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8.1 Nanomedicine 

8.1.1 Polymeric nanoparticles 

Polymeric nanoparticles comprise synthetic polymers which allow alteration of many 

properties such as biodegradability, molecular weight and hydrophilicity. Various methods 

have been developed to synthesize polymeric nanoparticles like nanoprecipitation, solvent 

diffusion/displacement, emulsification, nanospray etc (Li et al., 2017, Tran et al., 2017). 

Typical polymeric nanoparticles are dense matrix systems with predictable degradation 

curves which allow easy manipulation of drug release from these systems. However, there 

are certain limitations with these systems such as limited shape and large size distribution. 

These nanoparticles are usually spherical, although a various sizes might be developed at the 

time of synthesis utilizing novel techniques (Joshi et al., 2010, Kulkarni and Feng, 2013, 

Vuddanda et al., 2015). Nowadays, PRINT approach, which utilizes particle replication in 

non-wetting templates, allows development of uniform nanoparticles hence easy 

customization of particle size and shape (National Center for Biotechnology Information. 

Pubchem Compound Database; Cid=45055483). 

8.1.2 Liposomal nanoparticles 

Liposomes are spherical nanoparticles developed using lipid bilayers. These nanoparticles 

are prepared after addition of amphiphilic lipid and water or hydrophilic liquid (Li et al., 

2017, Tran et al., 2017). This depicts size range of 50-500 nm. This procedure also allows the 

encapsulation of hydrophilic drugs by simply dissolving the drug in the hydrophilic liquid 

utilized for preparation. Hydrophobic drugs can also be encapsulated by adding into lipid 

solution and the drug resides in the lipid bilayer. There are several methods utilized for 
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preparation of liposomes like sonication, extrusion, solvent injection and reverse phase 

evaporation. These nanocarriers can be widely used for targeted drug delivery (Vijayakumar 

et al., 2016b, Vijayakumar et al., 2016c, Zhigaltsev et al., 2005).  

8.1.3 Protein‑drug conjugated nanoparticles 

In this type of nanoparticles proteins are directly conjugated to drug. The conjugation link is 

biodegradable in in-vivo conditions. The biodegradable linker is destroyed by several 

enzymes present in the body. This can lead to premature drug release.  However, such protein 

drug conjugates which stay in place and release the drug after reaching target site can 

overcome this barrier. Hence more precise and controllable delivery with lesser toxic effects 

can be achieved. These nanoparticles have size nearly 10 nm which further enhance half life 

of drugs. Recently, antibodies are also employed to improve targeting of protein drug 

conjugated nanoparticles (Tran et al., 2017).  

8.1.4 Dendrimeric nanoparticles 

These nanoparicles comprises an exclusive class of polymeric macromolecules occurred 

naturally. Dendrimers are spherical macromolecules having many branches which originate 

from the central point. These are created layer by layer; the initial core in incorporated onto 

previour layer then branching is allowed to take place. The size and degree of branching can 

be controlled utilizing specific initiator cores. Controlled size and branching further minimize 

the polydispersity of nanoparticles. Careful setting up the cores and branching units will help 

to specify various properties of these nanoparticles like size, branch density, molecular 

weight, flexibility and water solubility. The branches can be decorated utilizing a range of 

molecule for entrapment and further release of drugs (Li et al., 2017, Tran et al., 2017).  
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8.1.5 Micellar nanoparticles 

These nanoparticles acquire a core-shell structure. The shell can be hydrophilic e.g. by using 

PEG or hydrophobic by utilizing Poly lactic acid (PLA), Poly (lacti-co-glycolic acid) 

(PLGA), polystyrene, poly (cyanoacrylate), poly (vinyl pyrrolidone) (PVP), and 

polycaprolactone (PCL). These copolymers are biodegradable, biocompatible and possess the 

ability to entrap hydrophobic molecules. E.g. paclitaxel loaded mPEG-PLA (Genexol-PM) is 

FDA approved (Li et al., 2017, Tran et al., 2017).  

