
Chapter 5

Early Classification Approach for

Multivariate Time Series with

Unseen Class

In the previous chapters, we addressed the early classification problem for the MTS with

the components of different sampling rate and faulty components. These approaches

assumed that the new incomplete MTS (to be classified) should belong to only seen

classes. However, in some applications such as appliance monitoring, early classification

of the MTS of unseen class is desirable for fault identification. In this chapter, we

present an early classification approach for identifying the class label of an incomplete

MTS even when it belongs to an unseen class.

5.1 Introduction

Traditional early classification approaches can predict the class label only if it is asso-

ciated to some training instances. It essentially means that these approaches can not

identify an unknown (or unseen) class label. However, in some industrial or domestic

applications, early classification of unseen faults (essentially the class labels) is desirable
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for making the machines smart and robust. It can provide sufficient time to prevent the

propagation of effects on other parts of the appliance [89]. The appliances with such

early classification can remarkably save the maintenance cost by giving early warning.

An unseen class (fault) can be classified with the help of MTS of seen classes (faults)

using a concept of Zero-Shot Learning (ZSL) [38].

With the advent of sensors, it becomes easy to diagnose the abnormal or faulty

behavior of the appliances by using the sensory data. Faulty operation of an appliance

causes a significant fluctuations in the sensory measurements. Such fluctuations help to

distinguish a faulty operation from the normal [39, 40]. The sensors generate an MTS

corresponding an operation of the appliance, which should be classified to identify the

type of fault.

This chapter addresses the problem: how to classify an incomplete MTS, associ-

ated with a seen or unseen class label, by using a labeled training dataset? To solve

this problem, this work proposes a Semantic-information based Early Classification

approach for MTS (SECM). Unlike existing work, SECM is capable of identifying an

unseen class by utilizing the semantic information of the seen classes.

5.1.1 Motivation

While addressing the limitations observed in the existing work [22, 26, 29], this work

advances an early classification approach by making it able to classify an MTS of an

unseen class label. The major limitations in the existing work are as follows.

• The existing early classification approaches [22, 26, 29] can predict only a seen

class label while classifying an incomplete MTS. As it is not practical to have

prior knowledge or training MTS instances of every class label, these approaches

can not be adapted for fault classification in the industry or domestic appliances

as an unknown fault may occur any time.

• In previous studies [38, 90, 91], the authors either construct a human-annotated
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attribute matrix or use word vector space for predicting unseen classes, which

require domain expertise. In sensory data, word vector may consist of a fixed

set of attributes (sequential patterns) that can be used in identifying class labels.

Such requirement can be eliminated by learning the attributes automatically from

the training data.

• Correlation between the components of MTS provides a crucial information for its

early classification. Some prior work [26,31,32] did not consider such correlation

during classification.

5.1.2 Major contributions

This chapter makes following major contributions:

• This work proposes an early classification approach, SECM, to classify an incom-

plete MTS even if it belongs to an unseen class label. We incorporate an idea of

ZSL in SECM to predict the unseen class by using semantic information of the

seen classes.

• We develop an attribute learning model to obtain most discriminative attributes

corresponding to the seen classes. The attributes capture the semantic informa-

tion of the seen classes. SECM utilizes these attributes for followings: 1) to learn

an MRL for each seen class separately using training dataset and 2) to identify

an unseen class.

• SECM uses a correlation-based similarity measure to compute the distance be-

tween the MTS. As this similarity measure utilizes the correlation between the

components of MTS, it helps to obtain better MRLs for a desired accuracy of the

classification.

The rest of the chapter is organized as follows. Next section presents the preliminaries

of the chapter. Section 5.3 proposes an early classification approach, SECM, for MTS of

seen and unseen classes. In Section 5.4, we discuss a case study for fault classification in
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the washing machines using SECM. Next, performance evaluation of SECM is carried

out on existing datasets in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.2 Preliminaries

This section describes the terminologies and notations used in this work. Let D =

{〈Cj,Lj〉 : 1 ≤ j ≤ N} be a labeled training dataset where Xj denotes an instance

of MTS and Lj denotes its class label. The class label Lj can belong to one of the l

classes as Lj ∈ {L1, L2, · · · , Ll}. The set of all possible classes in D is called as seen

classes, denoted by L = {L1, L2, · · · , Ll}. Further, the class labels that are not in D

are called as unseen classes.

