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Abstract

The paper represents a comprehensive review of the wind farm layout and reliability assess-
ment of the wind farm integrated electrical power system. The authors have done a review
on the proliferation of renewable energy which raises the uncertainties in the electrical
power system. The uncertainties including wind speed and wake effect are important to
deal with when an isolated microgrid is considered. The scenario becomes vigilant when
the wind farms are integrated with the main grid. Due to uncertainties, the study of reli-
ability evaluation of a wind integrated power system would become significant to analyse
the electrical power system behaviour effectively. So, the paper discusses the layout optimi-
sation methods of wind turbines considering the uncertainty parameters, mainly the wake
effect. In this regard, the different wake models and optimisation methods based on a
single-objective and multi-objective functions are reviewed in detail with the proper com-
parisons. The paper serves as a better illustration of the competency of these optimisation
methods on the optimal wind turbine location on a wind farm. Furthermore, the paper
extends the view on the reliability and cost assessment, and reliability improvement tech-
niques of the wind integrated power system. This article provides comprehensive informa-
tion, yields an attractive and subsequent tool for research requirements for the researchers
to design the wind farm layout, and assessed the reliability of a wind integrated power
system.

Abbreviations: AAA, Artificial Algae Algorithm; AC, Alternating Current; ACO, Ant
Colony Optimization; AEP, Annual Energy Production; AOH, Annual Outage Hour;
CFD, Computational Fluid Dynamics; DC, Direct Current; DE, Differential Evolution;
DFIG, Doubly-Fed Induction Generator; DSM, Demand Side Management; EAF,
Equivalent Availability Factor; EENS, Expected Energy Not Supplied; ENS, Energy Not
Supplied; EPDS, Electrical Power Distribution System; EPS, Electrical Power System; EV,
Electric Vehicle; GA, Genetic Algorithm; GH, Garrad Hassan; GR, Generation Ratio;
GRA, Generation Rescheduling Algorithm; GSC, Grid Side Converter; HAWT,
Horizontal Axis Wind Turbine; IEEE, Institute of Electrical and Electronics Engineers;
kWh, Kilowatt Hour; LES, Large Eddy Simulation; LOEE, Loss of Energy Expectation;
LOLE, Loss of Load Expectation; LOLP, Loss of Load Probability; LPC, Levelized
Production Cost; MCS, Monte-Carlo Simulation; MOGOMEA, Multi-Objective
Gene-pool Optimal Mixing Evolutionary Algorithm; MOWFLOP, Multi-Objective Wind
Farm Layout Optimization Problem; MV, Megavolt; NPV, Net Present Value; OM,
Operation and Maintenance; OSS, Offshore Electrical System; OWF, Off-shore Wind
Farm; PDF, Probability Density Function; PL, Parking Lot; PSOParticle Swarm
Optimization, PV; Photo Voltaic, RAM; Reliability Availability Maintainability, RANS;
Reynolds-Averaged Navier-Stokes, RBTS; Roy Billinton Test System, RTS; Reliability Test
Network, SAIDISystem Average Interruption Duration Index; UPF, Unity Power Factor;
V - G, Vehicle to Grid; V - H, Vehicle to Home; V AWT, Vertical Axis Wind Turbine; viz,
which is; V SC, Voltage Source Converter; WF, Wind Farm; WIPS, Wind Integrated
Power System; WT, Wind Turbine; WTG, Wind Turbine Generator
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1 INTRODUCTION

It becomes mandatory to fulfil the high-power demands, the
renewable energy sources are integrated with conventional
Electrical Power System (EPS) and/or work as the isolated
microgrid spinning reserves [1]. The Off-shore renewable
energy systems are fully developed technology among all
renewable sources, which is further beneficial when incor-
porated with the commercial market [2]. So, to achieve the
high demands, the incremental sizing parameters including
rotor diameter, rated power, and a hub height of wind turbines
(WTs) are required, which also decreases the running and initial
costs of the Wind Farm (WF) [3]. Thus, the cost needs to be
minimised with a higher output power of the WT to meet the
demand without affecting the system’s reliability. Moreover,
Table 1 illustrates that many researchers have concentrated
their work on WT optimal location. Thereby, it is desirable to
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TABLE 1 Illustration of previous research works

S. No. Research work Method(s) used Remark(s) Reference

1. To obtain the optimised
locations of WTs in a WF

New mathematical framework, Binary
Artificial Algae Algorithm (AAA),
algorithms of ‘Genetic and
evolutionary computation conference’
2015, NSGA-II, strength Pareto
evolutionary algo2, and indicator-based
evolutionary algorithm, Spatial decision
support system

The factors such as hub heights, number
of WTs are considered and exact wake
effect structure is formulated and
compared with previous works. The
evolutionary algorithms are studied and
implemented to get optimised WF
layout with 10, 20, 30, etc., WTs.

[20–23]

2. WT placement along with
Jensen‘s linearity model of
wake in order to obtain the
optimal WT location of a
given dimension WF

New pseudo-random number generation,
Non-linear mathematical (NLM)
model, Enhanced GA, Particle Swarm
Optimisation (PSO)

Wake effect is considered and obtained
results are compared with previous
works based on Gas, viral basis
methods, etc.

[24–29]

3. To assess the wind energy
potential under uncertainties

MCS, Geographic Information System
(GIS), Piece-wise linear mixed-integer
optimisation using General Algebraic
Modelling System (GAMS), MCS,
Quadratic interpolation, Genetic
Algorithm (GA)

Data of weather forecasts is analysed,
MCS is used in wind field and energy
production simulations. Cost and
reliability are major concerns.

[30–33]

4. To get the optimised trade-offs
between capital investment,
energy production, and
operational costs in OWFs

Multi-objective Gene-pool optimal
mixing evolutionary algorithm

MOGOMEA outperforms the NSGA-II
when applied to solve the MOWFLOP

[34]

5. To analyse the cost and
efficiency of OWF

Geometric program The physical layout and configuration are
determined for AC and DC systems

[35]

6. To improve the power
production and reduce the
cable cost and length

Ant Colony Optimisation-Multiple
travelling salesman problem
(ACO-MTSP)

The goals are achieved by considering
WT location, substation location,
submarine cables, and cable length.

[36]

consider the maximum power under wake effects and other
uncertain parameters at minimum cost and minimum land area.
The consideration of uncertainty is too important to analyse
due to the fact that the output power and overall cost must be
optimal. The output power and overall cost are the functions of
uncertain parameters.

In EPS, it is a prerequisite to deal with the uncertain param-
eters of sustainable energy sources. ‘Uncertainty’, which con-
tributes to the unreliability of the system, involves possibilistic
[4–6] and probabilistic [7–9] handling procedures. In the possi-
bilistic method, fuzzy membership functions are employed to
illustrate the uncertain parameters and it is determined with
fuzzy arithmetic. In the probabilistic method, the design of
uncertain parameters is performed by Probability Density Func-
tions (PDFs) and later evaluated with the programs including
Monte-Carlo Simulation (MCS) [10] and Point Estimate Method
(PEM) [11].

Thus, the paper considers the wind effects on the rear side
of WTs by demonstrating the different wake models developed
by Jensen, Larsen, Lissaman, etc. To study the effect of wind
direction, a Wind Rose diagram is also described. This paper
also overviews the WT-driven IG (known as WECS) for renew-
able energy applications [12–14]. The description of wake effect
models leads to obtaining the optimal WT locations in a WF.
An optimal WF layout configuration is described by explaining
some optimisation techniques. The motive of an optimal WF

layout is to maximise the annual energy production (AEP) at
a minimum cost per total power. The detailed description on
AEP is given in [15, 16]. To achieve this objective, researchers
in [17, 18] have described and discussed the techniques for opti-
mal deployment of wind turbine generators in WFs. The appli-
cations of various optimisation techniques including Pseudo
number random generation and binary artificial algae algorithm
(BAAA) are discussed and explained mathematically. Further,
the reliability and economical models are considered in the WF
design assessment, and reliability assessment with its improve-
ment methods are also discussed for WF-integrated EPS [19].

To accomplish the above discussions, the paper has demon-
strated theoretically and mathematically about different opti-
misation techniques and algorithms. In this regard, the paper
is organised into six sections. Section 2 describes the uncer-
tainty models which are incorporated for study. In Section 3,
the implementation of uncertainty models in obtaining the opti-
mised WF layout is mentioned. The reliability and cost analyses
considering the uncertainties in optimising the WT location and
WT failures are discussed in Section 4. The reliability improve-
ment techniques are presented in Section 5. Conclusions with
the scope of future work are presented in Section 6.

The researchers of the WF layout optimisation field and its
reliability have shown tremendous interest. The workflow of
this paper is shown in Figure 1 which is delineated the prime
contributions of this review paper as follows.
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FIGURE 1 Work flow of research paper

i. The study of WT location optimisation under uncertainty.
ii. Consideration of reliability aspects.
iii. Discussion on different optimisation methods.
iv. The reliability improvement methods are discussed when

WF is integrated with power systems such as Roy Billinton
Test System (RBTS), and IEEE Reliability Test Network
(RTS).

