu ) (2) () (ay) (hug) (y)do (y)do (2)

9
(o) () (a2) / (o) (ay) (hy9) () o ()
= ! () a)( Mf><>]<> (R (@) (B ><>]<>

Il
N\

From (1.2.6), we get

By(f ®g)(b,a) = (Byf)(b, a) (Byg)(b, a).
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Lemma 3.2.3. Let ¢ € LL(I). Then
/ " D, u, at) () do () = Gualz). (3.2.5)
0
Proof. We have

/0 N D(z, u, at)y(t)do(t) = /0 ) { /0 N u(2w), (uw) ju(atw)dg(w)} b(t)do (D).

Putting aw = s, we get the following expression

/OOO D(z,u,at)y(t)do(t) = #/O“ {/O“ju (22) o (1) st ot )}w(wda(t)

_ #/OOOD<Z,%J> P()do(t)

= 77Z)u,a<z)~
O
Theorem 3.2.4. Let f,g € LL(I) and assume that
do(a)do(b)
D I yYs 2 Ad)/ / 2/}ba ¢ba )wba( ) q2rt1 ) (326)
where Ay, - %Tff)'d (a). Then the Bessel wavelet convolution will be in the

following form :

(f®9)( / / Dy(z.y.2) f(z) g(y) do(@)doly).  (327)

Proof. Since

Duend) =4 [ [ TualoiTuaminats e

from the inversion formula of Bessel wavelet transform, we have

D (.13 Y,z) = . [_ba Z/)ba ] )
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The above expression implies that

/ " Dy, 5, 2By (2)d0 (2) = Ty ()T 0). (3.28)

Multiplying both sides of (3.2.4) by % and integrating 0 to oo with respect to

a, we get

TN 4y (7 0 9) ()

- / uw(aw)a‘;ﬂ [0 (@) () V) ) (1)) ()
Ay 1, (F @) @)
= [ @) 55 [0 DO @) 1)) (),

=8

QU

From the inversion formula of Hankel transform, we get

Ay (f®g) (2
- h;l [ 0 (hu)(aw) oy

(B0} (@) (b O # ) (@) (ug) ()] ()] (2)

[ (@) O (@) () ()] )
_ /0 h Z‘;fff /0 " do(w) OOO ju(zw)ju(awtw(t)da(t))
[} (@) (1, F) VD (@) ) ()] ()

_ /0 ” Zjlfff /0 " do(w) /0 N ( /0 N D(z,at,um(uw)da(u)) B(0)do(t)

() (@) ) A (@) (g ()] ()

(hu) (@) (P ) () (Rt )| (W
= [Citraot) [T [ itwnao) %
(
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_ /0 - Zjﬁffl) /O " do(w) /0 " () ( /0 h D(z,at,u)w(t)da(t)) do(u)

() (@) () A ) (@) () ()] (@):

Using Lemma 3.2.3, we have

)
— /O h Z‘;}ffl) /0 Ooda(w) /O Ooju(uwwu,a(z)do(m

() (@) () V) (@) (g ()] (@)
Y ETIY R

[m< V) # ) (@) (g) ()] ()dor(w)

= [TSE [ vateddotu) g () ) (@) () O] ()
- T8 [ hl[ ] )

! [(hmx (g >} (u).

From (1.2.6), we can write

o G09) = [T [ o) (Buf) (w.0) (Bug) (0.0)