Definition 5.1 (Attribute) An attribute is a most discriminative subsequence of a

time series (component of MTS) which helps in distinguishing the time series of one

class from others. It captures the semantic information of the class label to which the

time series belongs.

Definition 5.2 (Smart appliance) An appliance is said to be smart if it has ability

to monitor and control its operational behavior automatically by using real-time mea-

surements of embedded sensors.

• Zero-Shot Learning (ZSL): Traditional classifier learns a mapping function f :

X → Y using a given labeled training dataset, where X and Y denote input feature

space and output class space, respectively. The function f can predict the most likely

class label y ∈ Y for a test input feature vector x′ /∈ X, that means it is able to predict

only the seen classes which are occurred in training dataset. The ZSL [38] extends

the prediction capability of the traditional classifiers for unseen classes. It utilizes

semantic information of the seen classes to recognize the unseen classes. Such semantic

information is inferred from the input instances. The ZSL transforms input feature

vectors to semantic attributes and builds an attribute space A. Then, the objective



5.3. Semantic-Information based Early Classification Approach for MTS 93

of the classifier is to learn a mapping function f ′ : A → Y . Figure 5.1 illustrates the

traditional classifier with ZSL for time series classification.

Traditional classifier with ZSL:

Traditional classifier:
MappingTransformation

Output space (Y)

Input Space (X)

Output space (Y)

Input Space (X)

Attribute space (A)

A → Y

X → Y

Figure 5.1: Overview of the traditional classifier with ZSL.

5.3 Semantic-Information based Early Classification Approach

for MTS

This section proposes an early classification approach SECM to classify an incomplete

MTS using semantic information of the target classes. Unlike traditional early classi-

fiers [22,25,80], SECM is capable of classifying an MTS even if it belongs to an unseen

class. SECM utilizes semantic information of the seen classes for classifying the MTS of

unseen class. The approach consists of mainly four steps as shown in Figure 5.2. For a

given dataset D, SECM first learns the attributes corresponding to each class label for

each component of the MTS separately. Next, a distance threshold is computed corre-
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sponding to the obtained attributes. SECM later utilizes the attributes for computing

class-wise MRLs. Finally, the attributes and MRLs are used to predict the class label

of an incomplete MTS. Algorithm 5.1 illustrates all the steps of SECM.

MTS dataset

New MTS

Class label

learning
Attribute

computation
Threshold 

learning
MRL

prediction
Class label

(D)

A δ M

A A, δ

(§5.3.1) (§5.3.2) (§5.3.3) (§5.3.4)

Figure 5.2: Block diagram of SECM.

5.3.1 Attribute learning

In this section, SECM uses the given MTS dataset D to obtain semantic information

of seen classes. Such semantic information is referred to attributes of the MTS. SECM

develops an attribute learning model to learn most discriminative attributes of the seen

classes. It finds q attributes for each of the l seen classes from each component of the

MTS. These attributes (or subsequences) are interpretable as they are the most identi-

fiable subsequences of the time series, which capture succinct information of their class

labels. SECM learns these attributes by optimizing the loss function with maximum

information gain. SECM considers each component separately for attribute learning.

Let D = {〈Cj,Lj〉 : 1 ≤ j ≤ N} be a dataset that contains N labeled time series

of a single component of the given dataset D and Lj ∈ {L1, L2, · · · , Ll}. SECM learns

q attributes for each class labels. As there are l class labels in the given dataset, total

l× q attributes should be learned for D. Let Z denotes a set of l× q subsequences from

set of all possible subsequences of D. The subsequences are obtained using a sliding

window of length W , which provides total J = M −W + 1 subsequences in a time
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series of length M . SECM first randomly selects |Z| subsequences and utilizes them to

transform the dataset D ∈ RN×M into a matrix T ∈ RN×|Z|. The matrix T contains

the minimum distance information from each time series of D to each of the selected

subsequences in Z. The minimum distance between a time series Cj ∈ D and a kth

selected subsequence Zk ∈ Z, is calculated as

Tj,k = dmin(Cj,Zk) =

∑J
a=1 d(Cj,Zk, a)ed(Cj ,Zk,a)∑J

a=1 ed(Cj ,Zk,a)
, (5.1)

where, d(Cj ,Zk, a) =

√√√√ 1

L

L∑
b=1

(Cj [a+ b− 1]−Zk[b])2. (5.2)

