
Chapter 1

Introduction

The Fourier analysis is a powerful tool to study those functions that may be rep-

resented by the sum of simpler trigonometric functions. This theory came into

light from the work of Joseph Fourier, who showed that a periodic function can be

expressed as the sum of trigonometric functions.

For f ∈ L1(R), the Fourier transform of f(t) is denoted as f̂(ω) and defined by

f̂(ω) = F {f(t)} =

∫ ∞
−∞

e−iωtf(t)dt. (1.0.1)

The basic concept of the applicability of Fourier transform is that it decomposes

a function into sinusoidal basis functions which are complex exponential of different

frequencies. But there are some disadvantages of the Fourier transform. First, the

Fourier transform of a signal does not provide local information in the sense that

it does not reflect the change of wave number with space or of the frequency with

time. Second, the Fourier transform enables us to investigate problems either in the

time domain or frequency domain but not simultaneously in the both domain. To

remove these difficulties, the concept of wavelet transform is necessary. The wavelet

transform provides us the local and global information both.
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A function ψ which satisfies ∫ ∞
−∞

ψ(t)dt = 0 (1.0.2)

represents a wavelet because (1.0.2) implies that ψ changes sign from −∞ to +∞

and it vanishes at −∞ and +∞.

Let ψ ∈ L2(R), the admissibility condition for a wavelet is

0 < Cψ :=

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞, (1.0.3)

where ψ̂(ω) is the Fourier transform of ψ(t).

The continuous wavelet transform of f ∈ L2(R) with respect to a wavelet ψ ∈ L2(R)

is defined as

(Wψf)(a, b) = 〈f, ψa,b〉 =

∫ ∞
−∞

f(t)ψa,b(t)dt, (1.0.4)

where

ψa,b(t) =
1√
|a|
ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0

and a, b are scaling and translation parameters respectively.

Let f, g ∈ L2(R). Then Parseval’s relation of the wavelet transform is

∫ ∞
−∞

∫ ∞
−∞

(Wψf) (a, b)(Wψg)(a, b)
dbda

a2
= Cψ 〈f, g〉 , (1.0.5)

where Cψ is defined in (1.0.3).

The inversion formula of wavelet transform for f ∈ L2(R) is

f(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

(Wψf)(a, b)ψa,b(t)
dbda

a2
. (1.0.6)

The theory of Hankel transform was introduced by Hirschman[12], Haimo[11], Zema-

nian [38] and others. This theory can be suitably applied for solving axisymmetric

boundary value problems in cylindrical and spherical coordinates. Hankel transform
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is also used in the study of partial differential equations, Sobolev spaces, wavelets

and other problems in applied mathematics and mathematical physics.

Using the Hirschmanian theory of Hankel transform and Hankel convolution,

Pathak et al.[21] and Upadhyay[30] introduced the concept of Bessel wavelet trans-

form and Bessel wavelet convolution product and found Parseval’s formula, inversion

formula of the Bessel wavelet transform and various norm inequalities for the Bessel

wavelet convolution product.

Using the Bessel wavelet transform, many results are obtained in the present

thesis. Various results and properties which are related to our present research work

are given below:

1.1 Hankel Transform of Hirschman Type

I.I.Hirschman[12], Haimo[11], Cholewinski[4] introduced the theory of Hankel trans-

form on the space Lpσ(0,∞).

We define Lpσ(0,∞), 1 ≤ p ≤ ∞, as the space of those real measurable functions φ

on (0,∞) for which

‖φ‖p,σ =

(∫ ∞
0

|φ(x)|p dσ(x)

)1/p

<∞, 1 ≤ p <∞,

‖φ‖∞,σ = ess sup
0<x<∞

|φ(x)| <∞,

where

dσ(x) =
x2µ

2µ−1/2 Γ (µ+ 1/2)
dx, µ > 0.

For f ∈ L1
σ(0,∞), the Hankel transform is defined by

(hµf)(t) =

∫ ∞
0

f(x)jµ(xt)dσ(x), 0 < t <∞, (1.1.1)
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where

jµ(x) = 2µ−1/2 Γ (µ+ 1/2) x1/2−µ Jµ−1/2(x) (1.1.2)

and Jµ−1/2(x) is the Bessel function of first kind of order µ− 1/2.

The Hankel transform of f ∈ L1
σ(0,∞) is bounded and continuous on [0,∞) with

‖(hµf)(t)‖∞,σ ≤ ‖f‖1,σ . (1.1.3)

If f ∈ L1
σ(0,∞) and if hµf ∈ L1

σ(0,∞), then the inverse Hankel transform is given

by

f(x) = (h−1
µ f)(x) =

∫ ∞
0

jµ(xt)(hµf)(t)dσ(t), 0 < x <∞. (1.1.4)

The basic function D(x, y, z) is defined as

D(x, y, z) :=

∫ ∞
0

jµ(xt)jµ(yt)jµ(zt)dσ(t)

=
23µ−5/2 [Γ (µ+ 1/2)]2

Γ (µ) π1/2
(xyz)−2µ+1[4(x, y, z)]2µ−2, µ > 0,

where 4(x, y, z) is the area of a triangle with sides x, y, z if such a triangle exists

and zero otherwise.