These nanoparticles can be obtained by self-assembly of amphiphilic copolymers in aqueous 

environment once the critical micelle concentration (CMC) is reached. The core is 

hydrophobic and can encapsulate hydrophobic moieties while the hydrophilic shell entraps 

the hydrophilic moieties. Thus the hydrophilic shell provides aqueous solubility and steric 

solubility to the miceller nanoparticles. Using miceller nanoparticles, drugs can be covered 

by a water soluble layer, which in turn enhance the hydrophilicity and bioavailability of 

poorly soluble drugs. Moreover, the hydrophilic shell provides protection and enhances in-

vivo circulation (Wang et al., 2015). Recently, many nanomiceller drugs gain success to 

reach clinical trials and market. These miceller nanoparticles can be further decorated with 

targeting moieties to achieve active targeting (Agrawal et al., 2017a).   

8.1.6 Other nanoparticle platforms 

8.1.6.1 Inorganic, metallic nanoparticles:  

Gold has been extensively used for theranostic purpose i.e. therapy and diagnosis of cancer 

with or without drug loading.  Gold depicts strong optical absorbance by virtue of this 

property it can be used diagnosis. Moreover, its photothermal properties render it suitable for 

anticancer therapy. Nanoparticles may be fabricated with gold as complex structures, which 
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in turn enhance the efficiency of drug release. E.g. drugs may be conjugated with the gold 

nanoparticle surface or structures containing hollow cores may be developed to enhance 

encapsulation efficiency (Li et al., 2017, Tran et al., 2017).  Many of these structures can be 

easily created and specifically designed, such as to include a wide range of optical properties. 

Moreover, various modifications can be incorporated to further modify the release of drugs 

from such nanoparticles. Such as adding layers of thermoresponsive polymers. Further, 

photothermal properties can be combined with thermoresponsive polymers whereby shining 

a laser to heat gold nanopaticles when they are near tumor site can control the drug release as 

well as minimized the non specific toxicity (Huang and El-Sayed, 2010, Jain et al., 2012).  

8.1.6.2 Carbon nanotubes  

Carbon nanoparticles are basically tubes made of carbon with diameters in nanorange These 

carbon nanotubes have been widely utilized for cancer therapy. These can bind to a wide 

variety of various biological molecules and penetrate the cells through endocytosis (Li et al., 

2017, Tran et al., 2017). Single walled carbon nanotubes (SWCNTs) are utilized to prepared 

suspensions in physiological medium which are highly stable and can be used in biological 

environments. These SWCNTs can also attach various molecules through cleavable disulfide 

bonds, which allow release of drugs in-vivo by action of enzymes. Recently these carbon 

nanotubes are also shown to be promising for treatment utilizing their optical properties. E.g. 

carbon nanotubes can be used for phototherma and phothodynamic therapy where they can 

damage cancer cells photochemically (Singh et al., 2016).  

8.1.6.3 Silver nanoparticles:  

Silver nanoparticles also emerged as a potential tool for treatment of cancer. Although, the 

exact mechanism is not defined, silver is supposed to react with acidic environment of tumor 
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cells and generates reactive oxygen species (ROS). These ROS damages the tumor cells 

leading to apoptosis. Silver also possess anti-angiogenic properties and was found to inhibit 

vascular endothelial growth factor (VEGF) (Li et al., 2017, Tran et al., 2017). However, the 

toxicity associated with the silver is main concern. The same can be overcome by creating 

nanoparticles with biocompatible shell which can degrade in specific environments. 

Moreover, this layer also provides platform for conjugation of various ligands. Further, the 

toxicity concern required to be addressed using in- vivo animal models (Pugazhendhi et al., 

2018, Yuan et al., 2017).  

8.2 Research Envisaged 

Vinorelbine bitartrate (VRL), a semi-synthetic vinca alkaloid exhibits anticancer efficacy 

against various tumors. It is primarily indicated for the treatment of breast cancer and 

NSCLC as a first line therapy or in combination with other chemotherapeutic agents. Though 

VRL is better tolerated among all vinca alkaloids it causes toxicities like neutropenia (main 

dose-limiting toxicity), nausea, vomiting, diarrhoea, constipation, alopecia and peripheral 

neuropathy. It is a vesicant and causes injection site reaction, superficial phlebitis 

accompanied by erythema, pain, vein discoloration and tenderness along the vein(Drummond 

et al., 2009, Emanuela et al., 2018, Goa and Faulds, 1994, Kreidieh et al., 2016, 

Vassilomanolakis et al., 2001, Wan et al., 2008, You et al., 2007, Zhang et al., 2011, Zhang 

et al., 2008). 