Equation 5.2 computes Euclidean distance between Cj and Zk as it is a computationally

efficient and commonly used similarity measure for univariate time series [92]. Next,

we define an attribute learning model using T as follows

L̂j,Lc = Bc +

|Z|∑
a=1

Tj,a · θc,a, 1 ≤ j ≤ N, 1 ≤ c ≤ l, (5.3)

where, θ denotes a weight parameter matrix of size l × |Z| which needs to be learned

using T and B denotes a vector of bias terms for l classes. The model then uses a

softmax function [93] to get the probability distribution over the classes from L̂j,Lc ,

which is given as

p(L̂j,Lc) = softmax(L̂j) =
eL̂

j,Lc∑l
c=1 eL̂j,Lc

. (5.4)

In order to learn the parameters of the model (given in Equation 5.3), we define a loss
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function for jth instance of T as

Loss(Lj, L̂j) = −
l∑

c=1

Lj,Lc · log(p(L̂j,Lc)) +
Λ

N
||θ||22, (5.5)

where, ||θ||22 is a regularization term to avoid overfitting of the model and Λ controls the

influence of the regularization. As Lj,Lc = 1 if Lc is the true class label and 0 otherwise,

Equation 5.5 can be written as

Loss(Lj, L̂j) = −log(p(L̂j,Lc)) +
Λ

N
||θ||22. (5.6)

The main objective of the model is to minimize the loss function (given in Equation 5.6)

with respect to Z to get l × q subsequences of D with maximum information gain. As

the loss function is convex with respect to Z, SECM uses Stochastic Gradient Decent

method to obtain argmin
Z,θ

Loss(L, L̂).

The gradient of xth data point of a subsequence Zk with respect to the time series

Cj ∈ D can be computed using chain rule of derivatives, as follows

∂Loss(Lj, L̂j)
∂Zk,x

=
∂Loss(Lj, L̂j)

∂L̂j
∂L̂j
∂Tj,k

J∑
a=1

∂Tj,k
∂d(Cj,Zk, a)

∂d(Cj,Zk, a)

∂Zk,x
. (5.7)

As each multiplicative term in Equation 5.7 is partially differentiable, it can be easily

solved. Further, we can generalize Equation 5.7 for the dataset D to find l × q most

identifiable subsequences. Figure 5.3 illustrates the attribute learning for the given

dataset D.

Learning of just l × q attributes does not ensure the balance distribution of the

attributes in the classes. This work therefore uses following steps to obtain such balance

distribution:

1. Learn |Z| attributes from the dataset D.
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Figure 5.3: Illustration of attribute learning for given single component dataset D.

2. If any of the l classes has less than q attributes in Z then increment |Z| by one

and goto step 1.

3. As Z may contain more than l × q attributes, SECM chooses q attributes for

each class from Z and thus provides final set of l × q attributes with balance

distribution.

As SECM learns l × q attributes for the dataset D which consists the time series of

only one component of the MTS, we obtained total n × l × q attributes for the whole

dataset D. Let A be a three dimensional matrix of size n× l × q, where each element

is a triplet consisting the followings: index of the time series to which the attribute

belongs (denoted by j′) and start and end points of the attribute. An element of A

can therefore be denoted by Ai,c,s =< j′, start, end >, where 1 ≤ i ≤ n, 1 ≤ c ≤ l,

and 1 ≤ s ≤ q. The attribute learning for whole dataset D is shown at Lines 1 − 9 in

Algorithm 5.1.

5.3.2 Threshold computation for attributes

In this section, SECM learns a distance threshold for the obtained attributes A. Let δ

be three dimensional matrix of size n× l× q, where an element δi,c,s denotes a distance

threshold corresponding to an attribute Ai,c,s for 1 ≤ i ≤ n, 1 ≤ c ≤ l, and 1 ≤ s ≤ q.
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SECM computes δi,c,s as the minimum distance of an attribute Ai,c,s from all the time

series of ith component with class label Lc. Let Nc denotes the number of time series

that belong to Lc class label. Now, δi,c,s can be mathematically expressed as

δi,c,s = min
j∈{1,2,··· ,Nc}

{
1

W

end∑
a=start

∣∣∣Cj
i [a]−Cj′

i [a]
∣∣∣} , (5.8)

where, Cj′
i is the time series to which the attribute belongs. The distance threshold ma-

trix δ helps to find best matching attributes of the seen classes during the classification

of an MTS of unseen class.

