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Chapter 1 

Introduction 

The chapter introduces new class of materials for orthopaedic implant applications such as 

electroactive and functionally graded materials (FGMs) and their advantages over 

conventional implant materials. In addition, a brief introduction has been provided to the 

electroactive property of bone as well as hydroxyapatite which is structurally, 

compositionally and chemically similar to the bone apatite. The need to develop electroactive 

biocomposites as well as FGMs is also briefly discussed. Thereafter, the objectives of the 

dissertation have been briefly mentioned towards the end. 

1.1. Background 

In the health care industry, there is an increasing demand to develop biomaterials which are 

biologically inspired for replacement of hard as well as soft tissues to improve the entire 

healing process. Biologically inspired material exhibits close biochemical, bioelectrical as 

well as biophysical similarities with the host tissue.
1
 To enroot these properties in a single 

material is a challenging task in the area of biomaterials. Towards this end, various organic 

and inorganic synthetic implants have been developed depending on the requirement of host 

tissue. As far as the development of prosthetic implants for one of the major tissues i.e., bone 

is concerned, the number of material classes in monolithic as well as in composite forms 

using metals, ceramics and polymers have been suggested.
2
 Due to their high mechanical 

reliability, metals are generally used to develop load-bearing implants.
3
 Metallic implants 

include titanium, titanium alloys, cobalt-chromium alloys and various types of stainless 

steels.
4,5 

On the other hand, composites of ceramics-metals, polymers-ceramics and polymers-

metals are generally developed for articulating surfaces in bones such as various joints, grafts 

and couples.
6
 Metallic implants suffer from the major drawback of „stress shielding‟ effect 

due to their high stiffness.
7
 However, according to Wolf‟s law, bone requires constant 
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mechanical stress/load to develop and regrow, otherwise, it gradually loses its mass and 

consequently, becomes porous.
8,9 

Further, such phenomenon leads to the loosening of the 

implant. In addition, cobalt-chromium alloys, as well as stainless steel implants, release toxic 

elements such as Ni, Co, and Cr due to their time-dependent corrosion in the body 

environment which also restricts their use as implant materials.
10,11

 Therefore, titanium and 

its alloys are preferred in orthopaedic implants due to their excellent corrosion resistance, 

reliable mechanical performance, biocompatibility as well as comparatively lower stiffness 

than stainless steel as well as cobalt-chromium alloys. However, titanium implants also suffer 

from the similar drawback of stiffness incompatibility with the bone as well as poor 

osteointegration which leads to their failure.
4,12,13,14,15

 Osteointegration refers to the structural 

and functional bonding between the surface of synthetic implant material and the bone 

tissue.
16

 Titanium based alloys also cause wear debris due to their high coefficient of friction 

with host bone tissue which restricts their lifetime use.
17,18

 

In view of the above backdrops, the recent trends towards the development of prosthetic 

orthopaedic implant materials are centred around  (a) composites, (b) polymeric coatings on 

metallic implants, (c) tissue engineering and (d) functionally graded materials (FGMs).
19,20 

Out of these, the concept of FGMs have recently demonstrated their potentiality as an 

appealing choice for orthopaedic applications. Such materials/compositions can be properly 

tailored to meet the various requirements such as reliable biocompatibility, strength, 

resistance to corrosion, appropriate elastic modulus and close chemical similarity with that of 

hard tissues as well as osteoconductivity and osteoinductivity for bone and dental 

implants.
21,22,23,24 

Functionally graded materials (FGMs) refer to the class of materials where 

the composition, as well as the properties such as mechanical, physical and biochemical, 

gradually vary in space along with the thickness or the specified direction, according to the 

application.
25,26

 On the other hand, a composite material has abrupt macroscopic 
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boundaries/sharp interfaces between their constitutive phases. Human bone is one of the 

primary examples of naturally occurring functionally graded material. The simplest example 

can be taken in the case of long bones whose external part is the compact cortical bone layer 

which covers the spongy or trabecular cancellous bone.
25

 Considering its cross-section, there 

is a gradual variation in composition i.e., pore distribution as well as mechanical properties 

(tensile strength and modulus of elasticity) in the direction from external compact cortical 

bone to the spongy cancellous bone and vice versa.
25

 Similarly, there are many other types of 

bones having the sophisticated graded structure according to the anatomical location as well 

as their physiological functionality.
25

 