2 WAKE EFFECT MODEL, WIND ROSE
DIAGRAM AND PROBABILISTIC
APPROACH

As per the capacity and size of WF, the type of WT (Horizon-
tal Axis Wind Turbine (HAWT) and Vertical Axis Wind Tur-
bine (VAWT)) is chosen. Further, it is inspected that for large
WFs, HAWT is generally used whose rotational axis is paral-
lel to ground. The number of WTs allocated depends on the
size of WF. Due to such allocations of Wind Turbine Genera-
tors (WTGs), there is a wake effect established for the down-
stream WTs. Firstly, WT extricates energy from wind and then
creates turbulence carried to the downstream which reduces the
power production of the WTs. In particular with low-frequency
meandering, intermittent edge, velocity deficit, and shear layer
generated turbulence. Hence, it becomes necessary to develop
a wake effect model to achieve maximum power with opti-
mised Off-shore Wind Farm (OWF) planning. To analyse the
wake effects, some software including Wind Atlas Analysis and
Application Program, WindPRO, WF for simple modelling, and
Computational Fluid Dynamics (CFD) model from ANalysis
SYStems for full modeling are available. The wake models’ rank-
ing with their inputs for the mathematical models are mentioned
in Tables 2 and 3, respectively. So, this section describes vari-
ous wake models that are developed and used for WT layout
optimisation.

2.1 Wake models

Various wake models available in literature are explained in
this subsection.

TABLE 2 Wake models and their hierarchy

Type Wake model

Empirical Jensen (1983) or Katic (1986) (useful in power
production and AEP reliability analysis)

Linearised RANS Eddy-Viscosity Fuga (useful in power
production and AEP reliability analysis)

Other Dynamic wake meandering Stochastic

Nonlinear RANS k-𝜔 closure with actuator disk, line

Large Eddy
Simulation (LES)

Dynamic Smagorinsky with actuator disk, line

TABLE 3 Input parameters in different wake models

Inputs Jansen’s Frandsen’s Larsen’s

Intensity of turbulence Yes

Height of hub Yes

Diameter of rotor Yes Yes Yes

Distance from the WT (radially) Yes

Downstream distance from the WT Yes Yes Yes

Inflow wind speed Yes Yes Yes

2.1.1 Jensen’s model

This model is developed mathematically by Jensen [37] and fur-
ther, Katic [38] modified the model by assuming that the wake
zone is circular cylindrical. The linear expansion of wake with
downstream distances are increased, and the cross-sectional
wake velocity is uniform at all points; viz top-hat likes distri-
bution as shown in Figure 2(a). The model is derived by consid-
ering the wake’s momentum balance and wake velocity is found
as given in (1), on which the output power of a downstream WT
is dependent.

Vd = V

⎡⎢⎢⎢⎣1 −
2a f(

2𝛼d
Z

Du

)⎤⎥⎥⎥⎦ , (1)

where V is the inflow speed of wind, Vu is the velocity behind
the WT rotor, Vd referred as velocity under wake effect at a
distance ‘Z’ from the front rotor, Du is rotor diameter, Dd is
wake diameter at distance ‘Z’, ZH hub height of the front rotor,
𝛼d is a decay coefficient (constant), and 𝛼 f is an axial induction
factor.

The velocity deficit at point ‘Z’ is given in (2)

1 −
Vd

V
=

1 −
√

1 −C𝜏(
1 + 2𝛼d

Z

Du

)2
, (2)

where C𝜏 is known as thrust coefficient.
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FIGURE 2 Different Wake models. (a) Jensen’s wake model, (b) Larsen’s
wake model (c) Lissaman’s wake model and (d) Frandsen’s wake model

2.1.2 Larsen’s wake model

In this model, it is modified that wake behind the rotor is not
linear but has some perturbation on average wind flow. It is
due to the normal shear and wakes itself. This model is devel-
oped by Larsen [39], referred to as ‘1988 Early version’ [40]. The
early version considers only the single wake and is not suitable
for multiple wake effects. This model proposes a version that
describes the boundary conditions with a proper WF approach
by using an analysis of experimental results and this version is
termed as ‘2009 Later version’ [41]. As per the model shown in
Figure 2(b), the velocity deficit, wake radius for boundary con-
dition at the plane of the WT rotor, and wake radius at a fixed
frame of reference placed at a distance 9.6Du are given by (3)–
(5), respectively.

ΔU (s′, r ′ ) = ΔU 1(s′, r ′ ) + ΔU 2(s′, r ′ ), (3)

Rwake =

(
105a1

2𝜋

) 1

5

C𝜏A(z + z0)
1

3 , (4)

R9.6Du
= c1(ec2−c2

𝜏+c3C𝜏+c4 )(d1ia + 1)Du. (5)

The velocity deficit is the function of (s’, r’) where (s’, r’) is the
distance and radial coordinates, ΔU 1 and ΔU 2 are the first- and
second-order contribution to the velocity deficit ΔU , ‘A’ is the
WT rotor swept area and initial distance Z0 is given by (6).

Z0 =
9.6Du(

2R9.6

KDu

)3
− 1

, (6)

where a1 is a coefficient given by

(
KDu

2
)

5

2 (
105

2𝜋
)−

1

2 (C𝜏AZ0)−
5

6 , where K =
√

M+1

2
, and M =

1√
1−C𝜏

, ia is the intensity of ambient turbulence, c1, c2, c3, c4, d1

are coefficients and determined empirically.

2.1.3 Lissaman model

This model [42] is developed by the use of momentum and
blade element theories. Its modelling is based on fluid mechan-
ics and dividing wake area into smaller areas as shown in Fig-
ure 2(c). However, due to these divisions, it is quite difficult to
define the border between these areas or regions.

Further, a simpler and accurate model is developed and
referred as Ainslie’s wake model which uses the axial symmetric
Reynold’s and numerical solution of the Navier–Stokes for the
turbulent boundary layers in wake modelling. However, due to
its complicated numeric solutions, it may be restricted in the use
commercial software such as GH WindFarmer.

2.1.4 Infinite WF boundary layer model

This model is developed by Frandsen and hence, it is also
referred to as Frandsen model [43]. It is fully based on the
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conservation law of momentum of the wind flow through
the WT rotor and rotor layer. The wind flow follows the
logarithmic profile with a reduction as given in (11). Further,
Frandsen has assumed that the shape of wind flow is cylindrical
with a stable cross-sectional area which is equivalent to the
wake area. The adapted model diagram is shown in Figure 2(d)
and the mathematical modellings are described in (7) and
(8).

Dwake(z ) = Du (𝛼
K

2 + 𝛼d S )
1

K , (7)

Vd =
V

2

(
1 ±

√
1 − 2

A

Aw
C𝜏

)
, (8)

where 𝛼 is termed as wake expansion coefficient which is

given by
1+

√
1−C𝜏

2
√

1−C𝜏

, relative distance from rotor is S =
Z

Du

,

Dinitial =
√
𝛼Du , ‘K’ is a constant and determined empirically,

and Aw is the wake area at distance ‘Z’.

2.1.5 Fuga

It is an engineering tool that uses Reynolds-Averaged Navier-
Stokes (RANS) in linear form and builds downstream wind
velocity using lookup tables. It is one of the powerful CFD-
based models to develop single and multiple wake effect math-
ematical model as described in [44]. It does not require to
model the wind inflow using a logarithmic profile with sta-
ble effects and the drag force terminology as mentioned in
(9). It uses an actuator disk model containing layered control
volume.

Fx = −
1
2

CT U f
2𝛿(x − xh )𝛾(R2 − (y − yh )2 − (z − zh )2). (9)

The Fx is termed as drag force which is modelled by con-
sidering an actuator disk model with a layered control volume,
where ‘𝛿’ is referred to as delta function and ‘𝛾’ is denoted as a
step function which is 0 for −ve arguments and 1 for +ve argu-
ments, ‘z’ is the elevating distance above ground level, ‘zh’ is the
height of wind.

2.1.6 EllipSys3D

It is a three-dimensional CFD-based resolver with a block-
structured finite volume approach [45] and may use a num-
ber of models related to turbulence. The two models namely
RANS and LES versions are accessible in EllipSys3D model. In
the RANS-based model, WT rotor is modelled as an actuator
disk. The elliptical Navier–Stokes is developed with discretised
non-linear terms in RANS- and LES-based models. The rotor
is modelled as a line of actuator where the Boundary Element
method defines the axial pressure or force and velocity profile
is described by RANS and LES versions as given in (10) and
(11).

RANS version of EllipSys3D represented numerically as

VT = C𝛾FP
K 2

𝜇
(10)

EllipSys3D can be represented as K − 𝜇 − FP and K − 𝜇 mod-
els. In standard K−𝜇 model, FP = 1 and C𝛾FP is a constant
termed as an effective Eddy-viscosity coefficient. VT = eddy
viscosity, C𝛾 = a model constant, K= turbulence kinetic energy,
𝜇 = dissipation.