5.3.3 MRL learning for early classification

As this work focuses on the early classification, SECM needs to learn MRL of the time

series which would be sufficient to provide a desired accuracy (ααα). Since Euclidean-

based distance can not capture the correlation among the components of MTS, this

work proposes a correlation-based similarity measure which helps to gain better sense

of distance than simple Euclidean-based distance. SECM first transforms each MTS

of the given dataset into a correlation matrix, by exploiting the relationship between

the components of MTS. Such correlation matrices are then used to find similarity

between the MTS. Finally, SECM formulates a stopping condition based on the obtained

accuracies of classification using full length and MRL of MTS.

Let Ca and Cb are two components of an MTS of the given dataset D, where a 6= b

and number of data points in both the components is M . The correlation coefficient

between Ca and Cb is defined as

corr(Ca, Cb) =

∑M
t=1(Ca[t]− µCa)(Cb[t]− µCb)

(M − 1)σCaσCb
, (5.9)

where, µ and σ denote mean and variance of the component. As the MTS consists n

components, the size of corresponding correlation matrix is n× n, where each element
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is a correlation coefficient computed using Equation 5.9. Let ρρρ denotes a set of N

correlation matrices corresponding to N MTS of the dataset D, which is given as

ρρρ = {ρj|1 ≤ j ≤ N} where ρj ∈ Rn×n. Now, we define a similarity measure between

two MTS Ca and Cb as follows

Sim(Ca,Cb) =

√√√√ 1

n× n

n∑
i=1

n∑
i′=1

(ρa[i, i′]− ρb[i, i′])2. (5.10)

SECM constructs a similarity matrix S of size N×N which consists of similarity scores

(computed using Equation 5.10) between each pair of MTS.

Given the matrices A, δ, and S, for the dataset D, the following steps illustrate the

procedure for learning the MRL:

1. Find a representative MTS for each class label using δ. Let Cj ′ denotes a repre-

sentative MTS for class label Lc. The index j′ is obtained as

j′ = argmin
j∈{1,2,··· ,Nc}

{δi,c,s}, (5.11)

where, 1 ≤ i ≤ n and 1 ≤ s ≤ q.

2. Find a start index using attribute matrix A. The start index helps SECM to

know the right time for learning the MRL by considering the sufficient number

of data points. It is computed as st ind = min{start} where start is a vector of

start indices (i.e., < ·, start, · >) of all the attributes in A.

3. This step computes the classification accuracy of the SECM on the training

dataset D by using the similarity matrix S. The SECM first compares each

MTS with every class representative MTS based on their similarity scores in S,

to find its nearest representative MTS. Next, the class label of the nearest repre-

sentative MTS is assigned to the MTS. Later, the classification accuracy for each

class is computed, which is denoted by AM,c for class label Lc where M is the
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number of data points of the MTS that are used in computation of S.

4. For t = st ind to M :

• Compute accuracy At,c using first t data points of the MTS as discussed in

Step 3.

• If condition ααα ×AM,c ≤ At,c satisfies then value of t becomes the MRL for

class label Lc, where 1 ≤ c ≤ l.

The above four steps provides an MRL corresponding to each of l class labels. SECM

builds a set of these obtained MRLs as M = {MRL1,MRL2, · · · ,MRLl}. Algo-

rithm 5.1 shows the steps of MRL leaning at Lines 11− 15.

5.3.4 Class label prediction using ZSL

In this work, we employ ZSL method to predict the class label of an incomplete MTS.

The ZSL uses attribute matrix A of the seen classes while classifying the MTS. SECM

waits for arrival of sufficient data points (i.e., MRL) in MTS before starting the predic-

tion. Once the MRL is obtained, the ZSL finds the distances between a component of

MTS and its corresponding attributes in A. Such distances are then compared with the

precomputed thresholds (i.e., δ) of the attributes to obtain a single nearest attribute

for each component of the MTS. Finally, if the nearest attributes for all the components

belong to the same class label then it is assigned to the incomplete MTS, otherwise an

unseen class label is assigned to the MTS.