Apart from its physical nature of having a functionally graded structure, living bone is also an 

electrically active tissue.
27

 The electrical characteristics of bone appear in the form of 

piezoelectricity, pyroelectricity and ferroelectricity.
28,29,30,31,32 

Piezoelectric nature of living 

bone is an intimidating feature by which mechanical stress is converted to a potential 

difference / electric charges which further facilitates the bone in its growth, proliferation of 

bone cells (osteocyte, osteoblast and osteoclast) and healing/reconstruction of bones in the 

case of fractures.28 Therefore, materials mimicking the electrical effects in the bone can be 

suggested as new generation biomaterials for orthopaedic implants.
33,34

 Such materials have 

the ability to develop charges on their surface by external stimulation such as mechanical 

stress or E-field which can further facilitate excellent osteointegration as well as assists in 

healing fractures, remodelling and growth of bone tissue.
34

 

1.2. Relevance of external electric field 

The application of the external electric field (E-field) on living bones to heal fractures / non-

unions has generally been used for more than a decade.
35,36

 Due to its piezoelectric nature, 

living bone develops the polarization/electric charges on the application of external electrical 

stimulation or mechanical stress.
27

 These charges flow to the extracellular matrix (ECM) in 
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the form of bioelectrical signals and finally reach to the bone cells (fibroblasts and 

osteoblasts) activating various processes of proliferation, matrix production which results in 

rapid healing of fractures.
37,38,39,40,41,42

 From the cellular point of view, the electric field 

enhances the intracellular calcium concentration, DNA and protein synthesis in osteoblasts as 

well as fibroblasts cells.
43

 Therefore, external E-field enhances bone functionality. The 

piezoelectric synthetic implant material with the ability to develop polarization / electric 

charges on the application of physiological loads or external stimulation such as E-field or 

mechanical stress can resemble the behaviour of bone. However, the synthetic implant 

materials exhibit slow osseointegration ability with the bone tissue in the absence of 

external/internal cues despite the ability to develop polarization / electric charges.
44

 To 

enhance these processes, properly tuned external electric field (E-field) has been reported to 

be an efficient stimulating factor for improved cellular interaction with the implant 

material.44,45
 It is due to the characteristics of the living cell which possess inherent electrical 

nature and their rapid response under the external E-field. A number of studies have been 

conducted by considering the interaction of E-field with living cells for various applications 

such as electrochemotherapy, necrosis, tissue ablation, gene therapy, cellular apoptosis, 

etc.
46,47,48,49,50

 Therefore, properly tuned external E-field can enhance the proliferation of cells 

on the biomaterial substrates. 

1.3. Model materials 

Hydroxyapatite (HA), belongs to the family of calcium phosphate, is extensively studied for 

the orthopaedic implants due to its ability to chemically react with the bone tissue, in-vitro 

and in-vivo.
51,52,53

 It is a bioactive ceramic having excellent biocompatibility. Synthetic 

hydroxyapatite (HA) having a calcium-to-phosphate stoichiometric ratio of 1.67 is the most 

desirous material for the orthopaedic implants due to its chemical as well as structural 

similarity with the inorganic mineral phase of bone.
54

 In this context, incorporating 
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hydroxyapatite (HA) as one of the principal ingredients in the development of a biocomposite 

as well as FGM for the bone-implant would be an excellent choice. 

HA exists in two structures i.e., in hexagonal (space group: P63/m) and monoclinic 

(P21/b).
55,56

 The monoclinic phase possesses a non-centrosymmetric structure while 

hexagonal has a centrosymmetric structure. Therefore, most of the electroactive properties 

are associated with the monoclinic form. In addition, these electroactive properties are mainly 

assessed with respect to the nanocrystalline HA. HA has been reported to exhibit piezo, pyro 

and ferroelectric nature.
57,58,59

  In bulk HA, such properties are not very significant. In this 

respect, HA possesses poor electrical characteristics. However, the polarization of HA via the 

external electric field (E-field) to generate the surface charges has been reported to provide 

enhanced osteobonding as well as osteoconductivity.
60,61,62

 Therefore, polarized HA is 

suggested to have favourable biological response both, in-vitro and in-vivo to support the 

growth of bone cells as well as bone tissue.
60,63

  

Synthetic HA possess poor mechanical properties as well. It has been reported that addition 

of piezoelectric secondary phase (i.e., BaTiO3) in the ceramic matrix overall increases the 

mechanical properties of the composite system.
64

 In this respect, ferroelectric Na0.5K0.5NbO3 

(NKN) is a potential alternative due to its high piezoelectric strain coefficient, d33 ~ 260 

pC/N, high Curie temperature, TC ~ 420°C, electromechanical coupling coefficient, kp ~ 0.48, 

mechanical quality factor, Qm  ~ 280 and dielectric constant, ε ~ 657 as well as its relatively 

lower density, ~ 4.51 gm/cm
3
 as compared with other piezoelectric biomaterials.