It is clear that D(x, y, z) ≥ 0 and symmetric in x, y, z. Applying inversion formula

(1.1.4), we get ∫ ∞
0

jµ(zt)D(x, y, z)dσ(z) = jµ(xt)jµ(yt), (1.1.5)

valid for 0 < x <∞, 0 < y <∞ and 0 ≤ t <∞.

Setting t = 0 in the above equation, we obtain

∫ ∞
0

D(x, y, z)dσ(z) = 1. (1.1.6)

The Hankel translation τy of f ∈ Lpσ(0,∞) for 1 ≤ p ≤ ∞, is given by

(τyf)(x) = f(x, y) :=

∫ ∞
0

D(x, y, z)f(z)dσ(z), 0 < x, y <∞. (1.1.7)
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If f, g ∈ L1
σ(0,∞), then Hankel convolution is defined as

(f#g)(x) :=

∫ ∞
0

∫ ∞
0

f(z)g(y)D(x, y, z)dσ(y)dσ(z). (1.1.8)

Some properties of the Hankel convolution are given below:

(i). Let f, g ∈ L1
σ(0,∞), then

‖f#g‖1,σ ≤ ‖f‖1,σ ‖g‖1,σ (1.1.9)

hµ (f#g) (x) = (hµf)(x)(hµg)(x). (1.1.10)

(ii). Let f ∈ L1
σ(0,∞) and g ∈ Lpσ(0,∞), p ≥ 1. Then (f#g) exists, is continuous

and

‖f#g‖p,σ ≤ ‖f‖1,σ ‖g‖p,σ . (1.1.11)

(iii). Let f ∈ Lpσ(0,∞), g ∈ Lqσ(0,∞) and 1
p

+ 1
q

= 1. Then (f#g) exists, is contin-

uous and

‖f#g‖∞,σ ≤ ‖f‖p,σ ‖g‖q,σ . (1.1.12)

(iv). Let f ∈ Lpσ(0,∞) and g ∈ Lqσ(0,∞), 1
r

= 1
p

+ 1
q
− 1. Then (f#g) exists, is

continuous and

‖f#g‖r,σ ≤ ‖f‖p,σ ‖g‖q,σ . (1.1.13)

Hankel transform is an isometric on L2
σ(0,∞). Parseval’s formula of the Hankel

transform for f, g ∈ L2
σ(0,∞) is given by

∫ ∞
0

f(x)g(x)dσ(x) =

∫ ∞
0

(hµf)(y)(hµg)(y)dσ(y). (1.1.14)

The above relation also holds for f, g ∈ L1
σ(0,∞).

For f ∈ Lpσ(0,∞) and g ∈ Lqσ(0,∞), 1 < p, q < ∞ with 1
p

+ 1
q

= 1, we have the
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Hölder’s inequality

∫ ∞
0

|f(x)g(x)| dσ(x) ≤
(∫ ∞

0

|f(x)|p dσ(x)

)1/p(∫ ∞
0

|g(x)|q dσ(x)

)1/q

. (1.1.15)

If we take p = q = 2 in (1.1.15), we get

∫ ∞
0

|f(x)g(x)| dσ(x) ≤
(∫ ∞

0

|f(x)|2 dσ(x)

)1/2(∫ ∞
0

|g(x)|2 dσ(x)

)1/2

. (1.1.16)

This inequality is called Cauchy- Schwarz inequality.

1.2 The Continuous Bessel Wavelet Transform

From [21], for ψ ∈ Lpσ(0,∞), 1 ≤ p <∞ the Bessel wavelet defined as

ψb,a(x) := Daτbψ(x) = Daψ(b, x) = a−2µ−1ψ

(
b

a
,
x

a

)
(1.2.1)

= a−2µ−1

∫ ∞
0

D(b/a, x/a, z)ψ(z)dσ(z), (1.2.2)

where b ≥ 0 and a > 0.

The continuous Bessel wavelet transform of f ∈ L2
σ(0,∞) with respect to ψ ∈

L2
σ(0,∞) is given as

(Bψf)(b, a) := 〈f(t), ψb,a(t)〉

=

∫ ∞
0

f(t)ψb,a(t)dσ(t) (1.2.3)

= a−2µ−1

∫ ∞
0

∫ ∞
0

f(t)ψ(z)D

(
b

a
,
t

a
, z

)
dσ(z)dσ(t). (1.2.4)

Now, (1.2.4) can be easily expressed in the form of Hankel convolution

(Bψf)(b, a) = (f#ψa)(b), (1.2.5)
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where ψa(t) = 1
a2µ+1 ψ( t

a
).