Let Cp be an incomplete MTS with n components, which is to be classified. SECM

starts prediction as soon as t′ data points are arrived in Cp, where t′ = min {M}.

Let Lp is the class label for which the MRL is minimum. The ZSL computes distance

between a component Cp
i of Cp and an attribute Ai,c,s =< j′, start, end >, as follows

dist(Cp
i ,Ai,c,s) = min

a∈{1,2,··· ,t′−W+1}
{d(Cp

i ,Zj′ , a)} , (5.12)

where, Zj′ = Cj′
i [start : end] and d(Cp

i ,Zj′ , a) can computed using Equation 5.2. Now,
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Algorithm 5.1: SECM
Input: A dataset D consists of N labeled MTS instances. The MTS has n

components with M data points in each. An incomplete Cp /∈ D for which
label is to be predicted;

Output: Attribute matrix (A), threshold matrix (δ), set of MRLs (M), and predicted
class label Lp;

/* Attribute learning */
1 for i← 1 to n do

/* D consists all time series of a single component */
2 Obtain a set Z of (l × q) subsequences with length W from D.
3 for j ← 1 to N do

/* for each subsequence Zk ∈ Z */
4 Compute Tj,k using Equation 5.1.

5 for j ← 1 to N do
/* for each class label Lc */

6 Compute L̂j,Lc from T using Equation 5.3.

7 Calculate loss Loss(Lj , L̂j) using Equation 5.6.

8 Learn model parameters θ and Z by argmin
Z,θ

Loss(L, L̂) for D.

9 Construct attribute matrix A using obtained Z for whole dataset D.
10 Compute a threshold matrix δ for A using Equation 5.8.

/* MRL learning */
11 for a← 1 to N do
12 for b← 1 to N do
13 Obtain similarity score Sim(Ca,Cb) using Equation 5.10.

14 Construct a similarity matrix S using obtained scores for dataset D.
/* Using A, δ, and S as shown in Steps 1− 4 of Section 5.3.3 */

15 Obtain set of MRLs as M = {MRL1,MRL2, · · · ,MRLl}.
/* Class label prediction on an incomplete MTS Cp using ZSL */

16 t′ = min{M}
/* Lp is class label for minimum MRL in M */
/* Once t′ data points are arrived in Cp */

17 for i← 1 to n do
18 Find nearest attribute Nearesti for Cp

i using Equation 5.13.
19 if Class label corresponding to Nearesti is not Lp then
20 Wait for more data points in Cp and Break.

21 Repeat Lines 16− 21 until yq is same for all nearest attributes.
22 if Cp is not completed yet then
23 Assign Lp as predicted class label to Cp.

24 else
25 Assign an unseen class label to Cp.
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the nearest attribute for the component Cp
i is obtained as

Nearesti = argmin
Ai,c,s

{dist(Cp
i ,Ai,c,s) < δi,c,s} , (5.13)

where, 1 ≤ c ≤ l and 1 ≤ s ≤ q. Next, if class label of Nearesti for 1 ≤ i ≤ n is same

and equal to Lp then predicted class label for Cp is Lp. If class labels are same but

not equal to Lp then SECM waits for more points till the next smallest MRL of M

and also updates the Lp correspondingly. Later, if all the data points are arrived in the

MTS Cp and the class labels of nearest attributes are still not same for the components

then an unseen class label is assigned to Cp. The steps of prediction are shown at

Lines 16 − 25 in Algorithm 5.1. Finally, the number of data points of the incomplete

MTS that are used in the classification becomes its MRL. Such MRL is further used to

compute earliness of the classification.

5.4 Case study: washing machine

This section conducts a case study for a domestic appliance, i.e., washing machine. We

first discuss an experimental setup to collect a labeled MTS dataset for different types

of faults. Later, the performance of SECM is evaluated on the collected dataset using

accuracy, earliness, and F1 score.

5.4.1 Experimental setup

In this experiment, we use five different types of sensors to collect MTS data of various

faults from washing machines. Figure 5.4 illustrates a fully-automatic top load washing

machine with five sensors including accelerometer, force, gas, sound, and temperature.

