Chapter 2

The Relation between Bessel
Wavelet Convolution Product and
Hankel Convolution Product

involving Hankel Transform

2.1 Introduction

The wavelet convolution product and their properties were discussed by Pathak|[24,
27] and got the relation between Fourier convolution and wavelet convolution by
exploiting the theory of Fourier transform. Using the Bessel wavelet transform
Pathak, Upadhyay and Pandey|[26] formally defined the Bessel wavelet convolution
product and studied their important properties. These concepts are useful to discuss
the relation between Bessel wavelet convolution product and Hankel convolution

product by using the Hankel transform.
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In this chapter, the relation between Bessel wavelet convolution product and
Hankel convolution product is exposed and find certain approximations of the Bessel

wavelet transform.

Pinsky[28] introduced the concept of heuristic treatment of wavelet transform
by exploiting the Fourier transform. From the results of [28], heuristic treatment of
Bessel wavelet transform is investigated and its properties with the help of Hankel

transform and Hankel convolution are studied.

2.2 The Bessel Wavelet Convolution Product

In this section, using the following relation of Bessel wavelet convolution product

By (f @9) (b,a) = (By f)(b,a)(Byg)(b, a), (2.2.1)

we find the relation between Bessel wavelet convolution product and Hankel convo-
lution product. Further, we obtain boundedness and approximation results of the

Bessel wavelet convolution product.

Theorem 2.2.1. Let f,g € LL(I)NL2(I) and ) € L2(I). Then the Bessel wavelet

convolution product can be written in the following form:

Eylh, (f © 9))(w) = / N / b)) () (©) D, 1)

( /0 (hut) (an) (huw)@g)‘i‘z,’jg) do(n)do(€),(2.2.2)

where

E, = /000 wda(a). (2.2.3)

a2m+1

Proof. From (1.2.6), we have

hy [(By f)(b,a)] (W) = (hu)(aw) (hpuf)(w).
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Then
hy [By(f ® 9)(b,a)] (w) = (hu)(aw) [hu(f @ g)](w),

so that using (2.2.1) and [26, pp.271], we have

() (@) [hu(f  9))(w)
= [(Buf)(b.a)(Byg) (b, )] ()
=y [ { ) (@) (£ () } 0 i { ) (@) () ()} )] ()
= [ {<w><a ) uf)( J# 0 (0.) (o) >} (t)] ()
= [} @) () V) (@) (B9) ()] ().

If we set F, = (h,)(a.) (huf)(.) and Gy = (h,t)(a.)(hug)(.), then we have
(hyt)(aw) [hu(f®g)](w)

— (R#G.)
_ // D(w, &, 1) do(n) do(€)

_ / / () () (a€) () (€) D{w, €, ) dor () dor(€).

a

Therefore,

/WM[ @ g)lwiota)

A

(1) () (a€)

() €Dl &) do (o) do(e) ) 7.

Thus, the above expression can be written as

(el = [ [Tt D(w,€,1)
o(a)

(/0 (hi) am) () aé) 2u+1) do(n)do(). O
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Theorem 2.2.2. Let 1) € L2(I) be a basic wavelet and it satisfies the admissibility

condition
Ay = /Ooo |(hu;gl(+alw)| do(a). (2.2.4)
Then
/OO \(huw)<aw>(huw)(aﬁ>|da(a) < Ay (2.2.5)

Proof. We have

2p+1 2pu+1
a?ntl a 2 a 2

/wKm¢mwxm¢mewm%:/”memwxm¢mmmwm)

Using the Cauchy-Schwarz inequality (1.1.16), we have

[ WOl

a2m+1

. ( I \(hua%w>|2dg(a))% ( I r<hu;g<+cin>12da(a))%

From (2.2.4), we have

fmeWWWWWM@SQX%ZM'

a2u+l

This implies that

[ ey < g,

aq2m+1

Theorem 2.2.3. Let f,g € LL(I) N L2(I). Then the following relation holds

he (f®g) (W) = Ay (huf #hug) (W), (2.2.6)

2
where A;} = g_:ﬁ with Dy = [;° [(hﬁ#da(u) and Ey defined in (2.2.3).
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Proof. Firstly, we find the value of

| itan Baitee)

& da

_ /O o) u)a8) g

_ 1 (hu—@/))(an) Q)12 (u¢)<a§) Q)2
_ 1 Oo(hu—@b)(u) )L/ M )L/
_ / G } u
- 2750 + )
x [(hmxu)}
_ /0 o do(u) = Dy
Therefore, (2.2.3) becomes
hu(f @ g)w) = Dy OOO Ooo(huf)(n) (h.9)(€) D(w, &, m)do(n)do(§).
So that
Dy
hu(f ® g)(w) = E_w(huf#hug) (w)

= A;/; (huf # hug) (w).

