
Chapter 4

Fixed points for (ϕ-ψ)-weak

contractions in fuzzy and Menger

spaces

4.1 Introduction

In metric fixed point theory, there are several generalizations of the Banach con-

traction theorem. One such generalization from large existing literature in this

line of research is weak contraction principal which establishes a new contraction

in between Banach contraction and the non-expansive mapping. Alber et al. [1]

first introduced the weak contraction in Hilbert spaces after that, it was adopted

to metric space by Rhoades [87]. Following the similar ideas of such weak contrac-

tion, several results were established, not all of which are generalization of Banach

contraction theorem. Actually, they contribute a much larger class of contraction

known as weak contraction in metric fixed point theory. To establish existence and
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uniqueness of fixed point theorem in Menger PM-spaces, contraction is one of the

basic tools. Sehgal and Bharucha-Reid [101] introduced probabilistic k-contraction

and proved probabilistic version of classical Banach fixed point principle. Efforts

have been made over the years to generalize and extend the k-contraction, which

let to the concepts of ϕ-contraction, weak-contraction and generalized weak con-

traction etc. in Menger and fuzzy metric spaces. Few references from the large

exiting literature are [4, 32, 39, 87]. In other spaces, which are generalizations of

usual metric spaces, such ideas and results are also addressed by several authors

(see [5, 6, 7, 11, 30, 54, 64, 66, 81, 84, 93, 115]). Motivated by the recent results in

[25, 32, 92], in the present work we prove a fixed point theorem for weak contraction

mappings in fuzzy metric spaces, and another theorem is proved in Menger space.

The results in this chapter are established in fuzzy metric spaces in the sense of

George and Veeramani.

The following lemmas are required to prove our results.

Lemma 4.1. [92] If T is a continuous t-norm, and {an}, {bn} and {cn} are se-

quences such that an → a, cn → c as n→∞, then lim
k→∞

T (ak, T (bk, ck)) = T (a, T ( lim
k→∞

bk, c))

and lim
k→∞

T (ak, T (bk, ck)) = T (a, T ( lim
k→∞

bk, c)).

Lemma 4.2. [92] Let {f(k, .) : (0,∞) → (0, 1], k = 0, 1, 2, . . . } be a sequence of

functions such that f(k, .) is continuous and monotone increasing for each k ≥ 0.

Then lim
k→∞

f(k, t) is a left continuous function in t and lim
k→∞

f(k, t) is a right contin-

uous function in t.

4.2 A theorem in Menger spaces

Theorem 4.3. Let (X,F, T ) be a complete PM-space such that ′T ′ is an arbitrary

continuous t-norm and let f : X → X be a self mapping satisfying the following
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condition:

ψ(Ffx,fy(t)) ≤ ψ(Fx,y(t))− ϕ(Fx,y(t)), (4.1)

where ψ, ϕ : (0, 1]→ [0,∞) are two functions such that:

(i) ψ is monotone decreasing and continuous function with ψ(s) = 0 if and only if

s = 1,

(ii) ϕ is lower semi-continuous function with ϕ(s) = 0 if and only if s = 1.

Then f has a unique fixed point in X.

Proof. Let x0 ∈ X. We define a sequence {xn} ⊂ X such that xn+1 = fxn, for each

n ≥ 0. If there exists a positive integer k such that xk = xk+1 then xk is a fixed

point of f. Hence, we shall assume that xn 6= xn+1, for all n ≥ 0. Now, from (4.1)

ψ(Fxn,xn+1(t)) = ψ(Ffxn−1,fxn(t)) ≤ ψ(Fxn−1,xn(t))− ϕ(Fxn−1,xn(t)). (4.2)

Since ψ is monotone decreasing, we have

Fxn−1,xn(t) ≤ Fxn,xn+1(t).

Therefore, {Fxn,xn+1(t)} is a monotone increasing sequence of non-negative real num-

bers. Hence, there exists r > 0 such that

lim
n→∞

Fxn,xn+1(t) = r.
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Taking the limit as n→∞ in (4.2), we obtain

ψ(r) ≤ ψ(r)− ϕ(r),

which is a contradiction unless r = 1.

Hence,

lim
n→∞

Fxn,xn+1(t) = 1. (4.3)

Next, we show that {xn} is a Cauchy sequence. If not so, there exist λ, ε > 0 with

λ ∈ (0, 1) such that for each integer k, there are two integers l(k) and m(k) such

that

m(k) > l(k) ≥ k,

Fxl(k),xm(k)
(ε) ≤ 1− λ and

Fxl(k),xm(k)−1
(ε) > 1− λ.

Now, by triangle inequality, for any s with ε
2
> s > 0 and for all k > 0, we have

1− λ ≥ Fxl(k),xm(k)
(ε)

≥ T (Fxl(k),xl(k)+1
(s), T (Fxl(k)+1,xm(k)+1

(ε− 2s), Fxm(k)+1,xm(k)
(s))).

(4.4)

For t > 0, we define the function

h1(t) = lim
k→∞

Fxl(k)+1,xm(k)+1
(t).
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Taking limit supremum as k → ∞ on both the sides of (4.4), using (4.3), the

continuity of T and Lemma 4.1, we get that

1− λ ≥ T (1, T ( lim
k→∞

Fxl(k)+1,xm(k)+1
(ε− 2s), 1))

= T (1, lim
k→∞

Fxl(k)+1,xm(k)+1
(ε− 2s))

= lim
k→∞

Fxl(k)+1,xm(k)+1
(ε− 2s)

= h1(ε− 2s).

By an application of Lemma 4.2, h1 is left continuous. Taking limit as s→ 0 in the

above ineqaulity, we obtain,

h1(ε) = lim
k→∞

Fxl(k)+1,xm(k)+1
(ε) ≤ 1− λ. (4.5)

Next, for all t > 0, we define the function

h2(t) = lim
k→∞

Fxl(k)+1,xm(k)+1
(t).

In the similar process, we can prove that

h2(ε) = lim
k→∞

Fxl(k)+1,xm(k)+1
(ε) ≥ 1− λ. (4.6)

Combining (4.5) and (4.6), we get

lim
k→∞

Fxl(k)+1,xm(k)+1
(ε) ≤ 1− λ ≤ lim

k→∞
Fxl(k)+1,xm(k)+1

(ε).

This implies that

lim
k→∞

Fxl(k)+1,xm(k)+1
(t) = 1− λ. (4.7)



Chapter 4. Fixed points for (ϕ-ψ)-weak contractions in fuzzy . . . 56

Again, by (4.5)

lim
k→∞

Fxl(k),xm(k)
(ε) ≤ 1− λ. (4.8)

For t > 0, we define the function

h3(t) = lim
k→∞

Fxl(k),xm(k)
(t).

Now for s > 0,

Fxl(k),xm(k)
(ε+ 2s) ≥ T (Fxl(k),xl(k)+1

(s), T (Fxl(k)+1,xm(k)+1
(ε), Fxm(k)+1,xm(k)

(s))).

Taking limit infimum as k →∞ on both the sides, we have

lim
k→∞

Fxl(k),xm(k)
(ε+ 2s) ≥ T (1, T ( lim

k→∞
Fxl(k)+1,xm(k)+1

(ε), 1)) = 1− λ.

Thus, h3(ε+ 2s) ≥ 1− λ.

Taking limit as s→ 0, we obtain

h3(ε) = lim
k→∞

Fxl(k),xm(k)
(ε) ≥ 1− λ. (4.9)

Combining (4.8) and (4.9), we obtain

lim
k→∞

Fxl(k),xm(k)
(t) = 1− λ. (4.10)

Now,

ψ(Fxl(k)+1,xm(k)+1
(ε)) ≤ ψ(Fxl(k),xm(k)

(ε))− ϕ(Fxl(k),xm(k)
(ε)).

Taking limit as k →∞, and using (4.7) and (4.10) we obtain

ψ(1− λ) ≤ ψ(1− λ)− ϕ(1− λ), which is a contradiction.
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Thus, {xn} is a Cauchy sequence. Since X is complete, there exists p ∈ X such that

xn → p as n→∞. Now,

ψ(Fxn+1,fp(t)) = ψ(Ffxn,fp(t))

≤ ψ(Fxn,p(t))− ϕ(Fxn,p(t)).

Taking limit as n→∞, we get

ψ(Fp,fp(t)) ≤ ψ(Fp,fp(t))− ϕ(Fp,fp(t)) = 0,

which implies that ϕ(Fp,fp(t)) = 1, that is,

Fp,fp(t) = 1 or p = fp.

We next establish that fixed point is unique. Let p and q be two fixed points of f.

Putting x = p and y = q in (4.1), we get

ψ(Ffp,fq(t)) ≤ ψ(Fp,q(t))− ϕ(Fp,q(t))

or, ψ(Fp,q(t)) ≤ ψ(Fp,q(t)− ϕ(Fp,q(t)

or, ϕ(Fp,q(t)) ≤ 0,

or, equivalently, ψ(Fp,q(t)) = 1, that is, p = q.

The following example is in support of Theorem 4.3.

Example 4.1. Let X = [0, 1]. Define a function F : X ×X → D+ by

Fx,y(t) =

 1, if t ≤ 0

e−
|x−y|

t , if t > 0.
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for all x, y ∈ X. Then (X,F, T ) is a complete Menger probabilistic metric space,

where ′T ′ is product t-norm. Let ψ, ϕ : (0, 1]→ [0,∞) be defined by

ψ(s) =
1

s
− 1, ϕ(s) =

1

s
− 1√

s
, ∀s ∈ (0, 1]. (4.11)

Then ψ and ϕ satisfy all the conditions of Theorem 4.3. Let the mapping f : X → X

be defined by f(x) = x2

4
, for all x ∈ X.

Now, we shall show that f satisfy (4.1).

With the choices of ϕ and ψ as in (4.11), the inequality (4.1) takes the form

1

Ffx,fy(t)
− 1 ≤ 1

Fx,y(t)
− 1− 1

Fx,y(t)
+

1√
Fx,y(t)

,

that is,

Ffx,fy(t) ≥
√
Fx,y(t).

Now,

Ffx,fy(t) = e−
|fx−fy|

t

= e−
|x2−y2|

4t

= e−(
|x−y|

2t
)(
|x+y|

2
)

≥ e−(
|x−y|

2t
)

=
√
Fx,y(t).

Hence, all the conditions of Theorem (4.3) are satisfied.

Thus, 0 is the unique fixed point of f.
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4.3 A theorem in fuzzy metric spaces

Theorem 4.4. Let (X,M, T ) be a complete fuzzy metric space with an arbitrary

continuus t-norm ′T ′ and let f : X → X be a self mapping satisfying the following

condition:

ψ(M(fx, fy, t)) ≤ ψ(min(M(x, y, t),M(x, fx, t),M(y, fy, t)))

−ϕ(min(M(x, y, t),M(y, fy, t))), (4.12)

where ψ, ϕ : (0, 1]→ [0,∞) are two functions such that:

(i) ψ is continuous and monotone decreasing function with ψ(t) = 0 if and only if

t = 1,

(ii) ϕ is lower semi continuous function with ϕ(t) = 0 if and only if t = 1.

Then f has a unique fixed point.

Proof. Let x0 ∈ X. We define the sequence {xn} as xn+1 = fxn, for each n ≥ 0. If

there exists a positive integer k such that xk = xk+1, then xk is a fixed point of f.

Hence, we shall assume that xn 6= xn+1, for all n ≥ 0. Now, from (4.12)

ψ(M(xn+1, xn+2, t)) = ψ(M(fxn, fxn+1, t))

≤ ψ(min{M(xn, xn+1, t),M(xn, xn+1, t),M(xn+1, xn+2, t)})

−ϕ(min{M(xn, xn+1, t),M(xn+1, xn+2, t)}). (4.13)

Suppose that M(xn, xn+1, t) > M(xn+1, xn+2, t), for some positive integer n. Then

from (4.13), we have
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ψ(M(xn+1, xn+2, t)) ≤ ψ(M(xn+1, xn+2, t))− ϕ(M(xn+1, xn+2, t)),

that is, ϕ(M(xn+1, xn+2, t)) ≤ 0,

which implies that M(xn+1, xn+2, t) = 1.

This gives that xn+1 = xn+2, which is a contradiction.

Therefore, M(xn+1, xn+2, t) ≤ M(xn, xn+1, t) for all n ≥ 0, and {M(xn, xn+1, t)} is

a monotone increasing sequence of non-negative real numbers. Hence, there exists

r > 0 such that lim
n→∞

M (xn, xn+1, t) = r.

In view of the above facts, from (4.13), we have

ψ(M(xn+1, xn+2, t)) ≤ ψ(M(xn, xn+1, t))− ϕ(M(xn, xn+1, t)), for all n ≥ 0.

Taking the limit as n → ∞ in the above inequality and using the continuities of ϕ

and ψ we have ψ(r) ≤ ψ(r)− ϕ(r), which is a contradiction unless r = 1. Hence

M(xn, xn+1, t)→ 1 as n→∞. (4.14)

Next, we claim that {xn} is a Cauchy sequence. If not so, there exist λ, ε > 0 with

λ ∈ (0, 1) such that for each integer k, there exists integers l(k) and m(k) such that

m(k) > l(k) ≥ k and

M(xl(k), xm(k), ε) ≤ 1− λ, for all k > 0. (4.15)

By choosing m(k) to be the smallest integer exceeding l(k) for which (4.15) holds,

then for all k > 0, we have

M(xl(k), xm(k)−1, ε) > 1− λ.
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Now, by triangle inequality, for any s with 0 < s < ε
2
, for all k > 0, we have

1− λ ≥ M(xl(k), xm(k), ε)

≥ T (M(xl(k), xl(k)+1, s), T (M(xl(k)+1, xm(k)+1, ε− 2s),M(xm(k)+1, xm(k), s))).

(4.16)

For t > 0, we define the function h1(t) = lim
n→∞

M
(
xl(k)+1, xm(k)+1, t

)
.

Taking limit supremum as k → ∞ on both the sides of (4.16), using (4.14), the

continuity property of T and Lemma 4.1, we conclude that

1− λ ≥ T (1, T ( lim
k→∞

M(xl(k)+1, xm(k)+1, ε− 2s), 1))

= lim
k→∞

M(xl(k)+1, xm(k)+1, ε− 2s)

= h1(ε− 2s).

By an application of Lemma 4.2, h1 is left continuous.

Letting limit as s→ 0 in the above inequality, we obtain

h1(ε) = lim
k→∞

M(xl(k)+1, xm(k)+1, ε) ≤ 1− λ. (4.17)

Next, for all t > 0, we define the function

h2(t) = lim
k→∞

M
(
xl(k)+1, xm(k)+1, t

)
.

In above a process, we can prove that

h2(ε) = lim
k→∞

M
(
xl(k)+1, xm(k)+1, ε

)
≥ 1− λ. (4.18)

Combining (4.17) and (4.18), we get
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lim
k→∞

M(xl(k)+1, xm(k)+1, ε) ≤ 1− λ ≤ lim
k→∞

M(xl(k)+1, xm(k)+1, ε).

This implies that

lim
n→∞

M(xl(k)+1, xm(k)+1, t) = 1− λ. (4.19)

Now by (4.17),

lim
k→∞

M(xl(k), xm(k), ε) ≤ 1− λ.

For t > 0, we define the function

h3(t) = lim
k→∞

M(xl(k), xm(k), ε). (4.20)

Now for s > 0,

M(xl(k), xm(k), ε+2s) ≥ T (M(xl(k), xl(k)+1, s), T (M(xl(k)+1, xm(k)+1, ε),M(xm(k)+1, xm(k), s))).

Taking limit infimum as k →∞ on both the sides, we have

lim
k→∞

M(xl(k), xm(k), ε+ 2s) ≥ T (1, T ( lim
k→∞

M(xl(k)+1, xm(k)+1, ε), 1)) = 1− λ.

Thus,

h3(ε+ 2s) ≥ 1− λ. (4.21)

Taking limit as s→ 0, we get h3(ε) ≥ 1−λ. Combining (4.20) and (4.21), we obtain

lim
n→∞

M(xl(k), xm(k), ε) = 1.

Now,

ψ(M(xl(k)+1, xm(k)+1, ε)) ≤ ψ(min{M(xl(k), xm(k), ε),M(xl(k), xl(k)+1, ε),M(xm(k), xm(k)+1, ε)})

−ϕ(min{M(xl(k), xm(k), ε),M(xm(k), xm(k)+1, ε)}).
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Taking limit as k →∞, we get

ψ(1− λ) ≤ ψ(1− λ)− ϕ(1− λ), which is a contradiction.

Thus, {xn} is a Cauchy sequence. Since X is complete, there exists p ∈ X such that

xn → p as n→∞. Now,

ψ(M(xn+1, fp, t)) = ψ(M(fxn, fp, t))

≤ ψ(min{M(xn, p, t),M(xn, xn+1, t),M(p, fp, t)})

−ϕ(min{M(xn, p, t),M(p, fp, t)}).

Taking limit as n→∞, we get

ψ(M(p, fp, t)) ≤ ψ(M(p, fp, t))− ϕ(M(p, fp, t)),

which implies that ϕ(M(p, fp, t)) = 0, that is,

M(p, fp, t) = 1 or p = fp.

We next establish that fixed point is unique. Let p and q be two fixed points of f.

Putting x = p and y = q in (4.12),

ψ(M(fp, fq, t)) ≤ ψ(min{M(p, q, t),M(p, fp, t),M(q, fq, t)})−ϕ(min{M(p, q, t),M(q, fq, t)})

or, ψ(M(p, q, t)) ≤ ψ(min{M(p, q, t),M(p, p, t),M(q, q, t)})−ϕ(min{M(p, q, t),M(q, q, t)})

or, ψ(M(p, q, t)) ≤ ψ(M(p, q, t))− ϕ(M(p, q, t))

or, ϕ(M(p, q, t)) ≤ 0

or, equivalently, M(p, q, t) = 1, that is, p = q.

The following example is in support of Theorem 4.4.
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Example 4.2. Let X = [0, 1] and define M : X ×X × (0,∞]→ [0, 1] by

M(x, y, t) = e−
|x−y|

t ,

for all x, y ∈ X and t > 0. Then (X,M, T ) is a complete fuzzy metric space, where

′T ′ is a product t-norm. Let ψ, ϕ : (0, 1] → [0,∞) be defined by ψ(s) = 1
s
− 1 and

ϕ(s) = 1
s
− 1√

s
. Then ψ and ϕ satisfy all the conditions of Theorem (4.4). Let the

mapping f : X → X be defined by fx = x
2
, for all x ∈ X.

Now, we will show that

ψ(M(fx, fy, t)) ≤ ψ(M(x, y))− ϕ(N(x, y)), (4.22)

where M(x, y) = min{M(x, y, t), M(x, fx, t), M(y, fy, t)}

and N(x, y) = min{M(x, y, t), M(y, fy, t)}.

Now,

max
{
|x− y|, x

2
,
y

2

}
=



x− y 0 ≤ y ≤ x
2

x
2

x
2
< y ≤ x

y
2

x < y ≤ 2x

y − x 2x < y ≤ 1

and

max
{
|x− y|, y

2

}
=


x− y 0 ≤ y ≤ 2x

3

y
2

2x
3
< y ≤ 2x

y − x 2x < y ≤ 1.

Case (1): When 0 ≤ y ≤ x
2

or 2x < y ≤ 1, then

ψ(M(fx, fy, t)) = ψ(e−|
x−y
2t
|) = e|

x−y
2t
| − 1
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and

ψ(M(x, y))− ϕ(N(x, y)) = ψ(e−
|x−y|

t )− ϕ(e−
|x−y|

t ) = e|
x−y
2t
| − 1.

Obviously, in this case, (4.22) is satisfied.

Case (2): When x
2
< y ≤ 2x

3
, then

ψ(M(fx, fy, t)) = ψ(e−
x−y
2t ) = e

x−y
2t − 1

and

ψ(M(x, y))− ϕ(N(x, y)) = ψ(e−
x
2t )− ϕ(e−

x−y
t ) = e

x
2t − 1− e

x−y
t + e

x−y
2t .

In this case, x
2
≥ x−y and exponetial function is an increasing function. Therefore,

e
x−y
2t ≤ e

x
2t − ex−y

t + e
x−y
2t and hence (4.22) is satisfied.

Case (3): When 2x
3
< y ≤ x, then

ψ(M(fx, fy, t)) = ψ(e−
x−y
2t ) = e

x−y
2t − 1

and

ψ(M(x, y))− ϕ(N(x, y)) = ψ(e−
x
2t )− ϕ(e−

y
2t ) = e

x
2t − 1− e

y
2t + e

y
4t .

Since, in this case, x−y
2
≤ y

4
and x

2
≥ y

2
, (4.22) is satisfied.

Case (4): x < y ≤ 2x, then

ψ(M(fx, fy, t)) = ψ(e−
y−x
2t ) = e

y−x
2t − 1
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and

ψ(M(x, y))− ϕ(N(x, y)) = ψ(e−
y
2t )− ϕ(e−

y
2t ) = e

x
4t − 1.

Since, in this case, y
2
≥ y − x, (4.22) is satisfied. Hence, all the conditions of

Theorem (4.4) are satisfied. Thus, 0 is the unique fixed point of f.

***********
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