Each sensor is connected to a NodeMCU module (ESP8266) which transmits the data

to Raspberry Pi through Wi-Fi. Sampling rate of the sensors is 10 Hz to capture subtle

information of the faults. A NodeMCU with four sensors is attached to wall of inner
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Figure 5.4: Experimental setup for data collection using NodeMCU and Raspberry
Pi from washing machine. Sensor connected to NodeMCU are s1− Accelerometer, s2−
Force, s3− Gas, s4− Sound, and s5− Temperature.

drum. Accelerometer and force sensor are used to record the vibration and laundry

weight for identifying the imbalanced drum, respectively. Gas and sound sensors are

used to monitor the dryer for any burning smell and presence of any foreign object (e.g.,

coin, pen, ring), respectively. Another NodeMCU with temperature sensor is attached

to the motor to detect overheating problem. Apart from these sensors, a voltmeter

socket is also used to supply the electricity for the washing machine and further to

record its electricity consumption.

5.4.2 Data collection

We create a labeled MTS dataset by collecting the data for following faults: motor

overheating (F1), imbalanced drum (F2), clogged drain pipe (F3), cloth burning in

dryer (F4), and foreign object (e.g., coin, pen, ring, etc.) with laundry (F5). Each of

these faults corresponds to a class label in the dataset. In addition to this, the MTS

data is also collected for normal or non-faulty operation (F6), which also adds a class

label in the dataset and makes the total number of classes six i.e., l = 6. For each

single operation (faulty or normal), the sensory data is collected for 60 seconds at 10

Hz using aforementioned five sensors. The sensors together form an MTS with 600

(i.e., M = 600) data points in each of its time series. As this work also uses a time



104 5.4. Case study: washing machine

series of voltage readings, the formed MTS consists of six components or time series,

i.e., n = 6. This work considers four fully-automatic washing machines from Samsung

and Whirlpool companies. For each of four washing machines, we collected 100 MTS

for each of six class labels, which provided total 4 × 6 × 100 = 2400, i.e., N = 2400

MTS in the dataset. We call this dataset as Washing Machine Faults (WMF).

5.4.3 Results and discussions

This work divides the WMF dataset into training and testing data with 70% (i.e.,

1680) and 30% (i.e., 720) MTS, respectively. SECM uses training data for building

a classification model by learning attributes and MRLs for the available classes (i.e.,

seen) and then evaluates the model on testing data. This work employs a standard

10-fold cross-validation method during learning. We use following evaluation metrics:

• Accuracy: It is the percentage of number of MTS in the testing data that are

correctly classified by SECM.

• Earliness: It is the percentage of data points of a complete time series that are

not used in the classification.

• Precision: It is the percentage of times that a fault is classified correctly. Precision

indicates a quality aspect of classification model.

• Recall: It measures the completeness and relevance of the classification model.

Recall is the percentage of times that a particular fault is detected by the model.

• F1 score: It gives an integrated score using precision and recall as

2× precision× recall
precision+ recall

. (5.14)

5.4.3.1 Selection of length and number of attributes

This work first selects a suitable length of attribute that can provide desired level of

accuracy with earliness using different number of attributes in the time series. Figure 5.5
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shows accuracy and earliness results using different number of attributes, i.e., q =

{1, 2, 3, 4, 5} at ααα = 0.9. In parts (a) and (b), the results are obtained by taking one

class (i.e., minimum) as unseen. Similarly, parts (c) and (d) show the results by taking

four classes (i.e., maximum) out of six as unseen (because at least two classes are

required to build classification model). At q = 2, SECM obtains maximum accuracy

(i.e., 88.2% and 85.1%) with maximum earliness (i.e., 34.9% and 31.1%) by using the

attribute of length 10% of MTS (i.e., L = 0.10M), as shown by ‘brown’ ellipses. Though

SECM gets marginal gain on accuracy at q = 3 for L = 0.10 and 0.15, it loses earliness

of the classification which is crucial for real-time fault identification. We therefore set

q = 2,L = 0.10M and ααα = 0.9 for the performance evaluation of SECM.
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Figure 5.5: Accuracy and earliness results using varying number of attributes in the
time series.
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5.4.3.2 Performance of SECM for seen faults

First of all, the performance of SECM is evaluated by classifying only seen faults where

classification model is built by taking the MTS of all types of faults during training.