In K − 𝜇 − FP model, FP is a scalar function and depends on

local parameter of shear, 𝜎s =
K

𝜇

√
(Ui, j )2 where 𝜎s is termed as

shear parameter and Ui, j is the velocity coordinates.
LES version of EllipSys3D:

U (z ) =
U ∗

K
ln

(
Z

Z0

)
, (11)

where U (z ) is the average speed of the wind, U ∗ refers to a
frictional velocity, K denotes Von Karman constant, Z , and Z0
are the elevation from the ground and roughness length from
the surface, respectively.

2.2 Wind rose diagram

It is a diagram that is developed by using a graphical tool. Mete-
orologists use this diagram to get a succinct perspective of speed
and direction distribution of wind at a specific location. The
diagram uses a polar coordinate system where the frequency of
winds is plotted by wind direction over a time period. Previously,
the wind rose is referred to as a compass rose and there was no
difference between a principal direction and the wind approach-
ing from such directions. The largest spike shows the direction
of the wind with maximum frequency at a particular location.
Thus, each spike length throughout the circle is associated with
the frequency that the wind moves from a specific direction per
unit time. The circles placed concentrically refers to different
frequencies from origin to outer circle. Figure 3 shows coloured
spokes that represent the wind speed ranges. It may be divided
into 16 or 32 cardinal directions, such as north and north-north-
east [46]. The angle is measured in degrees, such as North sig-
nifies 0◦ and 360◦, East 90◦, South 180◦, and West 270◦. The
main implementation of this diagram is shown in wind farm
design, airport runways, weather forecasts, etc.

2.3 Probabilistic approach

This approach is implemented considering the uncertainties
including wind and solar energy generation, battery charging
and discharging, dynamics of an electric vehicle (EV), load vari-
ation, and electricity rate. The probabilistic methods including
PEM and MCS are implemented after modelling the uncertain
parameters into probability density function. The two important
methods include PEM and MCS are described as follows.



2068 KUMAR ET AL.

FIGURE 3 Wind rose diagram [46]

2.3.1 Point estimate method

This method identifies a single value index such as mean, mode,
and median, which serves as ‘exact estimation’ of an unspec-
ified parameter from a random sample. Maximum likelihood
estimator and method of moments are the general methods
used for point estimation. Firstly, it is introduced [47] in the
year of 1975 by Emilio Rosenblueth. The detailed qualitative
description of point estimate methods can be obtained in [48].
The probabilistic uncertainties of the distributed generator,
load, and ESS were considered in [49] and an operational risk
assessment model based on PEM was proposed. An improved
version of PEM namely 3PEM in [50] was proposed to evaluate
the probability moments of probabilistic power flow. This
method was developed using 3PEM, 2PEM, and Chebyshev
inequality. Further, PEM was implemented in [51] to reduce
the number of scenarios that model wind energy and load
uncertainties. Thus, the PEM is a very strong tool for analysing
the uncertain parameters.

2.3.2 Monte-Carlo simulation method

A very large number of trials generate a good estimate of the
probability and thus reliability. Therefore, a large number of tri-
als are required through a random process. In spite of oscilla-

tions in probability, the MCS method leads to the true value as
the number of trials is increased. MCS is implemented to obtain
the probability of success and failure of the stochastic electri-
cal power system. On the other side, the MCS method is used
in estimating the reliability indices by actual simulation process
and system’s random behaviour. The MCS method, therefore,
deals with the problem as a serial real experiment conducted in
a stipulated time. This MCS method evaluates the probability
and reliability indices by counting the occurrence of event num-
bers [52].

3 WIND TURBINE GENERATOR AND
ITS OPTIMAL LOCATION

The HAWT is advantageous over VAWT such as self-starting
nature, clear siting due to tower height, maximum wind energy
extraction even in rumble land, and adaptation to wind direc-
tion by adjusting nacelle and blade directions. The components
like the gearbox, shaft, and generator in HAWT are placed at
the top of the tower and transformer at the bottom. The WTG
is one of the highlighted components in the WT because it is
chosen to extricate maximum wind energy from the wind with
variable speed. So, Subsection 3.1 discusses the types of WTGs
with their benefits and applications, and few WF layout optimi-
sation methods are briefly explained in subsequent subsections.
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FIGURE 4 The five configurations Type A, B, C, D, E of induction and
synchronous generators implemented with WT. (a) SCIG and WRIG
configuration. (b) PMSG and DFIG configuration

3.1 Wind turbine generator

The configurations of generators which are used for power gen-
eration with WTs are shown in Figure 4(a) and (b) of [53].
The asynchronous (induction) generator mainly Doubly-Fed
Induction Generator (DFIG) which is generally implemented as
WTG is explained in this subsection. The advantages of induc-
tion generators over synchronous generators are as follows.

i. ‘Q’ controlling is possible.

RSC GSC

C

IGBTs
Wind

Turbine

with Gear

Box

DFIG
Grid

FIGURE 5 RSC and GSC in DFIG-based WECS

ii. Isolated ‘P’ and ‘Q’ controlling is possible by the excitation
control of rotor independently.

iii. Magnetisation from the grid is not required as rotor circuit
may magnetise the DFIG.

iv. It generates ‘Q’ and fed back to the stator by Grid Side Con-
verter (GSC).

3.2 Doubly-Fed Induction Generator

The stator voltage is exerted from the power grid and the rotor
voltage is impelled by the power converter hence, referred to
as doubly fed. The connection of the stator winding is direct
to the invariable frequency grid and the winding of the rotor is
placed to a bidirectional back-to-back Voltage Source Converter
(VSC). It allows a large range of speed variations in a limited
manner. This property is utilised in WTG where the WT rotor
speed varies with volatility in wind speed. If the speed leads to
an over-synchronous situation, the power flows from the rotor
through VSC into the power grid. Whenever a sub-synchronous
situation occurs, then the power flows in the opposite direction.
The converter as shown in Figure 5 compensates the imbal-
ance between the electrical and mechanical frequencies where
Rotor Side Converter (RSC) manages the active power ‘P’ and
reactive power ‘Q’ by controlling the rotor current, and GSC
manages the DC-link voltage and confirms unity power fac-
tor operation. Thus, DFIG is a crucial part of the WT due to
the above-mentioned advantages and characteristics and hence
referred to as the WTG. To get the maximum power in a WF,
the WTs locations are required to be known optimally with min-
imum land area and minimum overall WF cost. To accomplish
the task, Subsection 3.2 discusses the methods for WTs’ optimal
locations considering wake effects and other uncertainties.

3.3 Wind turbine location

WFs may be developed with 10, 20, 30, and more WTs to get
the power output required by the utilities. The number of wind
turbines must be placed such that the maximum energy would
be extracted considering the wind speed variability. Researchers
have solved the WT layout problem by using GA [25], simulated
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TABLE 4 Insight on optimisation methods implemented in WF Layout

Classical methods Non-classical methods Stochastic programming techniques

(i) Linear programming, (ii) Mixed integer linear
programming, (iii) Mixed integer nonlinear
programming, (iv) Geometric programming,
(v) Vertex packing algorithm

(i) Binary layout codification, (ii) Free layout
optimisation, (a) Heuristic, (b)
Metaheuristic, and (c) Hybrids

(i) Bender’s decomposition, (ii) Dantzig-Wolfe,
(iii) Stochastic dynamic programming (iv),
Approximate dynamic programming

annealing [26], DE [27], ACO [28], PSO [54], definite point
selection [55], and stochastic evolution [23]. Authors [24, 56, 57]
have given the optimisation techniques for WF layout problem
considering wake effects. Some of the important optimisation
methods are discussed in this subsection and some of the
optimisation methods are described in Table 4 which are used
to obtain optimal WF layout.

3.3.1 Strength Pareto Evolutionary
Algorithm2

Several Evolutionary algorithms including SPEA2 (Strength
Pareto Evolutionary Algorithm2) and NSGA-II (Non-
Dominated Sorting Genetic Algorithm-II) are implemented
for multi-objective problems. As these techniques produce the
Pareto optimal solutions, thus implemented to obtain the opti-
mal WT layout and the locations of the distributed generators
in the system [58]. The two main objectives and two main issues
are involved in SPEA Pareto-optimal set which are as follows:

Objective No. 1: Minimisation of optimal front distance
Objective No. 2: Maximisation of generated solutions
Issue 1: To supervise the search properly near the Pareto-

optimal front.
Issue 2: To keep the individuals specifically during the evalu-

ation process.
SPEA2 uses an external set (archived) and a regular popula-

tion in which non-domination members are archived to replace
any duplicate member and then the fitness values are designated
to archived and population members. The algorithm steps to
follow in SPEA2 are discussed below [33].

Step I: A strength value S (p) ∈ [0, 1] is provided to the indi-
vidual archives i and at this time it represents its fitness value
F (p). S (p) is the number of population members q that is influ-
enced by or equal to p with respect to the objective values,
divided by population size plus one.

Step II: The summation of strength values of all the archived
members p that dominates or equivalent to q is used in the cal-
culation of fitness F (q) of an individual ‘ in the population, and
add one at last.