]

Theorem 2.2.4. (i) Assume that f € LE(I),g € LF(I), 1 < p,p’ < oo and
' 1,1 4 1 , 1 _
Y € LL(I) NLE(I) such that 3+ 2 =1, & + 7 = 1.
Then
Bu(f @ 9)b,a)l < a2 1llno 9]l [[Ell0o 11¢]gs- (2.2.7)

(it) Assume that f,g € L:(I) and v € L:(I) is a Bessel wavelet which satisfies

admissibility condition

Ay = /Ooo Mda(a),

a2m+1
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then

a)do(b
"B, (f09) 0.0 7D < 4 11l ol (2.28)

Proof. (i) Using (2.2.1), we have

By (f @ 9) (b,a)| = |(By f) (b, a)(Byg) (b, a)] .

From (1.2.5) and (1.1.12), we have

By (f @ g) (b, a)|
= |(F#0a) )] |(g# D) (0)]
S ||f||p,a Hq/;qu,o' ||g||p/70' H@Ea q/,a

A 2p+ 2pt1
= Nl (5 Wl ) ol (7 D01 )

“ap—2, Qe (G+)
= a2l gl 1

= " flpo 1Wl0 9l o 1¥0y

for L + % =1.
q q

(ii) Using (2.2.1), we have

Bw (f®g)(ba)

do(a )da(b)‘

2,u,—|—1

(B0 Bea)0.0) TG0

From (1.2.9) and the Cauchy-Schwarz inequality (1.1.16), the above expression shows
that

()

A, / f(2)7(x)| do(x)
< Agllf 1Lz gl

B¢ (f®9)(ba)——= 5 a2n+1

do(a)do(b) ’

IN

A
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Theorem 2.2.5. Let h,f € LE(I) and h,g € Li(I), then we have the following
inequality
(i)

e (f @ Ol < Ay I0f 10 I8

11,1
where = = = + = — 1.
T p+q

(ii) For p =1 and q = 2, we have the following relation

I (f @ 9y < Ay 1110 9.y - (2.2.9)

Proof. (i) From (2.2.6), we have

I (fF @D,y = Ay I # gl -
Using (1.1.13), we have

e (FR N,y < Ay lhufll,, gl

(ii) We have

1 (f @ Doy = Ay huf # hugllys
If we put p =1 and ¢ = 2, then
e (@9, < Ayl i, Mg,

< Ay llflho gl -

]

Theorem 2.2.6. Let k,(w) = (h,g,)(w) forn € N and ¢p(w) = (h,f)(w) satisfy

the following conditions :

(i) kn(w) > 0, 0<w < oo,

(it) [ kp(w)do(w) =1, w=0,1,2,3,....,

(i4i) lim kn(w)do(w) =0, foreachd >0,

n—o0 Fy
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(i) d(w) € L(I),

(v) @ is continuous at wy.

Then
i [ (f @ g,) (w0)| < A} (B f) o) (2.2.10)

where Alw defined in Theorem 2.2.3.
Proof. From (2.2.6), we have

h(f @ ga)(wo) = Ay (huf # hygn) (wo)
= Ay (¢# k) (wy). (2.2.11)

Let

I = (p#k,) (wy) — P(wp)
= / / kyn(2)D(wo, w, x)do(w)do(x).

Since ¢ is continuous at wy, for a given € > 0 we can choose d > 0 so small that

|p(w) — d(wo)| < € for \w wol| < 6.