Figure 5.6 illustrates the obtained accuracy and earliness results in part (a) and confu-

sion matrix in part (b). It is observed that SECM is able to maintain the desired level

of accuracy (i.e., 90%) with an average earliness of 38.8%. Earliness is maximum (i.e.,

49.5%) for F2 class label, which indicates that the MTS corresponding to imbalanced

drum fault has better identifiable patterns at early stage. Next, it can be observed from

the confusion matrix that SECM is able to predict correct class label maximum times

(i.e., 95.8%) for F6. It indicates that the MTS of normal operation is significantly

different from other faults.
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Figure 5.6: Performance of SECM for seen classes (i.e., faults).

5.4.3.3 Performance of SECM for unseen faults

Next, we evaluate SECM for unseen fault classification. In Figure 5.7, the results are

shown with following configurations:

• AccS and EarS: Accuracy and earliness of the class when it is seen and other

classes are also seen.

• AccU and EarU : Accuracy and earliness of the class when it is unseen and other

classes are seen.

• AccA and EarA: Average accuracy and earliness of all classes when the class is
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unseen and others are seen.

It is observed from the figure that SECM is able to classify the unseen faults with

an accuracy of (72 ± 8.3)% and an earliness of (27 ± 6.7)%. Though SECM gets

lower AccU and EarU values for all the class labels, it is able to maintain an average

accuracy of (84± 3.7)% with an average earliness of (37± 8.2)% as shown by AccA and

EarA, respectively. An interesting observation is seen for F3 class label, where AccU is

substantially lesser (i.e., 15.1%) than AccA while EarU differs marginally from EarA as

shown in part (b).
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Figure 5.7: Impact of unseen classes on accuracy and earliness of SECM.

Further, class-wise performance of SECM for unseen class labels are reported using

precision, recall, and F1 score as illustrated in Figure 5.8. The right most bar group

shows the average performance of the six classes. We observe that SECM is able to

achieve an average precision of 79.7%, recall of 75.6%, and F1 score of 78.5%, which

is not significantly higher. It is mainly due the presence of unseen class label. How-

ever, SECM is able to maintain significant level of balance between correctness and

completeness of the classification model which is indicated by F1 score.

5.4.3.4 Sensitivity analysis of SECM

Figure 5.9 illustrates the performance results of the sensitivity studies with varying

number of unseen classes for different values of ααα. As the proposed approach needs

minimum two classes for training the classifier, we can take maximum four classes (out
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Figure 5.8: Precision, recall, and F1 score results for unseen class labels.

of six) as unseen. We observe that the performance of SECM degrades as the number

of unseen classes increases for all the values of ααα. Though SECM is very sensitive to

the number of unseen classes, it is still able to achieve an accuracy of 37.2% with an

earliness of 10.7% for ααα = 0.9 even when four out of six classes are unseen. Next, it

is easy to observe that SECM is able to maintain the desired level of accuracy ααα of

the early classification up to one unseen class. However, such accuracy is obtained at

the cost of earliness. The results clearly indicate that ααα significantly influences the

performance of SECM.
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Figure 5.9: Performance results of sensitivity analysis of SECM.

5.5 Experimental Results on Existing Datasets

This section evaluates the performance of SECM on two relevant datasets available in

UCI repository [13]. We first discuss the existing datasets and then illustrate the results
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on these datasets. Later, we compare the performance of SECM with three existing

approaches including MSD [26], DMP+PPM [29], and MTSEC [32].

5.5.1 Existing datasets

Hydraulic System Monitoring (HSM) [94] is an MTS dataset which is collected to

monitor the condition of a hydraulic system using various sensors such as temperature,

pressure, volume flow, etc. In order to monitor the status of the system, the sensors are

attached to different components including accumulator, valve, cooler, and pump. Each

component may undergo different types of faults. We consider only the faults related

to the hydraulic accumulator. This work uses the MTS data from six pressure sensors

along with one time series of motor power readings taken at 100 Hz for 60 seconds. It

means there are total seven components (n = 7) in the MTS with 6000 data points

(M = 6000). In HSM dataset, there are total 2205 (N = 2205) MTS corresponding to

four faults (class labels i.e., l = 4) in the accumulator.

GMD dataset [95] is collected to detect chemical leakage based on mixture of turbu-

lent gases. This work uses down sampled dataset available in [13]. Eight gas sensors are

used to detect the mixture, which generate the MTS with eight components (n = 8).