Step III: By using the binary tournaments, the selection of the
mating phase in which individuals from the union of population
and archived members are chosen. The minimisation of fitness
is expected in this step, due to which archived individuals have
a higher selection chance than any other population members.

Step IV: The older population is exchanged by the result-
ing offspring population when the mutation and recombination
process is once over.

3.3.2 Non-Dominated Sorting Genetic
Algorithm-II

NSGA-II alleviates the computational complexity, non-elitism
approach, and the need for specifying sharing parameters.
This method is useful in achieving a good convergence and
better spread of solutions when compared to Multiobjective
Evolutionary Algorithms-Pareto Archive Evolutionary Strategy
(MOEAS-PAES) and SPEA2. Thus, in order to improve the
reliability and minimise the cost under uncertainties, this tech-
nique is implemented in designing of multi-microgrid systems
considering wind turbine, solar photo-voltaic, and energy stor-
age system in an active distribution electrical network [59]. The
NSGA-II algorithm steps [29] are described as follows.

Step I: ST = QT ∪ RT , perform non-dominating sorting to
ST and identify the different form of fronts Fi (F1,F2, ……).

Step II: QT +1 = 𝜙 and i = 1 until ∣ QT +1+ ∣ Fi < N ,
QT +1 = QT +1 ∪ Fi and i = i + 1.

Step III: Perform crowding sort (Fi , 𝛼c ) and include most
widely spread (N− ∣ QT +1 ∣) remaining number of solution.

Step IV: RT +1 from QT +1 using crowding distance (𝛼c ) by
tournament selection as follows:

(i) Rank of i ri < rank of jr j (if to compare i, j with 𝛼c ).
The non-dominating rank of i is always better than non-
dominating rank of j. All the solution of fronts have the
ranks 1, 2, …, respectively.

(ii) If number 1 is not true or ri = r j , then di = d j which implies
that the crowding distance is higher hence, it is required to
improve the crowding population and widely spread popu-
lation distance.

3.3.3 Pseudo-random number generation

It is a procedure for generation of random variables in any
kind of distribution system. It considers that an incidence is
expressed as the outcome of two events which are mutually
exclusive. The function shows that it works on a deterministic
method which produces pseudo-numbers randomly and itera-
tive as given in (12) [60].

y(n + 1) = (i.x(n) + j )mod[nk + 1], (12)

where nk is referred to as a number of cells in a WF, mod rep-
resents the remainder of the Euclidean division, n is the total
number of WTs < nk, and i, j are the positive integers. The ele-
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FIGURE 6 Algorithm for (a) PRN generation and (b) Binary Artificial Algae Algorithm

TABLE 5 Comparative analysis between PRN and GA (Moseti) [61]

Method Cost/Total Power Total Power (kW) No. of WTs

GA (Moseti) 0.0016197 12,352 26

PRN generation 0.0015154 13,201 26

ments of this sequence are the remainders of the division on the
divisor (nk + 1) and it is to be noted that y(1) < (nk + 1). As
shown in flowchart Figure 6(a), this method is simple to pro-
gram with less computational time which makes it suitable for
engineering issues, especially in WF layout optimisation. Table 5
shows that an improvement of 2–6.5% in power production
is observed for PRN generation method in comparison to
GA [60, 61].

In PRN generation method, the following parameters are ini-
tialised first; N the number of iterations, nk the number of cells
in a square WF layout, n the number of WTs, Vd the velocity
under wake effect, V the speed of the wind, Du the rotor diam-
eter, and CT the thrust coefficient. Then the cell coordinates as
a function of the rotor diameter and wake velocity (Vd ) (13) are
determined as described in the flow chart of Figure 6(a). The
total power which is the sum of all WTs’ power is determined
as shown in (14) and (15) which is then utilised in finding the
optimised value of the objective function (O.F.) as given in (16).

Vd = V

[
1 −

Du
2

4
(1 − (

√
1 −CT ))LL

]
, (13)

{
Pt =

∑
Power of single WT(Pc )

Pmax = Pt max

(14)

Pc = f (Vd ), (15)

O.F . = Min
n
(

2

3
+

1

3
e(−0.00175n2 )

)
Pmax

. (16)

3.3.4 Binary artificial algae algorithm

The WT optimal placement for a 2 × 2 km area is designed. The
surface of the area has been calculated by dividing the area into
a 10 × 10 and a 20 × 20 grids. The use of binary coding algo-
rithms, namely the BAAA, has been successfully applied to solve
continuous optimisation problems [62]. This method is a com-
bination of an evolutionary process, helical motion, and adapta-
tion [63]. (17) is providing the algal population colony and result
in a search space.

Algal Colony Population =

⎡⎢⎢⎣
a1

1 … a1
d

⋮ ⋱

an
1 … an

d

⎤⎥⎥⎦ . (17)

The proper result in a search space is given by al =

[al
1, al

2, …… , al
d ] where, l = 1, 2, …… , n, al

k is referred to as
an algal cell in kth size or dimension of l th algal colony, Dd

is the algal colony size, and n is the algal colony population.
The problem dimension is equal to the algal cells present in any
colony. The authors [64] have taken 10 new binary algorithms by
using the same number of transfer functions of the AAA that is
successfully implemented to solve the WT layout optimisation
problem. The proposed method has achieved a 61% increase
in total power in comparison to [20] and a 22.9% increase in
comparison to [21] with a 9.8% increase in fitness value. The
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TABLE 6 Comparative analysis between BAAA and other optimisation
methods

Method

Cost/Total

Power

Total

Power

(kW)

No.

of

WTs

Grid

Size

GA (Grady) [20] 0.0015436 14,310 30 10 × 10

Parada [21] 0.0014940 14,785 30 10 × 10

Parada [21] 0.0014390 19,052 30 20 × 20

BAAA [24] 0.0015414 14,667 31 10 × 10

BAAA [24] 0.0014054 23,422 49 20 × 20

GA (Moseti) [61] 0.0016197 12,352 26 10 × 10

MILP [65] 0.0015436 14,310 30 10 × 10

BPSO-TVAC [66] 0.0015436 14,310 30 10 × 10

Lazy Greedy [67] 0.0015436 14,310 30 10 × 10

method is demonstrated with the help of a flow chart as given
in Figure 6(b). Table 6 shows that the electrical power increases
by 61% and 22.90%, respectively when BAAA is compared to
Grady [20] and Parada [21].

3.3.5 Non-linear mathematical model

The two objective functions are the maximum power output
and minimum overall total cost which are considered and opti-
mised as given in (18)–(23). The multi-objective optimisation
problem is solved considering the rotor hub height and rotor
diameter as the decision variables [56].

Pl ,k =
1
2
𝜂𝜌A

[
u0

(
1 −

√∑
l=1

N∑
k=1

N∑
a=1

N∑
b=1

N
Vdl kab

2

)]3

,

(18)

Max
∑
l=1

N∑
k=1

N 1
2
𝜂𝜌Axlk,

[
u0

(
1 −

√∑
l=1

N∑
k=1

N∑
a=1

N∑
b=1

N
xab.Vdl kab

2

)]3

,

(19)

Equation(16) (20)

Min
Equation(16)
Denominator

(21)

where

Denominator =
∑
l=1

N∑
k=1

N 1
2
𝜂𝜌Axlk,

[
u0

(
1 −

√∑
l=1

N∑
k=1

N∑
a=1

N∑
b=1

N
xab.Vdl kab

2

)]3

,

FIGURE 7 Comparative analysis of (a) QIM and NLM (b) GECCO-2015
competitors

∑
l=1

N∑
k=1

N
xlk ≤ TN (22)

xlk ∈ (0, 1); ∀ l , k (23)

where, Vdl kab
is the velocity deficit in the wind speed due to WT

at (a,b), 𝜂 is the efficiency of WT, 𝜌 is the air density, A is the
cross-sectional area. The wind velocity is replaced by the veloc-
ity deficit in (19). The goal is to maximise the power and min-
imise the cost TC by using (20) and (21) by locating WTs TN (=
n) at (l, k) positions. In [56], a method is suggested to eradicate
the difficulty in non-linear power function. The binary decision
variables of WT locations and implementation of the proposed
method for 10, 20, 30, 40, 50 WTs. It eliminates the binary vari-
ables of WT (uni-modularity) but utilised the non-linear objec-
tive functions.

Figure 7(a) describes the dominance of NLM method in com-
parison to the quadratic integer model (QIM) method. The pri-
mary y-axis shows the total power in kW and secondary y-axis
signifies the cost per generated power. Here, four cases are taken
as follows.

Case 1: Wind speed is taken as 12 m/s with one north-
south direction.

Case 2: Wind speed is taken as 12 m/s with 08 wind directions.
These directions have an equal probability of occur-
rence.

Case 3: Wind speed is taken as 12 m/s with 36 wind directions.
These directions have an equal probability of occur-
rence.
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Case 4: Wind speed is taken as 8 m/s, 12 m/s, and 17 m/s with
36 wind directions. These directions have an unequal
probability of occurrence.