65,66,67,68,69
 In 

addition, ferroelectric NKN (NaxKyNbO3; 0 ≤ x ≤ 0.8, 0.2 ≤ y ≤ 1) has been patented as 

biocompatible orthopaedic implant material because of its excellent viability towards human 

monocytes.
70

 BaTiO3 (BT) has been demonstrated to be another piezoelectric biocompatible 

material, in-vitro as well as in-vivo.
44,71,72,73,74

 In simulated body fluid (SBF), BaTiO3 

promotes apatite formation.71,74 BaTiO3 also increases the fracture toughness of HA-BaTiO3 
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composite system due to piezoelectric energy dissipation.
75

 In addition, the presence of 

BaTiO3 as the secondary phase in HA-BaTiO3 composite reveals enhanced dielectric constant 

as well as piezo- and pyro-electric coefficients.
64,76 

The HA-BaTiO3 composite system has 

been reported to promote osteogenesis in the dog femur bone.72 Another electroactive non-

piezoelectric perovskite biocompatible material is CaTiO3 (CT) which is suggested to be a 

potential substrate for osteointegration and osteoconduction.
77,78

 

1.4. Objectives of the dissertation 

The present dissertation is divided into two parts. The first part is concerned with 

developing/modifying the electrical analogue of a living cell to facilitate the evaluation of the 

E-field parameters which can be utilized for faster osteointegration of bone cells with 

biomaterial substrate. In the second part, enhancement of electrical properties of HA by 

developing piezobiocomposite as well as FGMs has been discussed. The developed HA 

based piezobiocomposite and FGMs can have close resemblance with the living bone in 

terms of electrical, mechanical and biochemical characteristics. Surface charges developed on 

the biomaterial substrates are also reported to stimulate the osteointegration with the bone 

tissue. Therefore, the analysis of the electrical properties of polarized electroactive 

biomaterials has been carried out in the present dissertation. Based on these considerations, 

the objectives of the present dissertation are: 

(i) To develop/modify the electrical equivalent of the single living cell by considering various 

fundamental aspects of ionic flow across the cell and nuclear membranes. 

(ii) To evaluate the time constant of the modified electrical model of a single living cell.  

(iii) To study the variation of the time constant with the cellular parameters such as cell size, 

cell and nuclear membrane capacitances and resistances and cytoplasmic and 

nucleoplasmic resistances and its effect on various cell fate processes.  
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(iv) To evaluate the E-field intensity required to electroporate the cell for different E-field 

pulse duration. Thereafter, to study the response of various cellular compartments to E-

field pulses of various durations. 

(iii) To develop the monoliths of HA and Na0.5K0.5NbO3 (NKN) as well as composite of HA 

and NKN via spark plasma sintering route. 

(iv) To study their electrical characteristics such as thermally stimulated depolarization 

current (TSDC), ac conductivity and dielectric and loss behaviour after poling at very 

high E-field strength (up to 100 kV/cm) over the wide range of temperature. 

(v) To examine the surface characteristics of HA electrets via X-ray photoelectron 

spectroscopy. 

(vi) To develop FGMs comprising of HA, BaTiO3 and HA, CaTiO3 via spark plasma 

sintering route. 

(vii) To analyse the microstructural (SEM) properties of developed FGMs as well as to 

determine the integration of different layers in developed FGMs. 

(viii) To study the electrical properties of FGMs such as dielectric behaviour and ac 

conductivity as well as impedance spectroscopy over the wide range of temperature and 

frequency. 

1.5. Outline for the dissertation 

The present dissertation has been divided into 6 chapters. Chapter 1 introduces the relevance 

of carrying out the present research and provide the research gap in the present domain of 

study. Chapter 2 reviews the bioelectrical characteristics of bone, polarization behaviour of 

hydroxyapatite and its relevance towards the development of electroactive prosthetic 

implants. In addition, the influence of E-field on various complex cellular functionalities 

along with the need for the development of the electrical model of the living cell and its 

consequences have been elaborately discussed. Also, the necessity and relevance for the 
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development of FGM have been mentioned objectively. Chapter 3 presents the modification 

and analytical analyses of the electrical equivalent of the living cell. In addition, the 

validation of the electrical equivalent model has been carried out by evaluating the E-field 

parameters required for electroporation to occur and thereafter, comparing them with the 

experimental reports. Chapter 4 is about the study of the electrical characteristics of polarized 

HA, NKN and HA–NKN composite system. Also, discussion on the detailed methodology of 

thermally stimulated depolarization current measurements as well as various polarization and 

depolarization mechanisms occurring in HA is followed. Chapter 5 details the development 

of functionally graded materials comprising of HA, BaTiO3 and HA, CaTiO3. The dielectric, 

ac conductivity as well as impedance spectroscopic behaviour has been elaborately discussed 

for the developed FGMs. Chapter 6 gives a conclusion and future scope for the present 

dissertation. The overall structure of the present dissertation is provided in Fig. 1.1. 
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Fig. 1.1. Structure of the present dissertation 
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