Let Iy = [5° [ [¢ d(wo)] kn () D(wo, w, z)do(w)do(x)
and
L= J§ 5 [#(w) = ¢(wo)] kn(w) D (wo, w, z)do (w)do(x).
Then
Ll < / / 16(w) — d(wo)| k() D(wo, w, z)do (w)do (z)
<

2ol [~ (/ Dlwa.w,)do(w) ) b))
206l [ Fa(o)do(o)
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Taking n — oo in the last expression and using (iii), we get lim I; = 0.
n—oo

Now, we have

L] = / / 8(10)| () D w, 2)do (1) dor ().

Using the view of [12, Theorem 2(c)], we get

no< 6 [ o) Dl . 2w

_ 6/05 (/OOOD(wO,w,a:)da(w)) bon (2)dor ()

< e /0 o (2)do(z) < e

Therefore, lim |I| < e. Since € is arbitrary, we have lim I = 0.
n—o0 n—oo

From (2.2.11), we have
Ty, (f @ ga)(wo) = lim Ay (¢#tkn) (wo)

= Ay d(wo) = Ay (b f)(wo),

[l
Theorem 2.2.7. Let f € LL(I), p(w) = (h,f)(w) and k,(w) be same as in Theorem

2.2.6, satisfies all the three properties of Theorem 2.2.6. Then

— 0. (2.2.12)

l,0

lim
n—oo

hu(f @ gn) = (huf)

1
Aw

Proof. From (2.2.6), we have

lim
n—oo

hu(f ® gn) - (huf) = hm ||( uf#hugn) - (huf)HLg

1
Cw 1,0

< Jim |@#h) — ol -
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Since f € LL(1), (h.f)(w) € LL(I). Therefore, using Theorem 2.2.6, we have

=0.

1,0

lim
n—oo

hu(f © gn) = (hyuf)

1
Cd}

2.3 Heuristic Treatment of the Bessel Wavelet

Transform

In this section, we study the properties of heuristic treatment of the Bessel wavelet

transform (1.2.4).

Theorem 2.3.1. Let (B, f)(b,a) be the Bessel wavelet transform and (B}, f)(b,a) be
the adjoint Bessel wavelet operator on a function f € L2(I) with respect to wavelet

Y € LA(I). Then

( )
where f(t) = j,(&t) and normalization of admissibility condition
< |(hu) ()

Proof. Putting f(t) = j,(&t) in (1.2.4), we get

Bepba) = a2 [Then (3,9) do(t)

a a

= [T([Tion (L25) o) oot
— g 1/0 (/0 jﬂ(ft)D(é,g,z) da(t)) B(2) do(z).
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Substituting £ = u, we obtain
o0 o0 b _
Baf).0) = [ (7D (w21 o) o)
0 0 a
From (1.1.5), we have

(Buf)(b.a) = / " a0z )i(z) do(2)

— ) / " ju(zab)d(z) do )
= 5,06 ) at).

Now, we define the adjoint operator

b

)da(b)
[T p (L2 dote) ) doto
<a’a’

) 0€)d70) ) v do(2),

B Byf(t) = a! / (Buf baw(t

= ) a&/o yubf(
D

)
— uw)(af)/o (/0

Putting 2 = v, we get
By, By f(t)
— i) [ ( D (E) Ju<vaf>a2““d"(”)) v
0 0 a

= Tl(a) [ 5ult€)du(e0€) (a1 ()
= (hu)(a€) (hub)(a€) ju(t€)
= [(hu)(a€)|” ju(tE).

| mme S5 = o [ o)
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Therefore, from the above expression, we get

e By By f(t) 29
o0 a 2

Jo~ e do ()

Jo By By f(t) B4

[e.9] v 2
[ 1 @F 1)

f(t) = ju(ts)

From (2.3.2), we can write the following representation

s = [ BBare G

for f(t) = ]u(tf) O

Theorem 2.3.2. Suppose that 1 € L2(I) is a continuum Bessel wavelet with
Ay = / w2 () ()| dor(w) = 1. (2.3.3)
0

Then, for f € L2(I) following inversion formula holds

fa = Jim [ Bban@T G s

e—0,A,B—o0

where S(e, A, B)f = [ _,_ 4 - p(Buf) (b, @)y q(x) 2520

Proof. Let the integral in (2.3.4) belongs in LZ(R3, d”éﬁl‘ﬁ(b))

Now, we have

Hf_S<€7AvB)f||2,g: sup ‘(f_S(€>A7B)f7g>|'

llgll2,o=1
Applying Fubini’s theorem, we have

seanso = oo ([ @noanm G5 )

= e ([ steeinm) D
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- /< <A17<B(Bwf)<b7 a) (B_wg)(b, a) %_

Thus, by Parseval’s formula of the Hankel transform (1.1.14) and the Cauchy-

Schwarz inequality (1.1.16), we have

|<f - S(€7A7B)f7g>|
= 1(f,0) ~ (S(. A, B g)
[ Benv.0) B 755

+

- do(a)do(b
_/ (Buf) (b, a) Bug(b, “>%’
(e<a<A,b<B) a

- do(a)do(b
- [ @Bt Gm
(e<a<Ab<B)¢

ol\a)aoc 1/2 ol\a)ao V2
(/ (Bof) 0.0 it (/ \<B¢g><b,a>12%>
(e<a<Ab<B)e R2 a
ol\a)ao 1/2
- (/ (B 0.0F T ) A lgl
(e<a<Ab<B)c

When € — 0 and A, B — oo, the region of integration decreases to the empty set,

IN

hence the last integral tends to zero by the dominated convergence theorem.
This gives that
||S(Ev Aa B)f - f||2,a — 0.

]

Theorem 2.3.3. Suppose that 1 € L2(I) is a continuum Bessel wavelet which
satisfies (2.5.3) and

Copim [ [CRDIG P

£1+2u+2s

for some s > 0.

Then
e | B¢f b a ‘
/ / 21t2s+1 et —do(a)do(b) = Cy s ||f||§,5 ) (2.3.5)
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where || fllo, = [~ €°[(huf)(€)|Pdo(€) is the Sobolev norm [28, p.290).
Proof. From (1.16), we have

/OOO[(Bwf)(b, a)@(@ a)]da(b)
- [ " 1 () ) () (@)} () B {Urng) () o) (@)} (B)do ()

Now, using Parseval’s formula of the Hankel transform(1.1.14), the above expression

becomes

/oo * Bu) 0,0 Bug)bia) g0

- [ ﬁ%sﬂ)( D)
_ // ) ) () ) PO ) )

If we take f = g, then we obtain

= [Be S, a)]* )2 hyab)(au)?
/ / a2p,+25+1 | hyf)(w)] W o(a)do(u).
Putting au = &£, we get

[ [P ey

= [ ([T b)) ot
~ Ao | )W) wdo ()
= A IR



Chapter 3

The Bessel Wavelet Convolution

involving Hankel Transform

3.1 Introduction

In recent years, many properties of the wavelet convolution are studied by exploiting
the theory of Fourier transform. The wavelet convolution product is an important
tool to explore the various characterizations of the wavelet transform which is ex-
tensively given in the book [24]. This theory helps to define the wavelet convolution

associated with the wavelet transform [27].

In [26], the properties of Bessel wavelet convolution product is studied and its
certain estimates are obtained by using the theory of Bessel wavelet transform. In
this chapter, our main focus is to expose the Bessel wavelet convolution associated

with the Bessel wavelet transform.

In the present chapter, we discuss the various properties of the Bessel wavelet
convolution by taking the Bessel wavelet transform and the Hankel transform tools.
The boundedness on generalized Sobolev space Bg w(I),1 < p < oo, associated with

the normalized Bessel wavelet transform is obtained.
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3.2 The Bessel Wavelet Convolution

In this section, using the Hirschmanian theory of Hankel transform[12] various results

of the Bessel wavelet convolution are obtained.

Theorem 3.2.1. If (h,)(aw)(h,f)(w) € LL(I) and (h,¢)(aw)(h,g)(w) € LL(1),
(hy)(aw) # 0 for a € I and (Byf)(b,a) = (Byg)(b,a)V(b,a) € I x I. Then f =g

a.e.
Proof. Given that
(Byf)(b,a) = (Byg)(b,a) ¥Y(b,a) € I x I. (3.2.1)

Then from (1.2.6), we have

B [T (@) (£ O] ) = B [T (@) ()] ). (32:2)

From [11, Corollary 2.9], we get

(h)(aw) (hf) (@) = (D) (aw)(hug) (@) ace.

Since (h,Y)(aw) # 0, then we get

(huf)(w) = (hug)(w).

Again from [11, Corollary 2.9], we get

f=g a.e.

Theorem 3.2.2. Let f,g € LL(I) and ¢ € LL(I), then

By(f ®g)(b,a) = (By f)(b, a)(Byg)(b, a) (3.2.3)
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holds.
Proof. In view of [26, p.271], we have

(huth)(aw) by [(f ® 9)] (w) = [(hut) (@) (R f ) () F# (Ryt0) (@) (hug) ()] (). (3.2.4)

Multiplying both sides of the above equation by j,(bw) and integrating over I, we
get

/0 " 3 0) () (a) By [(F ® )] (w)do(w)

J
Ji #

(e 9]

5 (b0) () (@) () ()2 () (@) () ()] () ()
() [ / / 1ot (a2) () (2). () (ay) () (9)

D(w, v, z)da(y)da(z)] do(w)

= [ [ ([ utonten o)) Gz b))

(hy) (ay) (hyug) (y)do (y)do(2).

From (1.1.5), we have

/ Ju(y0)ju(20) (hy0) (a2) (hyu ) (2) () (ay) (hug) (y)do (y)do (2)

9
(o) () (a2) / (o) (ay) (hy9) () o ()
= ! () a)( Mf><>]<> (R (@) (B ><>]<>

Il
N\

From (1.2.6), we get

By(f ®g)(b,a) = (Byf)(b, a) (Byg)(b, a).
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Lemma 3.2.3. Let ¢ € LL(I). Then
/ " D, u, at) () do () = Gualz). (3.2.5)
0
Proof. We have

/0 N D(z, u, at)y(t)do(t) = /0 ) { /0 N u(2w), (uw) ju(atw)dg(w)} b(t)do (D).

Putting aw = s, we get the following expression

/OOO D(z,u,at)y(t)do(t) = #/O“ {/O“ju (22) o (1) st ot )}w(wda(t)

_ #/OOOD<Z,%J> P()do(t)

= 77Z)u,a<z)~
O
Theorem 3.2.4. Let f,g € LL(I) and assume that
do(a)do(b)
D I yYs 2 Ad)/ / 2/}ba ¢ba )wba( ) q2rt1 ) (326)
where Ay, - %Tff)'d (a). Then the Bessel wavelet convolution will be in the

following form :

(f®9)( / / Dy(z.y.2) f(z) g(y) do(@)doly).  (327)

Proof. Since

Duend) =4 [ [ TualoiTuaminats e

from the inversion formula of Bessel wavelet transform, we have

D (.13 Y,z) = . [_ba Z/)ba ] )
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The above expression implies that

/ " Dy, 5, 2By (2)d0 (2) = Ty ()T 0). (3.28)

Multiplying both sides of (3.2.4) by % and integrating 0 to oo with respect to

a, we get

TN 4y (7 0 9) ()

- / uw(aw)a‘;ﬂ [0 (@) () V) ) (1)) ()
Ay 1, (F @) @)
= [ @) 55 [0 DO @) 1)) (),

=8

QU

From the inversion formula of Hankel transform, we get

Ay (f®g) (2
- h;l [ 0 (hu)(aw) oy

(B0} (@) (b O # ) (@) (ug) ()] ()] (2)

[ (@) O (@) () ()] )
_ /0 h Z‘;fff /0 " do(w) OOO ju(zw)ju(awtw(t)da(t))
[} (@) (1, F) VD (@) ) ()] ()

_ /0 ” Zjlfff /0 " do(w) /0 N ( /0 N D(z,at,um(uw)da(u)) B(0)do(t)

() (@) ) A (@) (g ()] ()

(hu) (@) (P ) () (Rt )| (W
= [Citraot) [T [ itwnao) %
(
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_ /0 - Zjﬁffl) /O " do(w) /0 " () ( /0 h D(z,at,u)w(t)da(t)) do(u)

() (@) () A ) (@) () ()] (@):

Using Lemma 3.2.3, we have

)
— /O h Z‘;}ffl) /0 Ooda(w) /O Ooju(uwwu,a(z)do(m

() (@) () V) (@) (g ()] (@)
Y ETIY R

[m< V) # ) (@) (g) ()] ()dor(w)

= [TSE [ vateddotu) g () ) (@) () O] ()
- T8 [ hl[ ] )

! [(hmx (g >} (u).