3.3.6 Genetic and evolutionary computation
conference

The task of this conference [22] is to optimise the layouts of
five generated WFs based on a simplified overall cost. The five
WFs are based on the five scenarios which can be obtained
from WindFLO repository. By scaling down the optimisation
problem as a geometric optimisation problem. The four algo-
rithms are chosen and described in this subsection which was
developed by the conference competitors. The task given in this
competition is to minimise the cost of energy F as described
in (24). Figure 7(b) describes a comparative analysis of genetic
and evolutionary computation conference (GECCO) competi-
tors in the given five scenarios.

F =

⎛⎜⎜⎜⎝
(CT N +CS

⌊
N

M

⌋
) +COM N

1−(1−R)−Y

R

⎞⎟⎟⎟⎠
1

8760W
+

0.1
N

, (24)

where CT describes cost of WT, N is the number of WTs in WF
layout, CS gives substation cost which is the function of floor
value of N∕M , M is the number of WTs at each substation,
COM refers OM costs, R is the rate of interest, Y is the WF life,
W gives the total output energy of WF layout.

(1) 3 stages memetic differential evolution: The termination crite-
rion of the local search in MDE determines the alloca-
tion of limited computational resources between global and
local search, and has a tremendous impact on the optimi-
sation performance [68]. An improved CMA-ES has also
been suggested for large-scale optimisation solutions. 3
stages memetic differential evolution (3s-MDE) estimates
the cost function and then MDE is utilised to optimise
the WF layout model as described in the flow chart of
Figure 8(a).

(2) Co-variance matrix adaptation-evolution strategy: Co-variance
Matrix adaptation-evolution strategy (CMA-ES) uses the
co-variance matrix to optimise the layout model which use
the horizontal scale, vertical scale, relocate from the origin,
relocate from a location, and rotation as five variables. The
candidate solution xik of ith sample is given in (25).

xk→t
i→k

∼ 𝜈(mt , 𝜎tC t ) = mt + 𝜎t 𝜈(0,C t ). (25)

For t th iteration, a mean mt of the distribution is utilised to
generate 𝜆 candidate solutions xk ∈ Rn by adding a random
Gaussian mutation defined by a co-variance matrix C t ∈ Rn∗n

where 𝜎t is a mutation step size and 𝜆 solutions are then calcu-
lated on an objective function. It also optimises the number of
WTs and their locations which uses five variables to parametric
search space of WF layouts. The variables are used to:

(i) Complete a rectangular layout grid of WTs,
(ii) Relocate it back to the beginning,
(iii) Revolve it,
(iv) Move it to any other location.

(3) Sequence-based selection hyper-heuristic: Sequence-based selection
hyper-heuristic (SSHH) discretises the WF layout into three
variables namely the distance between the adjacent WTs and
the shift factor. Additionally, this selection method uses the
Markov model to produce a series of low-level heuristics to
form a final WT layout. It mainly represents a learning series
of an acceptance method and heuristic selection method to
resolve the WT layout optimisation problem.

(4) Goldman method: To evaluate the WT locations and substa-
tion cost, Goldman method (GM) uses a pair of lattice vec-
tors with their optimisation.

3.3.7 Multi-objective PSO

In this method, the particles are having a potential solution and
this is considered in the WF layout optimisation problem. The
hybrid multi-objective meta-heuristic algorithm, which is based
on non-dominated sorting multi-objective PSO (MOPSO), is
proposed to find the optimal WT layout [69]. WT locations are
searched in the continuous space as described in Figure 8(b)
[70]. The PSO algorithm flow chart deals with the finding of the
power output of the wind farm (POWF) which is a function of
wind direction 𝜃i , wind speed Vi , and the turbine location xm .
An equivalent power of a wind farm has been obtained using
POWF, number of considered wind direction Nd , number of
considered wind speed Ns , and number of turbines Np.

The Pth swarm particle represents a Zp vector and the indi-
vidual particle is calculated by using the objecting and adopted
with the help of position and velocity update as described in (26)

Vp
i+1 = 𝜔Vp

i + 𝜓1(Pp
i − Zp

i )U [0, 1] + 𝜓2(Pg
i − Zp

i )

U [0, 1],
(26)

where 𝜓1 and 𝜓2 determine the global and personal best parti-
cles, U [0, 1] is the actual value which is selected in every uni-
form wind velocity from the interim of [0, 1]. The position
swarm particle p in the upcoming iteration is Zp

i+1=Zp
i+Up

i+1.
Using the above, the two objective functions are solved.

4 RELIABILITY ASSESSMENT OF
WIND INTEGRATED POWER SYSTEM
(WIPS)

This paper has discussed the various wake models with their
effects on WF planning in Section 2 and different optimisa-
tion techniques to obtain the optimal WF layout in Section 3.
Now, it is required to ensure the proper working of the main
power system when it is integrated with a WF considering the
optimised layout. The integration first leads to consider the
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FIGURE 8 Algorithm for (a) 3 stages memetic DE algorithm (b) Multi-objective PSO algorithm
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optimal location of WF in the conventional power system. After
getting the optimal WF location, it becomes a tedious scenario
where parameters related to generation and transmission must
meet their constraints for the WIPS. However, due to the uncer-
tainties involved in WF, an issue related to generation reliability
occurs in a WIPS. So, the discussion of this paper is solely con-
centrated on reliability evaluation and improvement of OWF
and WIPS and this section provides an overview of reliability
studies [71].

4.1 Off-shore WF reliability assessment and
cost analysis

According to [72], reliability is the probability that a WT has
an operational path up to the Point of Connection Coupling.
The Generation Ratio (GR) which defines the performance of
the electrical system is shown in (27). The inclusion of opti-
mally designed WF into the conventional power system leads
to perform the reliability assessment of a generating system
comprising a WF. Moreover, the failure of a WT earns inter-
est in the study of system adequacy analysis. Following the
reliability evaluation, the cost analysis is necessary to study
because of the higher cost involved in OWF development. Thus,
both scenarios are discussed in this subsection with support-
ing mathematical models. Also, an accurate reliability assess-
ment method is proposed for the electrical power system con-
sisting of conventional generators, WT, Solar PV, and the ESS
[73].

GR =
Pd

Pg
, (27)

where Pd is referred to as the power delivered which is evalu-
ated by obtaining the reliability of each minimal path between
WT and the junction of common coupling onshore and Pg is
referred to as power generated which is the total effective power
produced by the WTs.

4.1.1 Economic and reliability models

In [74], optimised WF architecture is developed which is then
compared to the actual farm in France, namely ‘Banc de
Guerande’, by considering the cost and reliability optimisations
which are taken into account to study the OWF performance
and design analysis. The main task is to incorporate the WF
topology and reliability data of components to analyse the WF
performance with cost minimisation. The steps to obtain the
reliability indices by finding the minimum paths between the
sink and sources are as follows:

Step I: Connection to the network
Step II: Produce a reliability block diagram

Step III: Obtaining all minimal points between sources and
sinks

TABLE 7 Comparative analysis of GA optimisation results between cases
A, B, C and reference [74]

Quantity Reference Case A Case B Case C

Investment cost (M€ ) 261 243 320 307

LPC (€ /kWh) 0.00769 0.00781 0.00927 0.00885

EENS (MWh/year) 0.19520 0.33787 0.16825 0.16589

Total Cost (M€ ) 938 1415 904 883

Step IV: Include reliability data for the calculation of reliability
indicators

Table 7 represents the reliability and economic assessment of
a 3-bus OWF structure. The reliability data is adapted from [75].
In this tabular interpretation, Case A is for investment cost opti-
misation with the variation in number and position of Offshore
Electrical System (OSS), Case B is for optimisation of starting
cost plus Expected Energy Not Supplied (EENS) cost without
considering variation in number and position of OSS, and Case
C is for optimisation of starting cost plus EENS cost consider-
ing variation in number and position of OSS.

Further, some assumptions are taken to calculate the reliabil-
ity which are as follows:

(i) The bus bar, generator, cable, transformer, switch, breaker,
etc., are considered either ON or out of service (mainte-
nance or repair)

(ii) It is also assumed that all components are independent and
work on their maximum power rating which implies no
overload condition

(iii) The repair and failure rates are considered to be constant
during the OWF lifetime

The system status function for reliability calculation is given
in (28) and the subsystem availability with EENS, Annual Out-
age Hour (AOH), and Equivalent Availability Factor (EAF) is
defined in (29)–(32).

As it is mentioned in [2] that Reliability Based Design optimi-
sation (RBDO) is implemented to reduce the OM cost which is
25–28% of total cost, then it becomes necessary to model the
total investment cost which includes the variable parts, that is,
cables and OSS as given by (33) and Levelised Production Cost
(LPC) is determined by (34).

Φss, j (x ) = 1 −

(
1 −

∏
i∈MP1

Xi

)( ∏
i∈MP2

Xi

)
……

( ∏
i∈MPk

Xi

)
,

(28)
where X refers to the status of the component (1 for working
and 0 for not working), n is the number of components, j is
subsystem number, and k is the number of MPs.

