List of Figures

	particle size (g, h, i) and EE: entrapment efficiency (i, k, l) of PL-	
	VRL-SLNs	
5.6	Surface morphology by scanning electron microscopy a) TPGS-	93
	VRL-SLNs and b) PL-VRL-SLNs	
5.7	FTIR spectra of drug, excipients and lyophilized nanoparticles.	94
5.8	DSC thermograms of drug, excipients and lyophilized nanoparticles	95
5.9	Cumulative percentage Release of VRL by VRL solution, TPGS-	96
	VRL-SLNs and PL-VRL-SLNs.	
5,10	Percentage cell viability of VRL, TPGS-VRL-SLNs and PL-VRL-	99
	SLNs at different concentrations. Results were analyzed by two way	
	ANOVA followed by bonferroni posthoc test ; a: when compared	
	with VRL, b: when compared with TPGS-VRL-SLNs; (***p<	
	0.0001), (**p<0.001) and (*p<0.05))	
5.11	Percentage of haemolysis at different time intervals in whole blood	100
	samples after addition of test samples at (a) 10 and (b) 100 μg mL ⁻¹	
5.12	Three-dimensional response surface plots showing the effect of	103
	independent variables (LC: Lipid concentration, S.C: Surfactant	
	concentration and H.S:homogenization speed) on response	
	variables. P.S: Particle size (a, b, c) of GMS-VRL-ACNs; and EE:	
	encapsulation efficiency (d, e, f) of GMS-VRL-ACNs	
5.13	Three-dimensional response surface plots showing the effect of	104
	independent variables (PC: Lipid concentration, SC: Surfactant	
	concentration and HS:homogenization speed) on response variables.	
	P.S: Particle size (a, b, c) of PLGA-VRL-ACNs; and EE:	
	encapsulation efficiency (d, e, f) of PLGA-VRL-ACNs	109
5.14	Surface morphology of (A) GMS-VRL-ACNs and (b) FLOAT VICE	
	ACNs by TEM	110
5.15	Diffraction Analysis by TEM	
5.16	Drug excipient compatability studies by FTIR studies.	

1.10

xviii

5.17

Drug excipient compatability studies by DSC studies

111

Pro-

- 5.18 Cumulative percentage release of drug from VRL solution, GMS-13
- 5.19 Cell viability of VRL, Placebo-ACNs and PLGA-VRL-ACNs with VRL, ANOVA tollowed by bonferroni posthoc test ; a: when compared different concentrations. Results were analyzed by VRL-ACNs and PLGA-VRL-ACNs g when compared with GMS-VRL-ACNs-ACNs two way at 115
- 5.20 Scatter plot for determination of IC 50 ((***p< 0.0001), (**p<0.001) and (*p<0.05))

115

- 5.21 represented as mean \pm SD (n =3). samples after addition of VRL, placebo-ACNs, GMS-VRL-ACNs PLGA-VRL-ACN at 10, 50 and 100 mg mL⁻¹. Values Number of platelets after addition of PBS, VRL, placebo ACNs and and PLGA-VRL-ACNs at (a) 10, (b) 50 and (c) 100 mg mL⁻¹ Percentage of haemolysis at different time intervals in whole blood are d 911
- 5:22 GMS-VRL-ACNs and PLGA-VRL-ACN at 10, 50 and 100 mg mL Number of platelets after addition of PBS, VRL, placebo ¹. Values are represented as mean \pm SD (n =3). ACNs, 117
- 5.23 Images were captured at a magnification of 100× mg mL⁻¹) and (c) PLGA-VRL-ACNs (10, 10, 50 and 100 mg mL⁻¹ of test samples), (b) VRL (10, 50 and 100 blood samples after treatment with: (a) PBS (equivalent volume to Qualitative platelet aggregation images of Leishman's stained whole 50 and 100 mg mL⁻¹). 118
- 5.24 Single treatment with VRL and RES

611

- 5.25 from each Fa for MCF-7 cell lines. (b) DRI values were calculated RES using different fixed drug ratios. (a) CI values were calculated Illustrative Fa-CI and Fa-DRI plots for the combination of VRL and 121
- 5.26 Surface morphology of A) GMS-VRL-RES-ACNs and B) PLGAfrom each Fa for MCF-7 cells. (c) Classical isobologram at IC_{75} 123
- 5.27 Drug excipient compatibility by FTIR VRL-RES-ACNs by Transmission electron microscopy (TEM)

124

5.28
Drug
excipient
compatibility
by
DSC
analysi

125

- 5.29 and (B) PLGA-VRL-RES-ACNs in PBS, pH 7.4 and 5 % tween 80 Cumulative percentage drug release of (A) GMS-VRL-RES-ACNs 128 126
- 5.30 compared to GMS-VRL-RES-ACNs; ((***p< 0.0001), (**p<0.001) compared with VRL; b: when compared to VRL+RES; c: when by two way ANOVA followed by bonferroni posthoc test ; a: when In vitro cytotoxicity of different formulations. Results were analyzed

and (*p<0.05))

- 5.31 and (*p<0.05)) compared to GMS-VRL-RES-ACNs; ((***p< 0.0001), (**p<0.001) compared with VRL; b: when compared to VRL+RES; c: when two way ANOVA followed by bonferroni posthoc test ; a: In-vivo toxicity of different formulations. Results were analyzed by when 132
- 5.32 Kaplan – Meier analysis of survival of Sprague dawley rats

135

133

5.33 to VRL; test ; a: when compared with PLGA-VRL-RES-ACNs, b: compared were analyzed by two way ANOVA followed by bonferroni posthoc The tumor growth curve following combination therapy. Results and <u>c</u>: compared to VRL+RES ((***p< 0.0001),

1.1.1

5.34 Percentage relative tumor growth rate of after treatment with VRL, way ANOVA followed by bonferroni posthoc test ; (***p< 0.0001), VRL+RES, and PLGA-V+R-ACNs. Results were analyzed by two (**p<0.001) and (*p<0.05)) 136