
Chapter 3

Fixed points for ϕ-contraction in

Menger PGM-spaces

3.1 Introduction

Contraction is one of the basic tools to prove existence and uniqueness of fixed point

theorems in PM-spaces. Sehgal and Bharucha-Reid [101] introduced probabilistic k-

contraction and proved probabilistic version of classical Banach fixed point principle.

After that Ciric [26] generalizes the k-contraction and introduced the concept of ϕ-

contraction in PM-space. In spite of the fact that probabilistic ϕ-contractions are

natural generalizations of probabilistic k-contractions, the techniques used to prove

the existence and uniqueness of fixed point results for probabilistic k-contractions

are no longer usable for probabilistic ϕ-contractions. In 2010, Ciric [26] presented

a fixed point theorem for probabilistic ϕ-contractions. Soon after the publication

of Ciric’s paper, Jachymski [53] found a counter example to the key lemma in [26],
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and established a modified version of Ciric’s ϕ-function. Recently, Fang [39] further

weakened the conditions on ϕ-function.

In 2006, Mustafa and Sims [70] introduced the notion of a generalized metric space.

After that many authors obtained several fixed point theorems for mappings satisfy-

ing different contractive conditions in generalized metric spaces (see, [31, 68, 69, 89]).

In 2014, Zhou et al. [116] introduced the concept of a generalized Menger proba-

bilistic metric space. Further, Zhu et al. [117] obtained some fixed point theorems

in PGM-spaces. For some recent results in PGM-spaces, we refer [4, 18, 24, 29, 34,

63, 107].

The purpose of this work is to introduce a new class of ϕ-contraction in PGM-

spaces and to establish important fixed point results. We prove the existence and

uniqueness of a fixed point for ϕ-contraction in PGM-spaces. The obtained results

are illustrated by examples.

3.2 Preliminaries

We have already discussed the important definitions in first chapter. Here, we give

an example of Menger PGM-space

Example 3.1 ([116]). Let (X,F, T ) be a PM-space. Define a function G : X ×X ×

X → D+ by Gx,y,z(t) = min {Fx,y(t), Fy,z(t), Fx,z(t)} , for all x, y, z ∈ X and t > 0.

Then (X,G, T ) is a Menger PGM-space.

Example 3.2. Let (X, d) be a metric space. If we define

Gx,y,z (t) =

(
t

1 + t

)d(x,y)+d(y,z)+d(z,x)
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and we choose t-norm as product t-norm defined by

Tp (a, b) = a.b ∀ a, b ∈ [0, 1] .

Then (X,G, Tp) is a Menger PGM-space. In fact, Gx,y,z (0) = 0. Also, sup
t>0

Gx,y,z (t) =

1, Gx,y,z (t) is non-decreasing and continuous in t. Therefore, Gx,y,z (t) is a distribu-

tion function.

By the definition of Gx,y,z (t), it is obvious that (i) and (iii) in Definition 1.12

hold. Next, we will show that (ii) and (iv) of Definition 1.12 also hold. Since

d (x, y) ≤ d (x, z) + d (z, y) , ∀x, y, z ∈ X, with y 6= z, we have that

d (x, y) + d (x, y) ≤ d (x, y) + d (x, z) + d (z, y) .

Then (
t

1 + t

)d(x,y)+d(x,y)
≥
(

t

1 + t

)d(x,y)+d(y,z)+d(z,x)
.

Thus, Gx,x,y (t) ≥ Gx,y,z (t), for all x, y, z ∈ X with y 6= z, and t > 0. By the

definition of Gx,y,z (t), we get

Gx,y,z (t+ s) =

(
t+ s

1 + t+ s

)d(x,y)+d(y,z)+d(z,x)
.

Since, t
1+t

is strictly increasing on [0, 1), we have

(
t+ s

1 + t+ s

)d(x,y)+d(y,z)+d(z,x)
≥
(

t+ s

1 + t+ s

)d(x,a)+d(a,y)+d(y,z,)+d(z,a)+d(a,x)
=

(
t+ s

1 + t+ s

)d(x,a)+d(a,x)(
t+ s

1 + t+ s

)d(a,y)+d(y,z)+d(z,a)
≥
(

t

1 + t

)d(x,a)+d(x,a)(
s

1 + s

)d(a,y)+d(y,z)+d(z,a)
= TP

((
t

1 + t

)d(x,a)+d(x,a)
,

(
s

1 + s

)d(a,y)+d(y,z)+d(z,a))
.
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This implies that Gx,y,z (t+ s) ≥ TP (Gx,a,a (t) , Ga,y,z (s)) . Thus, (X,G, TP ) is a

Menger PGM-space.

Definition 3.1 ([4]). Let (X,G, T ) be a Menger PGM-space with a continuous t-

norm T . A mapping f : X → X is said to be a ϕ-contraction in Menger PGM-spaces

if there exists a function ϕ ∈ Φ such that

Gfx,fy,fz (ϕ (t)) ≥ Gx,y,z (t) , for all x, y, z ∈ X and t > 0. (3.1)

Definition 3.2 ([46]). A t-norm T is said to be of H-type if the family {T p}p∈N of

its iterates defined for each t ∈ (0, 1) by T 0(t) = 1, Tm(t) = T (t, Tm−1(t)) for all

m ∈ N is equicontinuous at t = 1.