From (1.1.10), the continuous Bessel wavelet transform of a function f ∈ L1
σ(0,∞)∩

L2
σ(0,∞) can be written in the following form:

(Bψf)(b, a) = h−1
µ

[
(hµψ)(a·)(hµf)(·)

]
(b) (1.2.6)

=

∫ ∞
0

jµ(bω)(hµf)(ω)(hµψ)(aω)dσ(ω). (1.2.7)

Let ψ ∈ L2
σ(0,∞) be basic wavelet which satisfies the admissibility condition

0 < Aψ :=

∫ ∞
0

|(hµψ)(ω)|2

ω2µ+1
dσ(ω) <∞, (1.2.8)

and defines Bessel wavelet transform (1.2.3), then we have

∫ ∞
0

∫ ∞
0

(Bψf)(b, a)(Bψg)(b, a)a−2µ−1dσ(a)dσ(b) = Aψ 〈f, g〉 , (1.2.9)

for all f, g ∈ L2
σ(0,∞). This equation is known as Parseval’s formula of the Bessel

wavelet transform.

1.3 Hankel Transform of Zemanian Type

The Hankel transform [35] of a classical function f ∈ L1(0,∞) is defined by

(hµf)(y) =

∫ ∞
0

(xy)1/2Jµ(xy)f(x)dx, µ ≥ −1

2
, (1.3.1)

where 0 < y <∞, and kernel Jµ is the Bessel function of first kind of order µ.

Let f ∈ L1(0,∞) and hµf ∈ L1(0,∞). Then the inversion formula of Hankel

transform is given by

f(x) =

∫ ∞
0

(xy)1/2Jµ(xy)(hµf)(y)dy. (1.3.2)
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For µ ≥ −1
2
. If f(x) and G(y) are in L1(0,∞), if F (y) = hµ[f(x)], and if g(x) =

h−1
µ [G(y)], then ∫ ∞

0

f(x)g(x)dx =

∫ ∞
0

F (y)G(y)dy. (1.3.3)

Let f, g ∈ L1(0,∞). Then the Hankel convolution of two functions f and g is defined

as follows:

(f#g)(x) =

∫ ∞
0

f(x, y)g(y)dy (1.3.4)

=

∫ ∞
0

(τxf)(y)g(y)dy, (1.3.5)

where Hankel translation τx is given by

(τxf)(y) = f(x, y) =

∫ ∞
0

f(z)Dµ(x, y, z)dz (1.3.6)

and

Dµ(x, y, z) =

∫ ∞
0

t−µ−
1
2 (xt)1/2Jµ(xt)(yt)1/2Jµ(yt)(zt)1/2Jµ(zt)dt, (1.3.7)

for x, y, z ∈ (0,∞).

Applying the inversion formula of Hankel transform to (1.3.7), we find the following

result

∫ ∞
0

tµ+1/2Jµ(zt)Dµ(x, y, z)dz = (xt)1/2Jµ(xt)(yt)1/2Jµ(yt). (1.3.8)

For f and g ∈ L1(0,∞), the Hankel convolution satisfies the following relations:

‖f#g‖L1(0,∞) ≤ ‖f‖L1(0,∞) ‖g‖L1(0,∞) (1.3.9)

and

hµ(f#g)(x) = x−µ−1/2(hµf)(x) (hµg)(x). (1.3.10)



Chapter 1. Introduction 9

1.4 The Bessel Wavelet Transform based on Ze-

manian Theory

A function ψ ∈ L2(0,∞) is called a Bessel wavelet if it satisfies the admissibility

condition

Cµ,ψ =

∫ ∞
0

x−2µ−2 |(hµψ)(x)|2 dx <∞, µ ≥ −1

2
. (1.4.1)

The continuous Bessel wavelet transform of a function f ∈ L2(0,∞) with respect to

a Bessel wavelet ψ ∈ L2(0,∞) is defined as

(Bψf)(b, a) = aµ−1/2

∫ ∞
0

f(t)ψ̄

(
t

a
,
b

a

)
dt, (1.4.2)

where a > 0 and b ≥ 0 and

ψ

(
t

a
,
b

a

)
=

∫ ∞
0

ψ(z)Dµ

(
t

a
,
b

a
, z

)
dz. (1.4.3)

If f, ψ ∈ L2(0,∞), then using the techniques of [30], we have

(Bψf)(b, a) =

∫ ∞
0

(bx)1/2Jµ(bx)(hµf)(x)x−µ−
1
2 (hµψ)(ax)dx. (1.4.4)

Parseval’s relation of the continuous Bessel wavelet transform of two functions f, g ∈

L2(0,∞) with respect to ψ ∈ L2(0,∞) is

∫ ∞
0

∫ ∞
0

(Bψf)(b, a)(Bψg)(b, a)
dadb

a2
= Cµ,ψ 〈f, g〉 , (1.4.5)

where Cµ,ψ is given in (1.4.1).

If f ∈ L2(0,∞) and ψ ∈ L2(0,∞), then inversion formula of the Bessel wavelet

transform is

f(t) =
1

Cµ,ψ

∫ ∞
0

∫ ∞
0

(Bψf)(b, a)ψ

(
t

a
,
b

a

)
dbda

a5/2
, a > 0. (1.4.6)
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Thus, in the chapters 2, 3 and 4, our works are heavily based on the continuous

Bessel wavelet transform of Hirshmanian theory. In the last two chapters, we study

the continuous Bessel wavelet transform on L2(0,∞) space by using the Zemanian

theory of Hankel transform.