From (1.2.6), we can write

o G09) = [T [ o) (Buf) (w.0) (Bug) (0.0)

[ 0 [ o)
I g<y>@u,a<y>da<y>}
= /Om/ooof(ﬂf)g

da(a)da(u)

a2m+1

@I

//
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From (3.2.6), we get

G = [ [ Duen) @) o) do(wiaty).
]
Lemma 3.2.5. If¢) € L2(I), then
(hyuth,a) (W) = Jpu(bw) () (aw). (3.2.9)
Proof. We have
h a - N o a
(ne)@) = [ dtiina0aott)
= [itena / w60 (£22) aotio(o)
Putting £ =z, we get
b
(hpupae)(w) = /o Ju(waz / W(z)D (x e >d (x)
:/¢(z( Ju(waz)D xé ) )
0 a’
- / P(2) ju(bw) ju(zaw)do(2)
= Ju bw/ Y(z) ju(zaw)do(z)
0
= ju(bw)(hu¢)(aw)- O
Theorem 3.2.6. If f € L2(I), then f can be reconstructed by the formula
Aw/ / (Byf) (b, a)tpa(t) (Q)WU, (3.2.10)

where v € L2(I) be a basic wavelet satisfies admissibility condition A, .
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Proof. 1f f € L2(I), then we have

Aw/ / (Byf) (b, a)sa(t) (21+1()
Aw/ </0 (Byf) (b, a)ibyq(t)d (b)> Z;(fl)_

Using Parseval’s formula of the Hankel transform (1.1.14), we get

// (Byf) (b, a)ipa(t) (gzﬁl()
= 1 [T ([ nisneai@ tan) @) .

From (1.2.6) and Lemma 3.2.5, we have

Aw/ / (Byf) (b, a)sa(t) (ziﬂ()
Aw (/0 (hy)) (aw) (R f ) (w) 7 (be0) (B uw)(aw)da(w)) C(i;(fl)

_ e e
B Aw/(; (/0 a2u+1 d ( )) (hltf)( )]u(b )d ( )

_ A% OOOA‘” (hyef) (@) (o) dor ()

= h [(hu)](0)
= ).

]

Theorem 3.2.7. If f € L%(I), then the following Calderdn’s reproducing identity

holds:

f(t)zAiw / (Fetton) 27, (3:2.11)

for a Bessel wavelet ¢ € L2(I).
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Proof. From (3.2.10), we have

ft) = Aw/ / (By.f)(b; a)ihpa(t) (QLH()

- = / ( / (By f) (b, a)p.a(t)d <b>) d‘;ﬁ?

Using Parseval’s formula of the Hankel transform (1.1.14), we get

-4 | ([ mlBeno. )t @) 5.

From (1.2.6) and Lemma 3.2.5, we have

1

10 = [ ([ @ @i aiow) ) 2

Using (1.1.10), we get the following expression

- 5 | ( / °°m(bw)hu(f#%)<w><huw><aw>do<w>) ot

_ Aiw / N ( /0 " b <f#%#wa>(w>da<w>> ota)

1 do(a)
=4 ), (f#wa#%)() pEEER

]

Theorem 3.2.8. Let f € L2(I) and ¢ € L(I) satisfying admissibility condition

=I5 h“;ﬁuff‘ do(a), then the following reproducing identity holds:

ft) = Aiw /OOO /Ooo (f @ Yp0 @ Vba) (t) %. (3.2.12)
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Proof. Assume that ¢ is an orthonormal wavelet in L?(I). Taking the Bessel wavelet

transform of right hand side of (3.2.12) with respect to ¢, we have

B [ e tae g 0 g 0

B 1 0 oo _ ’ /da(a)dd(b)
- A_w/ / By { f®¢ba®¢ba)(t)}(bva)—amu
do(a)do(b)

1
= (Bsf)( Aw/ / B¢>¢ba b a B¢>¢ba)(b a) a2n+1

1
= (Bsf)(¥,d A_w/o /O UO Uy a(t)y o (1) da(t)]
|:/ ¢ba$¢b/a/xdo($)}%

= B0 [ (// (Bot ) Ga)in (o)) 57

(bb a( )
— (B (b.d) / Gy o (x ¢bf,af<x>da<:c>

= (Bof) (¥.d) / " By ()] do(a)

0
= (Byf)(b,d) ( by orthogonality of ¢).

_/ | et ) LD g (B 4] 0
)
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3.3 Generalized Sobolev Space

Let ¢ € L2(I) be an analysing Bessel wavelet which satisfies (1.2.8).

The integral

(wa) (ba CL) = T (Bwf) (bv CL) = T <f7 wb,a>

defines an element of L? <I x 1, d"iﬁﬁ‘ﬂ(bv :

The Hankel transform of Ly, is given as

Py (L (b, @)] (w) = (hut)(aw) (huf) (). (3.3.1)

1
VA

The operator L, is also called a normalized form of the Bessel wavelet operator By,

and

Ly : L*(I,do(t)) — L? (I x I, M) :

a2m+1

is an isometry [21, p.245].

In this section, we are exploiting the results of [24] and study the normalized Bessel
wavelet transform Ly f, which is defined on L2 (1, do(t)) to generalized Sobolev space
B . (I) and the space of its image set is denoted by W,. The boundedness and other

properties of Ly f are given on By, (I) space.

Definition 3.3.1. The Zemanian space H,(I),I = (0, 00) is the set of all infinitely
differentiable functions ¢ on (0, 00) such that

Ve (@) = sup < 00, (3.3.2)

z€(0,00)

k
™ (mlé) x’“’%¢(:r;)

for all m, k € Ny. Then f € H;(I ) is defined by the following way:

(f, ) = / f@)p(x)do(z), ¢ € H,(I). (3.3.3)
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Definition 3.3.2. Let £(£) be an arbitrary weight function. The generalized Sobolev
space B, (I),1 < p < oo is defined to be the space of all ultra-distributions f €
H,(I),I = (0,00) such that

1/p

1AL, = ( [ e <5>|pda<§>) < o0 (3:3.4)

and

[flloo e = €55 sup k(§) [(huf)(E)]- (3.3.5)

Definition 3.3.3. Define the space W:k of all measurable functions f on I x I such

that

do(a)\ V?
I, = ([ 1700l S8 ) <, (3:3.6)
1 <p<oo,ac(0,00).

Theorem 3.3.4. Assume that analysing wavelet 1 satisfies the following admissi-
bility condition:
0

§2u+1

Let (Lyf) (b,a) be the normalized Bessel wavelet transform of the function f €
Bl (1), with respect to the analysing wavelet ¢ satisfying (5.5.7). Then

(o) 0,0}, = o (339
where C, = (Ay) P2 Ay,
Proof. Let f € H,(I).
Then

Ceh) ol = [ I G0,
do(a)

= [T wer e walerae) G
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From (3.3.1), we have

QU

a(a)

(L) (o) By, = / ( / G AW ,ﬂ#)(af)lpl(huf)(é“)lpda(f))

_ AW/ </ O (k) (O do(©)) 1) aE) 2o
- o [ 1) (@) S

Putting a¢ = u, we have

L) )

o) Gy, = =7 [ TR ot 11
(i

o2 Ao IS

T ¥.p »,k

Ay

= Gollfllpx

Since H,(I) is dense in By, (1), the above result can be extended to all f € B}, (I).
[

Theorem 3.3.5. Let f € B} (I) and ¢ € Ly(I) with [~ (t)do(t) = 1.
Then (Byf) (. a) — f(.) in B} () as a — 0.

Proof. From (3.3.4), we have

Itt0 = s = [ I (P = D) OF KO do(e)
= [ I (#) © = (D ©F QP doe)
_ /“;huf (hyt) (a€) = (B f) () (€[ dor(€)
_ / () (RO () (a) — 1" dor(€)

- / I(a, )" do(€)
0
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where I(a,&) = (hy.f) (§) k(&) [(hu)) (a) — 1]

Under our assumption [;°1(t)do(t) = 1, we have }zlgcl) 1I(a,&)| =0 a.e.
Set M = sup |(h,2) (a€) — 1|, which is independent of a.

Then <!

[1(a, E)] < M [(hy.f) (€) k(E)] .

Now, applying the dominated convergence theorem, we have

(Byf) (,a) = (f#1a)(.;a) — f(.) in B (I) as a — 0.