[ 0 [ o)
I g<y>@u,a<y>da<y>}
= /Om/ooof(ﬂf)g

da(a)da(u)

a2m+1

@I

//
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From (3.2.6), we get

G = [ [ Duen) @) o) do(wiaty).
]
Lemma 3.2.5. If¢) € L2(I), then
(hyuth,a) (W) = Jpu(bw) () (aw). (3.2.9)
Proof. We have
h a - N o a
(ne)@) = [ dtiina0aott)
= [itena / w60 (£22) aotio(o)
Putting £ =z, we get
b
(hpupae)(w) = /o Ju(waz / W(z)D (x e >d (x)
:/¢(z( Ju(waz)D xé ) )
0 a’
- / P(2) ju(bw) ju(zaw)do(2)
= Ju bw/ Y(z) ju(zaw)do(z)
0
= ju(bw)(hu¢)(aw)- O
Theorem 3.2.6. If f € L2(I), then f can be reconstructed by the formula
Aw/ / (Byf) (b, a)tpa(t) (Q)WU, (3.2.10)

where v € L2(I) be a basic wavelet satisfies admissibility condition A, .
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Proof. 1f f € L2(I), then we have

Aw/ / (Byf) (b, a)sa(t) (21+1()
Aw/ </0 (Byf) (b, a)ibyq(t)d (b)> Z;(fl)_

Using Parseval’s formula of the Hankel transform (1.1.14), we get

// (Byf) (b, a)ipa(t) (gzﬁl()
= 1 [T ([ nisneai@ tan) @) .

From (1.2.6) and Lemma 3.2.5, we have

Aw/ / (Byf) (b, a)sa(t) (ziﬂ()
Aw (/0 (hy)) (aw) (R f ) (w) 7 (be0) (B uw)(aw)da(w)) C(i;(fl)

_ e e
B Aw/(; (/0 a2u+1 d ( )) (hltf)( )]u(b )d ( )

_ A% OOOA‘” (hyef) (@) (o) dor ()

= h [(hu)](0)
= ).

]

Theorem 3.2.7. If f € L%(I), then the following Calderdn’s reproducing identity

holds:

f(t)zAiw / (Fetton) 27, (3:2.11)

for a Bessel wavelet ¢ € L2(I).
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Proof. From (3.2.10), we have

ft) = Aw/ / (By.f)(b; a)ihpa(t) (QLH()

- = / ( / (By f) (b, a)p.a(t)d <b>) d‘;ﬁ?

Using Parseval’s formula of the Hankel transform (1.1.14), we get

-4 | ([ mlBeno. )t @) 5.

From (1.2.6) and Lemma 3.2.5, we have

1

10 = [ ([ @ @i aiow) ) 2

Using (1.1.10), we get the following expression

- 5 | ( / °°m(bw)hu(f#%)<w><huw><aw>do<w>) ot

_ Aiw / N ( /0 " b <f#%#wa>(w>da<w>> ota)

1 do(a)
=4 ), (f#wa#%)() pEEER

]

Theorem 3.2.8. Let f € L2(I) and ¢ € L(I) satisfying admissibility condition

=I5 h“;ﬁuff‘ do(a), then the following reproducing identity holds:

ft) = Aiw /OOO /Ooo (f @ Yp0 @ Vba) (t) %. (3.2.12)
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Proof. Assume that ¢ is an orthonormal wavelet in L?(I). Taking the Bessel wavelet

transform of right hand side of (3.2.12) with respect to ¢, we have

B [ e tae g 0 g 0

B 1 0 oo _ ’ /da(a)dd(b)
- A_w/ / By { f®¢ba®¢ba)(t)}(bva)—amu
do(a)do(b)

1
= (Bsf)( Aw/ / B¢>¢ba b a B¢>¢ba)(b a) a2n+1

1
= (Bsf)(¥,d A_w/o /O UO Uy a(t)y o (1) da(t)]
|:/ ¢ba$¢b/a/xdo($)}%

= B0 [ (// (Bot ) Ga)in (o)) 57

(bb a( )
— (B (b.d) / Gy o (x ¢bf,af<x>da<:c>

= (Bof) (¥.d) / " By ()] do(a)

0
= (Byf)(b,d) ( by orthogonality of ¢).

_/ | et ) LD g (B 4] 0
)
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3.3 Generalized Sobolev Space

Let ¢ € L2(I) be an analysing Bessel wavelet which satisfies (1.2.8).