As the sensors were exposed to the mixture for 300 seconds and taking readings in

every 100 ms (i.e., 10 Hz), the generated MTS consists of 3000 data points (M = 3000)

in each of its component. We increase the number of MTS in the dataset by adding

the Gaussian noise with the given data, which makes total 600 MTS (N = 600). Each

MTS corresponds to one of the 30 different mixtures of gases (i.e., l = 30).

5.5.2 Experimental results

In this section, we take accuracy, earliness, and F1 score for assessing the performance

of SECM on aforementioned existing datasets and the obtained results are shown in

Figure 5.10 using box plot. As this work evaluates SECM by using different configu-
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ration of seen and unseen classes, it provides a set of values for each evaluation metric

(i.e., accuracy, earliness, and F1 score). Such a set is plotted using a box plot method

in Figure 5.10. It can be seen from the figure that SECM is able to obtain a median

accuracy of more than 80% for both the datasets with a median earliness of 38.9% for

HSM and 32.7% for GMD dataset. As the number of class labels are more (i.e., 30) in

GMD dataset, the range is larger when compared to HSM dataset. Further, obtained

F1 scores indicate that SECM performs good at balancing the precision and recall. In

other words, the performance of SECM for unseen class is as good as for seen classes.
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Figure 5.10: Performance results of SECM on the existing datasets.

5.5.3 Comparison with existing approaches

The performance of SECM is compared with three existing approaches using accuracy,

earliness, and F1 score, as illustrated in Table 5.1. As the existing approaches do not

classify the MTS of unseen class, this work uses two variants of SECM (SECM v1 and

SECM v2) for comparison. SECM v1 considers the classification of MTS for seen classes

only while SECM v2 classifies the MTS of both seen and unseen classes. SECM v2 con-

siders one unseen class at a time. It is observed that SECM (both variants) outperforms

the existing approaches on different evaluation metrics for all the datasets. With a small

compromise of accuracy and earliness, SECM v2 becomes capable enough to classify the

MTS of unseen classes. Though MTSEC performs significantly good on accuracy with

a marginal difference of around 2% compared to the accuracy of SECM v2, it substan-
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tially loses on earliness with around 17%. Further, DMP+PPM performs better than

MTSEC on earliness but worse on accuracy. It indicates that deep learning method,

which is used in MTSEC, helps to increase the accuracy but not the earliness.

Table 5.1: Comparison of SECM with existing approaches using different datasets.

WMF dataset HSM dataset GMD dataset

Accuracy
Earliness
(MRL)

F1 score Accuracy
Earliness
(MRL)

F1 score Accuracy
Earliness
(MRL)

F1 score

MSD [26] 79.21%
12.1%
(527)

0.41 81.50%
18.2%
(4908)

0.46 78.31%
15.7%
(2529)

0.55

DMP+PPM [29] 78.21%
26.3%
(442)

0.39 73.1%
30.2%
(4188)

0.44 76.31%
28.2%
(2154)

0.51

MTSEC [32] 85.21%
20.0%
(480)

0.59 83.23%
22.2%
(4668)

0.56 86.13%
19.2%
(2424)

0.61

SECM v1 90.49%
38.9%
(366)

0.71 92.3%
43.3%
(3401)

0.75 90.75%
40.2%
(1794)

0.79

SECM v2 87.37%
36.2%
(383)

0.69 85.95%
41.3%
(3522)

0.65 86.15%
37.2%
(1884)

0.72

5.6 Conclusion

This chapter proposed an early classification approach, SECM, to classify an incomplete

MTS. Unlike existing approaches, the proposed approach is capable enough to classify

the MTS of unseen class label by using the semantic information of the seen classes.

Such semantic information is extracted in the form of most distinctive subsequences

(attributes) of the time series. We developed an attribute learning model to obtain best

set of attributes for each seen class label and utilized them for learning MRLs to achieve

earliness in the classification. Various experiments are carried to evaluate the SECM

on a collected dataset and two existing datasets. The experimental results showed that

SECM performs significantly well for unseen classes, with a marginal compromise of

accuracy and earliness. This work also motivates further research towards applying

deep learning methods in the early classification of MTS with unseen class.
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