Moreover, most single drug based anticancer therapies are seldom effective owing to 

associated multiple genetic alterations and molecular abnormalities. The anticancer efficacies 

can be greatly improved by utilizing anticancer drug combinations. Drug combinations can 
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also eliminate the drug resistance owing to non-overlapping mechanisms and can also reduce 

dose dependent side effects.  

The poly-mechanistic RES was supposed to exhibit synergistic activity with VRL on breast 

cancer cells which will improve the therapeutic efficacy of VRL. The synergism among two 

drugs can lead to VRL dose reduction which in turn can result in reduced toxicity.  However, 

it is not feasible to analyze all combinations in human subjects so the current state-of-the-art 

utilizes in vitro synergy rather than anti-proliferative studies on 1-3 tumor cell lines to assess 

higher levels of anticancer drug combinational paradigms (Chen et al., 2016, Greco and 

Vicent, 2009, Kashif et al., 2015, Lu et al., 2015). 

The major drug related toxicities are dose dependent therefore attempts can be taken to 

reduce the dose and dosing frequency which can be achieved by combining VRL with a non-

toxic drug Resveratrol (RES).  RES, a naturally occurring polyphenol compound found in a 

variety of food sources, is already proved to reduce VRL induced vascular endothelial cell 

injury by reduction in cellular apoptosis, reactive oxygen species (ROS) generation and 

superoxide dismutase (SOD) levels (Zhang et al., 2013).RES displayed a wide range of 

pharmacological properties, such as anticancer, antiplatelet, estrogenic and anti-

inflammatory. Although, this relationship can be established easily under in-vitro controlled 

conditions, clinical translation of such information is complicated by the uncoordinated 

pharmacokinetics of free-drug combinations. The dissimilar or independent 

pharmacokinetics of individual drugs may lead to exposure of tumor cells to antagonistic or 

suboptimal ratios with corresponding loss in therapeutic activity (Ashley et al., 2016, Chen et 

al., 2016, Greco and Vicent, 2009, Kashif et al., 2015, Lu et al., 2015, Mayer et al., 2006, 

Tardi et al., 2009, Wang et al., 2014). 
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Therefore, there is a demand to develop formulations which can modulate the 

pharmacokinetics of the combined drugs in such a manner so as to attain the most synergistic 

combination at the targeted site which becomes more important when the degree of synergy 

depends on the ratios of combined drugs (Mayer et al., 2006, Tardi et al., 2009). 

Novel drug delivery systems like liposomes, polymeric nanoparticles, solid lipid 

nanoparticles, carbon nanotubes and nanocapsules are already reported to enhance the 

anticancer efficacy of drugs and can efficiently overcome adverse effects caused by 

anticancer therapy (Agrawal et al., 2017b, Singh et al., 2016, Vijayakumar et al., 2016a, 

Vijayakumar et al., 2016b, Vijayakumar et al., 2016c). Combination therapy requires carriers 

which can encapsulate drugs with different physicochemical properties. Moreover 

encapsulation of both hydrophilic and lipophilic moieties predisposes wide applications in 

anticancer therapy which necessitates combination therapies (Cosco et al., 2015, Kothamasu 

et al., 2012, Vrignaud et al., 2013). In this regard aqueous nanocapsules exhibiting a core 

shell structures where the core acts as a liquid reservoir and shell a protective 

membrane(Anton et al., 2009, Kothamasu et al., 2012) can be considered suitable. However, 

low bioavailability, high plasma protein binding, venous irritation nature and dose dependent 

side effects demands new strategies to improve therapeutic efficacy and patient incompliance 

associated with VRL 

Considering the problems associated with present VRL therapy, we hypothesize the design 

and development of nanocarrier based approaches for delivery of VRL alone and in 

combination with an anti-proliferative antioxidant i.e. RES. Nanocarriers, by virtue of their 

superior encapsulation and release behaviour in vivo, improve the safety profile of the 

encapsulated drug. Combination of VRL with RES and their co-encapsulation in nanocarrier 
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systems may improve enhanced anticancer activity against breast cancer by reducing the dose 

of VRL in the combination therapy. 
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8.3 Plan of work - Flowchart 

Plan of work
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diffusion  method
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5.Optimization by Taguchi 

and Box-Behnken Design

Physicochemical 
Characterization

1.Particle size & PDI

2.Zeta potential 
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In vitro 
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In-vivo 
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