The integral

(wa) (ba CL) = T (Bwf) (bv CL) = T <f7 wb,a>

defines an element of L? <I x 1, d"iﬁﬁ‘ﬂ(bv :

The Hankel transform of Ly, is given as

Py (L (b, @)] (w) = (hut)(aw) (huf) (). (3.3.1)

1
VA

The operator L, is also called a normalized form of the Bessel wavelet operator By,

and

Ly : L*(I,do(t)) — L? (I x I, M) :

a2m+1

is an isometry [21, p.245].

In this section, we are exploiting the results of [24] and study the normalized Bessel
wavelet transform Ly f, which is defined on L2 (1, do(t)) to generalized Sobolev space
B . (I) and the space of its image set is denoted by W,. The boundedness and other

properties of Ly f are given on By, (I) space.

Definition 3.3.1. The Zemanian space H,(I),I = (0, 00) is the set of all infinitely
differentiable functions ¢ on (0, 00) such that

Ve (@) = sup < 00, (3.3.2)

z€(0,00)

k
™ (mlé) x’“’%¢(:r;)

for all m, k € Ny. Then f € H;(I ) is defined by the following way:

(f, ) = / f@)p(x)do(z), ¢ € H,(I). (3.3.3)
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Definition 3.3.2. Let £(£) be an arbitrary weight function. The generalized Sobolev
space B, (I),1 < p < oo is defined to be the space of all ultra-distributions f €
H,(I),I = (0,00) such that

1/p

1AL, = ( [ e <5>|pda<§>) < o0 (3:3.4)

and

[flloo e = €55 sup k(§) [(huf)(E)]- (3.3.5)

Definition 3.3.3. Define the space W:k of all measurable functions f on I x I such

that

do(a)\ V?
I, = ([ 1700l S8 ) <, (3:3.6)
1 <p<oo,ac(0,00).

Theorem 3.3.4. Assume that analysing wavelet 1 satisfies the following admissi-
bility condition:
0

§2u+1

Let (Lyf) (b,a) be the normalized Bessel wavelet transform of the function f €
Bl (1), with respect to the analysing wavelet ¢ satisfying (5.5.7). Then

(o) 0,0}, = o (339
where C, = (Ay) P2 Ay,
Proof. Let f € H,(I).
Then

Ceh) ol = [ I G0,
do(a)

= [T wer e walerae) G
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From (3.3.1), we have

QU

a(a)

(L) (o) By, = / ( / G AW ,ﬂ#)(af)lpl(huf)(é“)lpda(f))

_ AW/ </ O (k) (O do(©)) 1) aE) 2o
- o [ 1) (@) S

Putting a¢ = u, we have

L) )

o) Gy, = =7 [ TR ot 11
(i

o2 Ao IS

T ¥.p »,k

Ay

= Gollfllpx

Since H,(I) is dense in By, (1), the above result can be extended to all f € B}, (I).
[

Theorem 3.3.5. Let f € B} (I) and ¢ € Ly(I) with [~ (t)do(t) = 1.
Then (Byf) (. a) — f(.) in B} () as a — 0.

Proof. From (3.3.4), we have

Itt0 = s = [ I (P = D) OF KO do(e)
= [ I (#) © = (D ©F QP doe)
_ /“;huf (hyt) (a€) = (B f) () (€[ dor(€)
_ / () (RO () (a) — 1" dor(€)

- / I(a, )" do(€)
0
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where I(a,&) = (hy.f) (§) k(&) [(hu)) (a) — 1]

Under our assumption [;°1(t)do(t) = 1, we have }zlgcl) 1I(a,&)| =0 a.e.
Set M = sup |(h,2) (a€) — 1|, which is independent of a.

Then <!

[1(a, E)] < M [(hy.f) (€) k(E)] .

Now, applying the dominated convergence theorem, we have

(Byf) (,a) = (f#1a)(.;a) — f(.) in B (I) as a — 0.