Subsystem Availability:

Ass, j =
𝜇i

𝜇i + 𝜆i

+
𝜆i

𝜇i + 𝜆i

e−(𝜇i+𝜆i )t , (29)



2076 KUMAR ET AL.

where, 𝜇i and 𝜆i are termed as failure and repair rates, respec-
tively, the inverse of 𝜇i and 𝜆i are defined as the average time to
failure and average time to repair, respectively.

EENS =
∑
j=1

Ns
(1 − Ass, j )PWT , j × 8760, (30)

where PWT , j is the power of j th WT.

AOH =
EENS∑
j

Ns PWT , j

, (31)

EAF = 1 −
AOH

8760
, (32)

Cinvest =
r .(1 + r )T .T

(1 + r )T − 1
.

1
1 − PR

.C0, (33)

LPC =
Cinvest

Ed (Ct )
. (34)

Mean Energy Produced is then calculated in (35):

Ed (Ct ) = Pmean,out(Ct ).Nt .T − EENS .T , (35)

where C0 is the initial investment, r is the percentage rate of
interest, PR is the percentage annual profit, T is the lifetime
of WF (generally taken 20 years), Pmean, out mean power pro-
duced, Nt is the number of WTs, Ct refers as the connection
topology.

The OWF electrical design is a complex problem, hence some
previous works consider the following simplifications during
the layout optimisation problem.

(i) Voltages are fixed in MV sides
(ii) WTs produce constant power
(iii) WTs are connected radially
(iv) Number of WTs is fixed

Further, paper [32] has developed an optimisation model of a
standalone PV-wind system using NSGA-II and considered the
feasibility of cost and reliability of the overall system. It is also
mentioned that the constraints and objectives in an optimisa-
tion problem are classified into cost, reliability, and environmen-
tal indices. Cost indices are used to analyse the cost viability of
the system, the environmental index is applied to mention the
impact on the system, and the reliability indices are utilised to
describe the capability of a system to react to the power demand
in an efficient and continuous mode.

4.1.2 Considering wake effect only

Authors have opted WFs from three sites in America and incor-
porated these into the IEEE RTS and RBTS with a yearly peak
load of 185 MW and 2850 MW, and rated capacity of 240 MW

and 3405 MW, respectively [70]. The wake creates reduction in
the annual energy production of a WF. Thus, the optimal place-
ment of the WTs considering wake effect is a major concern
to obtain the maximum energy at minimal cost [76]. Authors
of [77] have given data and load curve for basic reliability. The
reliability function includes wake effect and WTGs’ failures and
determines the reliability indices as illustrated in (36)–(39).

LOLP =
1
nr

∑
j=1

nr
i (Pload j − Pwind j − Pgen j

), (36)

LOLE =
t

nr

∑
j=1

nr
i (Pload j − Pwind j − Pgen j

), (37)

EENS =
t

nr
(Pload j − Pwind j − Pgen j

)
∑
j=1

nr
i (Pload j

−Pwind j − Pgen j
),

(38)

where Pload j , Pwind j , Pgen j
are load of the system, WF power

output, main generator power output, respectively in time t. i is
an indicator, which is defined in (39) as

i (Pload j − Pwind j − Pgen j
) (39)

=

{
1, (Pload j − Pwind j − Pgen j

) > 0

0, Otherwise.

)
(39)

4.1.3 Wind Turbine failure under wake
effect

The output of a WTG is affected by wake due to upstream WT
and the situation becomes observable when WT in the WF fails.
It leads to change in power output due to different wind speed
distribution towards the downstream WTs. To analyse this sce-
nario, an MCS method is proposed for adequacy analysis [10]
as shown in Figure 9. The reliability indices are calculated to
depict adequacy of generating systems to provide a given load
as given in (40)–(43). A comparison of reliability indices for WF
integrated IEEE-RTS is shown in Table 8.

LOLE =
1
n

∑
j=1

n
LOLE (Xj ), (40)

LOLP =
LOLE

n
, (41)

EENS =
1
n

∑
j=1

n
EENS (Xj ), (42)

LOLE =
∑
j=1

n
A j Pj . (43)

where Xj is the state value of j th period and n is the total period.
LOLE (Xj ) and EENS (Xj ) are the Loss of Load Expectation
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FIGURE 9 MCS algorithm for adequacy analysis

TABLE 8 Comparative analysis of reliability indices obtained during cases
A, B, C, D and E [10]

Cases

LOLE

(hours/yr)

LOLP ×

10−3

EENS × 103

(MWh/yr)

EEP × 103

(MW/yr)

Case A 6.83 782 0.6330 148.910

Case B 7.40 847 0.6980 56.753

Case C 7.55 864 0.7010 53.675

Case D 6.89 789 0.6636 113.280

Case E 6.92 792 0.6635 110.070

Layout Total Power output (MW/year)

Original 54.558 × 103

Optimal 108.890 × 103

(LOLE) and EENS values at j th period. A j is the WF capacity
produced in j th state, Pj is referred as the probability of the j th
capacity state, and m is the total number of capacity states.

4.1.4 Cost analysis

Economic and reliability analysis for WT system has already
been considered in the literature [78]. It is mentioned in the lit-
erature that for the same capacity, the cost of Off-shore WF
is 30–60% greater than the onshore WF. The cost percentage
involves in WF includes the cost of the turbine with its trans-
portation and installation 49%, the cost of foundation with WF
to grid connection 37%, the internal connections between WTs
5%, project management with environmental analysis 3% and
miscellaneous 1%. So, it is required to take economic study in
consideration which depends on various factors including AC or

FIGURE 10 An overview on WT cost

DC system, length of transmission, transmission voltage, rated
power, type of WT, WF layout, and speed of the wind. Figure 10
shows a flow of WT economics which depicts the saving of
€ 38.0574 per MWh in annual maintenance cost and profit of
€ 18.7452 per MWh in increased annual electricity production.
[79].

Some researches have done a cost modelling and analysis
which also relates to the reliability of the system. Firstly, a cost
model is developed as described in (44) and (45) and then
cost analysis is performed which are given in (46) and (47).
On the other hand, an MCS model flow chart is given in Fig-
ure 11 which considers probability distribution of air-density,
wind speed, Weibull shape parameters, rough of the sea sur-
face, and WT power to evaluate the reliability index AEP. In this
MCS-based algorithm, Pt refers point, and Yr signifies year. Fur-
ther, it is delineate that with the inclusion of WF, the minimum
and maximum energy cost (€ /MWh) decreases from 0.045 to
0.03825 and 0.117 to 0.05175, respectively, for the same total
generation (MW) [80].

Cost of transformer = aP + bP Prated
𝛼, (44)

Cost of Cable = xP + yP exp

[
zP Prated

108

]
. (45)

The cost modelling is given for the transformer and cable, where
offset constant aP = 0.205 × 106, slope constant bP = 364.6,
𝛼 = 0.4473 and Prated is the rated output power. xP , yP and zP

are constants.

Cost of wind energy generated

=
cI

(AEP )

[(
i (1 + i )m

(1 + i )m − 1

)
+ m

]
, (46)

where cI is initial cost of WT, i is the % interest rate, and n refers
to OM cost.

cI = 1.15(ct + cF + cIns + cG ). (47)
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FIGURE 11 MCS algorithm based on probability models

The initial cost cI is the total sum of WT cost ct , installation cost
cIns and grid connection cost cG . The task to minimise the Net
Present Value (NPV) is done [81] and summarise the cost analy-
sis involved during WT performance. The objective function is
defined as

minimumNPV Total = NPV Comp + NPV LoadLoss

+ Retribution Value, (48)

NPV Comp = VCap +VMain +VRep, (49)

NPV LoadLoss = LOEE ×VLoadLoss × (AVP ), (50a)

VCap = VWT × nWT , (50b)

VMain = AVP × (VWT × nWT ), (50c)

VRep = CP × (VWT × nWT ), (50d)

where NPV Total is the total net present value of a WT,
NPV Comp refers to net present value of WT system com-
ponents as given in (49), NPV LoadLoss is the net present
value of loss of load. The NPV of components includes
capital, maintenance, and repair values and are denoted by
VCap,VMain, and VRep, respectively. Further, the values are
described in (50a)–(50d) where AVP and K are the annual value
payment and constant payment, respectively. VLoadLoss is the
disconnection value per kWh of load demanded. VWT and nWT

are the value of each WT per year and number of WT, respec-

tively. Finally, it is clear from (48) that to meet the reliability con-
straints, the retribution value must be equal to 0.

In this article, the main indices LOLE (hour/year) and Loss
of Energy Expectation (LOEE) (kWh/year) are discussed as
two reliability constraints [82, 83] and these are defined as given
in (51a) and (51b).

LOLE =
∑
T =1

n
LOLE (T ), (51a)

LOEE = EENS =
∑
T =1

n
LOEE (T ). (51b)

5 RELIABILITY IMPROVEMENT
METHODS

This paper illustrate the four reliability improvement techniques
briefly. The advantages and disadvantages of all techniques are
described in Table 9.

5.1 Generation rescheduling Algorithm

Generation rescheduling Algorithm (GRA) is applied in [84],
which provides adjustable output generation to remove the
fluctuations of power flows through the transmission line and
simultaneously, the probability of overloading is relieved. This
algorithm is used to schedule the conventional generation
in order to increase the transmission system reliability with
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TABLE 9 Advantages and disadvantages of reliability improvement methods

S. No. Method Advantage Disadvantage

1 GRA (i) Power flow variations are taken out from the
transmission line.

Gives a flexible output power generation by ignoring the
congestion in power, and stabilises the wind energy
resources with power system loads.(ii) It minimises the probability of overburdening.

(iii) Increases the transmission system reliability

2 Demand Side
Management (DSM)

(i) It evaluates the load side reliability. (i) Users have a restricted resource to use the DSM.
(ii) Reliability increases for the combined stage of

hybrid energy and DSM.
(ii) DSM is a better fit for greater energy consumers or

those with complex energy demands.

3 EV (i) The reliability of an electrical distribution system
enhances using V-G and V-H concepts.

(i) The maintenance cost is higher for EVs.

(ii) This method of reliability improvement is
efficient in long term operation.

4 ESS (i) It includes reliability enhancement with analysing
the power system service recovery.

(i) Energy loss in charging–discharging makes it
inefficient.

(ii) It utilises the parking lot as a substitute for a
disturbed zone.

(ii) It is complex and not cheap and requires infrastructure
and space.

renewable energy penetration. Although GRA is mainly useful
in preventing the congestion in power and the balance in
Distributed Energy Resources and power system loads, one of
the previous methods like Participation Factor Control (PFC)
is unable to consider the locations of the generators. Hence,
the GRA to increase the reliability with load and wind power
uncertainty is developed. Overall, the GRA is applicable in
determining the optimal generator rescheduling solution. It is
useful for mitigating the overloading scenarios and minimising
the weighted sum of branch power flow variances. The method
is explained briefly in Figure 12(a).

5.2 Demand side management

Demand side management (DSM) is a long-term reduction in
customer load as compared to demand response which adjusts
the peak load only. To assess the load side reliability, the DSM
method is given [85] which is applied to the Electrical Power
Distribution System (EPDSs) to achieve the efficient reliability
of the power system. On the other side of the analysis, DSM
is also considered for control of microgrid considering Battery
Energy Storage System (BESS), protection, and power qual-
ity issues [86]. Thus, MCS and a local load system method are
developed for reliability evaluation and assessment, respectively,
which incorporates DSM and wind as described in Figure 12(b).
This MCS-based algorithm for DSM calculates the failure CDF
F(t), and repair CDF R(t) using simulated hour t in the year, the
total number of simulated hours T in the year, and randomly
generated number U between 0-1. The DSM method mod-
elling is applied to get the improved load reliability index called
Energy Not Supplied (ENS) [87]. Loss of Load Probability
(LOLP) and normalised generation has been improved by using
DSM. The reliability improvement is also seen in [88] where
IEEE-RTS is taken with and without the integration of wind
energy to see the impact on reliability indices including LOLE

(hour per day), Energy Demand Not Supplied (MW), Expected
Energy Not Recovered (MWh) and EENS (MWh/year).

5.3 Electric Vehicles

The impact of Full EVs and Plug-in EVs have been consid-
ered for EPDS reliability improvement and greenhouse gas mit-
igation [89]. Authors of [90] have suggested integrating EV in
different modes of operation such as centralised and dispersed
EV charging in which residential demands are fulfilled by V-
H or/and V-G during the is-landing condition. In sequence to
this, as a part of planning, the reconfiguration of the electrical
network for the improvement of system reliability is presented
and the implementation of V-G programs of EVs is effectively
considered in [91] and [92], respectively. These studies are for
reliability and adequacy analysis of EPDSs.

A stochastic traffic flow model is elaborated under two sce-
narios. First, the influence of time interval of reliability infor-
mation on the traffic flow system. Second, the impact on the
stability of the traffic system, which provides the significance
of information reliability on the stability of traffic stream by
using analytical methods [93]. Therefore, to solve the men-
tioned problems on optimal velocity and the dynamics of infor-
mation reliability, some techniques related to EVs are devel-
oped. The two car-following models are given and explained
in (52)–(54).

dvk(t )
dt

= 𝛾(V (ΔS (t )) − vk(t )), (52)

V (Δsk ) =
vmax

2
(tanh(Δsk − sc ) + tanh(sc )), (53)

dvk

(t )
dt = 𝛾

(
V (

P∑
L=1

𝛼L𝜂LΔsk+L−1(t ))

)
, (54)
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FIGURE 12 (a) Algorithm for GRA execution. (b) Monte-Carlo
simulation implementation in DSM

where 𝛾 is constant which is termed as driver’s sensitivity. sk is
the distance of kth vehicle. vk is the kth vehicle velocity. Δsk is
the head-to-head distance between k vehicles and its immedi-
ate next vehicle ahead. V (∗) is the expected velocity which is
dependent on Δsk. sc is the distance of safety. 𝛼L is a variable
which shows the information which is shared by Lth vehicle, if
available. 𝜂L is the coefficient of influence of the Pth preceding

vehicle on other vehicles. P is the Pth vehicle which is coming
before of present vehicle k, where, L < P ; L ∈ 1, 2, 3, … , P .

The charging load of EVs has challenges in electrical power
system operation, electricity market, and planning due to the
imbalanced spatial distribution of electric vehicles. The MCS
method is suitable to determine the charging time span and
charging power of EV which is completely dependent on the
probabilistic distribution of Conventional Vehicle. The (55) and
(56) show the charging start time and PDF of daily mileage,
respectively.

fx (y) =

⎧⎪⎨⎪⎩
1

𝜎x

√
2𝜋

[
exp

(
−

(y−𝜇x )2

2𝜎2
x

)]
; 𝜇x − 12 < y ≤ 24

1

𝜎x

√
2𝜋

[
exp

(
−

(y+24−𝜇x )2

2𝜎2
x

)]
; 0 < y ≤ 𝜇x − 12

(55)

fz (y) =
1

y𝜎z

√
2𝜋

[
exp

(
−

(ln y − 𝜇z )2

2𝜎2
z

)]
, (56)

where PE denotes electricity price, 𝛼p and 𝛽p are referred to
standard deviation and the expected value of the electricity
price, 𝜎x , 𝜎Z , and 𝜇Z are the respective shape-parameters.

The incorporation of V-H and V-G into the EPDSs for reli-
ability where V-G is to support the grid during outages by
providing the frequency regulation and spinning reserve [94].
The dependence of energy quantity available from EVs is on
the duration of outages, charging requirement time, and spa-
tial patterns. Electric V-H acts as an energy source to supply
household demand and when the numerous nodes are incorpo-
rated in inter-regional V-G. If the loss of power along the line
are involved, then the issue is being treated as an optimisation
problem. In this optimisation problem, the only objective is to
decrease the residual ENS at all nodes. The aim of non-linear
optimisation [95] is to minimise the losses over the power net-
work throughout EV charging. The power flow calculation uses
the quadratic programming technique which serves as the most
effective tool. An iterative backward-forward sweep method is
applied in power flow calculation for better results. On the other
study of optimisation, the interior point method is described to
obtain the optimum values while in each try an optimal flow
algorithm is run to get the maximum power imported at each
node of the system [96]. In the EV charging, the reliability of the
EPDS is improved together with the basic participation of EVs,
that is, V-G in local for centralised charging of EV and V-H for
distributed EV charging. The Sequential Monte-Carlo Simula-
tion method for the assessment is provided with reliable results.
The involvement of local V-G for centralised charging and local
V-H for dispersed charging leads to the reliability improvement
of EPDS. The EPDS has gained interests as EV industries with
large power capacities and energy are growing frequently.

The interfacing between transportation infrastructure, and
energy consumers, and generating units are the different forms
of energy in an energy hub [97]. A renewable-based energy hub
concept is considered for modelling the interactions between
various Distributed Generation technologies. The related reli-
ability indices System Average Interruption Duration Index
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(SAIDI) and EENS during grid-connected and is-landed condi-
tions are given and the implementation of the proposed frame-
work is done. The calculation of reliability indices and the test
system is calculated by taking various working energy hub strate-
gies. Thus, the reliability improvement of energy demands is
achieved by using co- or tri-generation converters in an energy
hub. At last, the reliability is also improved by energy hubs
which are dependent on the component’s reliability, energy net-
works’ level, and operation planning [92].

5.4 Energy storage system

Power system reliability improvement analysis is performed
considering the energy storage system (ESS). Authors in [98]
have obtained reliability indices and performed several ESS-
based network configurations to increase the EPDS reliability. A
methodology was described for a probabilistic EPDS reliability
evaluation using an MCS method in case of multi-ESS installed
at WFs. The ESS includes the battery and hydro-pumped. A
brief review based on ESS is done [99]. A probabilistic fore-
cast methodology of an energy resource is developed to analyse
the O and M of the wind energy system with the storage sys-
tem [100]. Further, considering battery state of charge, reliabil-
ity indices including SAIDI (hour per customer per year), ENS
(MWh per year), and Contingency Occurrence Rate (contingent
failure per year) have been obtained [101]. An MCS technique
is given to analyse the power system impacts of wind energy
on the reliability benefits from the ESS. The SAIDI and total
reliability costs are minimised where the cost is dependent on
the aggregate interruption cost of the customer. The aggregate
interruption cost includes PL installation cost and incorpora-
tion cost of a PL. The PL acts as a unit that provides the back-
up for the interrupted zone (reduces the interruption time) and
acts as a unit that provides the storage in the back-up feeder
(reduced the congestion frequency). The voltage deviation and
energy costs are also taken into account during reliability cost
determination. The overall objective function is the combina-
tion of operative objective and objective based on reliability. The
stochastic model and MCS technique are proposed [102] which
is useful in determining the PL effects to nearby services on reli-
ability enhancement with the consideration of service restora-
tion. The reliability-based objective functions Electric Vehicle
Parking Lot Allocation Program allocation problem is described
in (57) and (58), where the minimisation of two reliability indices
ESAIDI and ETC

is accomplished for reliability improvement.

O.F .rel ∶

{
𝛼1

(
ETC

−TCOPT

TCOPT

)
+ 𝛼2

(
ESAIDI−SAIDIOPT

SAIDIOPT

)
.

)
(57)

TcOPT
and SAIDI OPT are determined optimally by putting any

of the weighting factors ‘zero’ [103].

ETC
= ETIC

+ ETPIC
+ TIMC , (58)

where, ETC
, ETIC

, ETPIC
, and TIMC are the expected overall reli-

ability cost, interruption cost, PLs incorporation cost in ser-

vice restoration, and overall investment and maintenance costs
of PL.

6 CONCLUSION AND SCOPE FOR THE
FUTURE WORK

This paper has drawn interest in the types of WTGs and
wakes developed towards downstream rotors due to the front
WT rotors. By virtue of the turbulence behind the upstream
WT rotor, there is a disturbance in the inflow wind of down-
stream rotors which creates deficit velocity, and hence, the
decrease in WT output power is observed. Thus, the solu-
tion to get the maximum power is considered by develop-
ing an optimal WF design. To achieve this, some optimisa-
tion techniques have been discussed to get the optimal design
of WF at minimum cost per total power. Simultaneously, the
system’s reliability has also taken as a primary concern after
observing the occurrence of improper calculations of reliabil-
ity indicators due to the presence of uncertainties in WF. Thus,
the reliability study and its improvement techniques have been
discussed.

On the basis of this research review, the following sugges-
tions are recommended for future study and industrial reliabil-
ity needs.

i. Research can be extended to implement different or realistic
wake models other than simple Jensen’s model to obtain the WT
locations for an optimal WF design.

ii. Considering probabilistic scenarios to find the WF optimal
location in the main power system (RBTS and IEEE RTS) is
also a topic to work upon.

iii. The implementation of EVs and BESS as the reliability
improvement techniques in WIPS is also a challenging issue in
terms of their optimal locations.

iv. Study on Reliability Availability Maintainability is one of
the major topics to get the proper cost analysis on WF design.

ACKNOWLEDGMENTS

The authors wholeheartedly thank the Department of Elec-
trical Engineering, Indian Institute of Technology (Banaras
Hindu University), Varanasi for providing the laboratory-
related facilities to accomplish the research work in time.
The first author expresses his gratitude towards Govind Bal-
labh Pant Institute of Engineering and Technology, Pauri
Garhwal, Uttarakhand, India for giving him the opportunity
to pursue a PhD from IIT (BHU) Varanasi, Uttar Pradesh,
India.

ORCID

Sachin Kumar https://orcid.org/0000-0003-1517-7450
R.K. Saket https://orcid.org/0000-0002-2773-9599
Dharmendra Kumar Dheer https://orcid.org/0000-0001-6231-
8813
P. Sanjeevikumar https://orcid.org/0000-0003-3212-2750
Jens Bo Holm-Nielsen https://orcid.org/0000-0002-0797-
9691
Frede Blaabjerg https://orcid.org/0000-0001-8311-7412

https://orcid.org/0000-0003-1517-7450
https://orcid.org/0000-0003-1517-7450
https://orcid.org/0000-0002-2773-9599
https://orcid.org/0000-0002-2773-9599
https://orcid.org/0000-0001-6231-8813
https://orcid.org/0000-0001-6231-8813
https://orcid.org/0000-0001-6231-8813
https://orcid.org/0000-0003-3212-2750
https://orcid.org/0000-0003-3212-2750
https://orcid.org/0000-0002-0797-9691
https://orcid.org/0000-0002-0797-9691
https://orcid.org/0000-0002-0797-9691
https://orcid.org/0000-0001-8311-7412
https://orcid.org/0000-0001-8311-7412


2082 KUMAR ET AL.

REFERENCES

1. da Silva, A.M.L., da Costa. Castro, J.F., Billinton, R.: Probabilistic assess-
ment of spinning reserve via cross-entropy method considering renew-
able sources and transmission restrictions. IEEE Trans. Power Sys. 33(4),
4574–4582 (2017)

2. Clark, C.E., DuPont, B.: Reliability-based design optimization in offshore
renewable energy systems. Renewable Sustainable Energy Rev. 97, 390–
400 (2018)

3. Muche, T., Pohl, R., Höge, C.: Economically optimal configuration of
onshore horizontal axis wind turbines. Renewable Energy 90, 469–480
(2016)

4. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
5. Moradi, M.H., Eskandari, M.: A hybrid method for simultaneous opti-

mization of DG capacity and operational strategy in microgrids consid-
ering uncertainty in electricity price forecasting. Renewable Energy 68,
697–714 (2014)

6. Esmaeili, M., Sedighizadeh, M., Esmaili, M.: Multi-objective optimal
reconfiguration and DG (distributed generation) power allocation in dis-
tribution networks using big bang-big crunch algorithm considering load
uncertainty. Energy 103, 86–99 (2016)

7. Alaee, S., Hooshmand, R.A., Hemmati, R.: Stochastic transmission
expansion planning incorporating reliability solved using SFLA meta-
heuristic optimization technique. CSEE J. Power Energy Syst. 2(2), 79–86
(2016)

8. Shafie.Khah, M., Siano, P.: A stochastic home energy management system
considering satisfaction cost and response fatigue. IEEE Trans. Ind. Info.
14(2), 629–638 (2017)

9. Reddy, S.S.: Optimal scheduling of thermal-wind-solar power system with
storage. Renewable Energy 101, 1357–1368 (2017)

10. Han, X., et al.: Adequacy study of wind farms considering reliability and
wake effect of WTGs. 2011 IEEE Power and Energy Society General
Meeting, pp. 1–7. IEEE, Piscataway, NJ (2011)

11. Che Yulong, et al.: Probabilistic load flow using improved three point
estimate method. International Journal of Electrical Power & Energy Sys-
tems 117, 105618 (2020). https://doi.org/10.1016/j.ijepes.2019.105618

12. Choudhary, R., Saket, R.: A critical review on the self-excitation process
and steady state analysis of an SEIG driven by wind turbine. Renewable
Sustainable Energy Rev. 47, 344–353 (2015)

13. Varshney, L., Saket, R.: Reliability evaluation of SEIG rotor core magne-
tization with minimum capacitive excitation for unregulated renewable
energy applications in remote areas. Ain Shams Eng. J. 5(3), 751–757
(2014)

14. Bansal, R., Zobaa, A.F., Saket, R.: Some issues related to power generation
using wind energy conversion systems: an overview. International Journal
of Emerging Electric Power Systems 3(2), (2005)

15. Cortez, R.I., Dorrego, J.R.: Analysis of the wake effect in the distribution
of wind turbines. IEEE Lat. Am. Trans. 18(04), 668–676 (2020)

16. Abdulrahman, M., Wood, D.: Wind farm layout upgrade optimization.
Energies 12(13), 2465 (2019)

17. Ogidi, O.O., Khan, A., Dehnavifard, H.: Deployment of onshore wind
turbine generator topologies: Opportunities and challenges. Int. Trans.
Electr. Energy Syst. 30(5), e12308 (2020)

18. Khan M.Y., et al.: Placement Optimization for Renewable Energy
Sources: Ontology, Tools, and Wake Models. IEEE Access 8, 72781–
72800 (2020). https://doi.org/10.1109/access.2020.2984901

19. Zheng, R., Zhou, Y., Zhang, Y.: Optimal preventive maintenance for wind
turbines considering the effects of wind speed. Wind Energy 23 (2020).
https://doi.org/10.1002/we.2541

20. Grady, S., Hussaini, M., Abdullah, M.M.: Placement of wind turbines
using genetic algorithms. Renewable Energy 30(2), 259–270 (2005)

21. Parada, L., et al.: Wind farm layout optimization using a Gaussian-based
wake model. Renewable Energy 107, 531–541 (2017)

22. Wilson Dennis, et al.: Evolutionary computation for wind farm layout
optimization. Renewable Energy 126, 681–691 (2018). https://doi.org/
10.1016/j.renene.2018.03.052

23. Saab, Y.G., Rao, V.B.: Combinatorial optimization by stochastic evolution.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 10(4), 525–535
(1991)
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