Definition 3.3. In second chapter, we have defined the class Φ of functions ϕ as

follows: Φ contains all functions ϕ : R+ → R+ such that for each t > 0 there exists

r > t with ϕ (r) ≤ t.

An example of this type of function is given as: Let ϕ : R+ → R+ defined by

ϕ (t) =


0 if t = 0

t
4n

if 1
4n
≤ t < 1

4n−1

kt if t ≥ 1,where 0 < k < 1.

3.3 Main Results

Lemma 3.4. Suppose that the sequence
{
Gxn,xn+1,xn+1 (tm)

}
is non-decreasing in

both the variables m and n, i.e., Gxn,xn+1,xn+1 (tm) ≥ Gxn−1,xn,xn (tm) and Gxn,xn+1,xn+1 (tm+1) ≥

Gxn,xn+1,xn+1 (tm) for each m,n ∈ N. Then

lim
n→∞

(
lim
m→∞

Gxn,xn+1,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

Gxn,xn+1,xn+1 (tm)
)
.

Proof. The proof follows the similar way as that of Lemma 2.3.
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Lemma 3.5. Let (X,G, T ) be a Menger PGM-space with a t-norm T . Let {xn} be a

sequence in (X,G, T ). If there exists a function ϕ ∈ Φ such that Gxn,xn+1,xn+1 (ϕ (t)) ≥

Gxn−1,xn,xn (t) , for all n ∈ N and t > 0, then lim
n→∞

Gxn,xn+1,xn+1 (t) = 1.

Proof. Let t0 > 0 be arbitrary. Since ϕ ∈ Φ, there exists t1 > t0 such that ϕ (t1) ≤

t0. Now, since Gxn,xn+1,xn+1 (ϕ (t)) ≥ Gxn−1,xn,xn (t) , by the monotonic increasing

property of distribution function, we have

Gxn,xn+1,xn+1 (t1) ≥ Gxn,xn+1,xn+1 (t0)

≥ Gxn,xn+1,xn+1 (ϕ (t1))

≥ Gxn−1,xn,xn (t1)

≥ Gxn−1,xn,xn (t0) .

Thus, the sequence
{
Gxn,xn+1,xn+1 (t0)

}
is monotonically increasing in n and being

bounded above, it is convergent. Let lim
n→∞

Gxn,xn+1,xn+1 (t0) = l. We shall show that

l = 1. On contrary, suppose l < 1. Then lim
n→∞

Gxn,xn+1,xn+1 (t1) = l (by the above

inequality). By squeeze lemma,

lim
n→∞

Gxn,xn+1,xn+1 (t) = l < 1, ∀ t ∈ [t0, t1] .

Let t̄ = supA, where

A =
{
t : lim

n→∞
Gxn,xn+1,xn+1 (t) = l

}
. (3.2)

If t̄ is finite then there exists a monotonically increasing sequence {tm} such that for

all m ∈ N, lim
n→∞

Gxn,xn+1,xn+1 (tm) = l and tm → t̄ as m → ∞. Since Gxn,xn+1,xn+1 is

left continuous,

Gxn,xn+1,xn+1 (t̄) = lim
m→∞

Gxn,xn+1,xn+1 (tm) .
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Therefore, by using Lemma 3.4 and lim
n→∞

Gxn,xn+1,xn+1 (tm) = l, we have

lim
n→∞

Gxn,xn+1,xn+1 (t̄) = lim
n→∞

(
lim
m→∞

Gxn,xn+1,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

Gxn,xn+1,xn+1 (tm)
)

= l

Therefore, lim
n→∞

Gxn,xn+1,xn+1 (t̄) = l. Then proceeding as above, there exists t̄1 such

that lim
n→∞

Gxn,xn+1,xn+1 (t̄1) = l and t̄1 > t̄, which is a contradiction to (3.2). Thus,

for all t > t0,

lim
n→∞

Gxn,xn+1,xn+1 (t) = l. (3.3)

Since Gx,y,y (t)→ 1 as t→∞, there exists s > t0 such that Gxk,xk+1,xk+1
(s) > l, for

given k ∈ N. Now, since
{
Gxn,xn+1,xn+1 (t0)

}
is monotonically increasing in n and as

t0 > 0 is arbitrary, we get that
{
Gxn,xn+1,xn+1 (t)

}
is monotonically increasing in n

for all t > 0. Thus, the sequence
{
Gxn,xn+1,xn+1 (s)

}
is monotonically increasing in

n and we have Gxn,xn+1,xn+1 (s) > l. But this is a contradiction as l < 1. Therefore,

lim
n→∞

Gxn,xn+1,xn+1 (t) = 1, for all t > t0. Since t0 > 0 is arbitrary, we conclude that

lim
n→∞

Gxn,xn+1,xn+1 (t) = 1, for all t > 0.

Lemma 3.6. Let (X,G, T ) be a Menger PGM-space with a t-norm T of H-type.

Let {xn} be a sequence in (X,G, T ). If there exists a function ϕ ∈ Φ such that

Gxn,xn+1,xn+1 (ϕ (t)) ≥ Gxn−1,xn,xn (t) , (3.4)

for all n ∈ N and t > 0 then {xn} is a Cauchy sequence in X.

Proof. Let β > 0 be arbitrary.

Since ϕ ∈ Φ, then for each t1 with 0 < t1 < β there exists r1 > t1 such that

ϕ(r1) ≤ t1.
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Now, if ϕ(r1) < t1, then we take t = t1 and r = r1.

If ϕ(r1) = t1, then choose t as min{r1, β} > t > t1 and r = r1.

Then in each case we have β > t > ϕ(r) and r > t.

Let n ≥ 1. Then for each t chosen in this way, we prove by induction that for any

k ∈ N,

Gxn,xn+k,xn+k
(t) ≥ T k−1

(
Gxn,xn+1,xn+1 (t− ϕ(r))

)
. (3.5)

For k = 1, from (3.5) we have Gxn,xn+1,xn+1(t) ≥ T 0
(
Gxn,xn+1,xn+1 (t− ϕ(r))

)
=

Gxn,xn+1,xn+1 (t− ϕ(r)) .

Therefore, (3.5) holds for k = 1. Assume that (3.5) holds for some k. Now, since T

is monotone, from (iv) of Definition 1.12 and (3.4) we have

Gxn,xn+k+1,xn+k+1
(t) = Gxn,xn+k+1,xn+k+1

(t− ϕ(r) + ϕ(r))

≥ T
(
Gxn,xn+1,xn+1 (t− ϕ(r)) , Gxn+1,xn+k+1,xn+k+1

(ϕ(r))
)

≥ T
(
Gxn,xn+1,xn+1 (t− ϕ(r)) , Gxn,xn+k,xn+k

(r)
)

≥ T
(
Gxn,xn+1,xn+1 (t− ϕ(r)) , Gxn,xn+k,xn+k

(t)
)

= T k
(
Gxn,xn+1,xn+1 (t− ϕ(r))

)
,

which completes the induction steps. Hence, (3.5) holds for all k ∈ N and for any t <

β. To prove {xn} is a Cauchy sequence, we need to prove that lim
m,n,l→∞

Gxn,xm,xl(t) = 1,

for all t > 0. To this end, we first prove that lim
m,n→∞

Gxn,xm,xm(t) = 1, for all t > 0.

Now, let 0 < ε < 1. Since {T n(t)} is equicontinuous at t = 1 and T n(1) = 1, so there

exists δ > 0 such that

T n(s) > 1− ε, for all s ∈ (1− δ, 1] and n ≥ 1. (3.6)
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From Lemma 3.5, it follows that lim
n→∞

Gxn,xn+1,xn+1 (t− ϕ(r)) = 1. Hence, there exists

n0 ∈ N such that Gxn,xn+1,xn+1 (t− ϕ(r)) > 1− δ, for all n ≥ n0. Therefore, by (3.5)

and (3.6), we have Gxn,xn+k,xn+k
(t) > 1− ε, for all k ≥ 0. Hence,

lim
n,m→∞

Gxn,xm,xm (t) = 1, (3.7)

for any 0 < t < β. Now, by (iv) in Definition 1.12, we have, for all t < β,

Gxn,xm,xl (t) ≥ T

(
Gxn,xm,xm

(
t

2

)
, Gxm,xm,xl

(
t

2

))
= T

(
Gxn,xm,xm

(
t

2

)
, Gxl,xm,xm

(
t

2

))
.

Taking limit m,n, l→∞ in this inequality and using the continuity of T, we get

lim
m,n,l→∞

Gxn,xm,xl (t) ≥ T

(
lim

m,n→∞
Gxn,xm,xm

(
t

2

)
, lim
m,l→∞

Gxl,xm,xm

(
t

2

))
. (3.8)

From (3.7), for all t < β, we have

lim
n,m→∞

Gxn,xm,xm

(
t

2

)
= 1,

lim
l,m→∞

Gxl,xm,xm

(
t

2

)
= 1.

Using these two limits in inequality (3.8), we get

lim
m,n,l→∞

Gxn,xm,xl (t) ≥ T (1, 1) = 1.

That is, lim
m,n,l→∞

Gxn,xm,xl (t) = 1, for all 0 < t < β. Since, β > 0 is arbitrary, we have

lim
m,n,l→∞

Gxn,xm,xl (t) = 1, for all t > 0.

Hence {xn} is a Cauchy sequence.
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Lemma 3.7. Let (X,G, T ) be a Menger PGM-space and x, y ∈ X. If there exists a

function ϕ ∈ Φ such that

Gx,y,y (ϕ (t)) ≥ Gx,y,y (t) , (3.9)

for all t > 0, then x = y.

Proof. In order to show x = y, we only need to prove that Gx,y,y (t) = 1, for all

t > 0. On contrary, we suppose that ∃ t0 ∈ R+ such that Gx,y,y (t0) < 1. Now, since

ϕ ