List of Figures

1.1	Magnetic Hyperthermia equipment (Magnetherm, nanoTherics, U.K)
1.2	Schematic representation of the magnetism of the materials
1.3	Representation of the surfactant over MNPs for colloidal stability4
1.4	Schematic of the Brownian and Néel Relaxation loss
1.5	Schematic diagram reaction mechanisms during semiconductor photocatalytic
	process
1.6	Schematic representation of Li-ion battery16
1.7	Positions of the atoms (Fe and C) of orthorhombic iron carbide system21
1.8	Schematic polyhedral model for cubic inverse spinel structure of Fe ₃ O ₄ 22
2.1	Schematic representation of synthesis protocol for nanocomposites29
3.1	a) Rietveld refined X-ray diffraction pattern of ultrafine Fe ₃ C, nanoparticles and
	b) Atomic position of Fe and C atoms in the unit cell as obtained from VESTA
	software
3.2	TEM analysis of Fe ₃ C nanoparticles (a) bright field micrograph and inset represents
	the SAED pattern, and (b) histogram of size distribution
3.3	(a) The wide range of X-ray photo spectra of Fe ₃ C sample, (b) spectrum for Fe ₂ p
	states, (c) spectrum for C 1s and (d) core level spectrum for absorbed O 1s41
3.4	M vs. H plot for as-synthesized Fe ₃ C magnetic nanoparticles
3.5	Mössbaur spectrum of Fe ₃ C nanoparticles recorded at room temperature43
3.6	Colloidal stability of Fe ₃ C nanoparticles
3.7	(a) Temperatures vs. time plots (b) SLP, and (c) ILP values obtained for various
	concentrations of Fe ₃ C MNP _S under two different magnetic fields

3.8	Biological study of A549 lung cancer cell lines treated with Fe ₃ C nanoparticles a)
	control cells growth after 24 h of incubation, b) cells treated with the 1 mg/mL
	of MNPs for 24 h, c) % cell viability with bare particles as well as with its
	ferrofluid at varying concentrations (0.1, 0.5, 1, 1.5, 2, 2.5 and 3 mg/mL) after
	24 and 48 h of incubation, and d) fluorescence image of the cells stained with
	acridine orange
4. 2	Rietveld refined diffraction patterns of $Zn_xFe_{3-x}C$ ($x = 0.1, 0.3, 0.5, 0.7$ and 1)
	system55
4. 3	Variation in the lattice parameter for $Zn_xFe_{3-x}C$ (0.1 \leq x \leq 1) system and inset
	showing decrease in unit cell volume
4.3	Transmission electron micrograph for sample $x = 0.1$ a) bright field micrograph, b)
	SAED pattern c) HR-TEM micrograph and d) histogram of the particles58
4.4	Transmission electron micrograph for sample $x = 1$ a) bright field image, b) SAED
	Pattern, c) HR-TEM micrograph and d) histogram of the particles
4.5	XPS spectra of sample $x = 0.3$ (a) Fe 2p core level spectra, (b) C 1s core level
	spectra, (c) Zn 2p and (d) O 1s61
4.6	Mössbauer spectra of $Zn_xFe_{3-x}C$ for (a) $x = 0.1$ and (b) $x = 0.5$ samples at RT63
4.7	(a) M vs. H plots for all the samples $Zn_xFe_{3-x}C$ ($x=0.1,0.5$ and 1) (b) Variation in
	the saturation magnetization (M_S) values and (c) Coercivity (H_C) , remanent (M_r)
	plots for samples $Zn_xFe_{3-x}C$ ($x = 0.1, 0.5$ and 1) with Zn substitutions65
4.8	Temperature rise dependent on magnetic fluid hyperthermia curves are (a) and (b)
	for the concentration of 10 mg/mL at two fields, (c) magnitude of the SLP and (d)
	ILP for all the ferrofluids $Zn_xFe_{3-x}C$ ($x = 0.1, 0.3, 0.5, 0.7$ and 1) at both the

	fields67
4.9	Compatibility of Zn _x Fe _{3-x} C nanoparticles with A549 lung cancer cell lines. a)
	control cells morphology after 24 h incubation period b) cells were treated with the
	MNPs ($x = 0.5$) of 1 mg/ml concentration for 24 h c) % cell viability of the F127
	functionalized samples $x = 0.5$ and 1, with varying concentrations (0.1, 0.5, 1, 1.5,
	2, 2.5 and 3 mg/mL) at diffrerent incubation period d) Fluorescence imaging after
	stained with acridine orange
5.1	X-ray diffraction patterns for the nanocomposites (a) FC and FOC and (b)
	N1FOC, N3FOC and N5FOC
5.2	TEM analysis of the sample FC a) bright field micrograph, b) histogram of the
	particles distribution
5.3	TEM analysis of the nanocomposite N3FOC a) bright field micrograph, b) SAED
	pattern and c) histogram of nanoclusters size
5.4	XPS spectra for sample N5FOC nanocomposite a) Fe2p, b) C1s, c) Ni2p and d)
	O1s79
5.5	Mössbauer spectroscopy of the samples N1FOC, N3FOC and N5FOC
	nanocomposite
5.6	(a) Magnetization vs . field curves and (b) the variation in the Ms, Hc and M_r values
	with Ni substitution of nanocomposites N1FOC, N3FOC and N5FOC83
5.7	The induction heating behavior for the ferrofluids (FOC, N1FOC, N3FOC and
	N5FOC) (a) Time vs. temperature plots, (b) SLP values and (c) ILP values84
5.8	<i>In-vitro</i> study of N3FOC nanocomposite with A549 lung cancer cell lines. a) % cell
	Viability with varying concentrations 0.1, 0.5, 1, 1.5, 2, 2.5 and 3 mg/mL b)

	Fluorescence imaging after stained with acridine orange
5.9	Tauc plots of the nanocomposites (FC, FOC, N1FOC, N3FOC and N5FOC) for
	the direct transitions and inset shows their direct bandgaps
5.10	UV- Vis spectra of degradation of PNP using FOC Catalyst under (a) Fenton and
	(b) Photo Fenton condition
5.11	UV- Vis spectra of degradation of PNP using N5FOC Catalyst under (a) Fenton
	and (b) Photo Fenton condition
5.12	Catalytic kinetics plots of PNP degradation at λ_{max} 317 nm under (a) Fenton and
	(b) Photo Fenton condition89
5.13	UV- Vis spectra of degradation of PNP using FOC Catalyst under (a) Fenton and
	(b) Photon Fenton condition92
5.14	UV- Vis spectra of degradation of MO using N5FOC Catalyst under (a) Fenton
	and (b) Photo Fenton condition
5.15	Catalytic kinetics plots of degradation of MO at λ_{max} 505 nm under (a) Fenton and
	(b) Photo Fenton condition93
6.1	X-ray diffraction patterns for the FC, M2FOC, and M7FOC samples99
6.2	Morphological analysis for the nanocomposite M2FOC a) bright field image b)
	high resolution micrograph c) SAED pattern and d) histogram for the particle
	size
6.3	TEM analysis for the nanocomposite M7FOC a) bright field image b) high
	resolution micrograph c) SAED pattern and d) histogram for the particle
	size
6.4	XPS spectra for the sample M7FOC after the decovolution of the peaks a) Fe 2p

	b) C 1s c) Mn 2p and d) O 1s
6.5	Mossbauer spectrum for the nanocomposites M2FOC and M7FOC samples106
6.6	Magnetic properties of the nanocomposites M2FOC and M7FOC samples109
6.7	Temperature vs. time plots for the ferrofluids of M2FOC and M7FOC
	samples
6.8	<i>In-vitro</i> study of M2FOC nanocomposite with A549 lung cancer cell lines. a) %
	cell viability with varying concentrations 0.1, 0.5, 1, 1.5, 2, 2.5 and 3 mg/mL b)
	Fluorescence microscopy after stained with acridine orange
6.9	Electrochemical performance of the nanocomposite FC (a) cyclic Voltammograms
	curves for initial three cycles at the scan rate of 0.1 mV s ⁻¹ , (b) Galvanostatic
	lithiation/delithiation cyclic voltage profiles, and (c) variation of specific capacities
	and coulombic efficiency with cycle number
6.10	Electrochemical performance of the nanocomposite M2FOC (a) cyclic
	Voltammograms curves for initial three cycles at the scan rate of 0.1 mV s ⁻¹ (b)
	Galvanostatic lithiation/delithiation cyclic voltage profiles and (c) variation of
	specific capacities and coulombic efficiency with cycle number
6.11	Electrochemical performance of the nanocomposite M7FOC (a) cyclic
	voltammograms curves for initial three cycles at the scan rate of $0.1\ mV\ s^{-1}$ (b)
	Galvanostatic lithiation/delithiation cyclic voltage profiles and (c) variation of
	specific capacities and coulombic efficiency with cycle number117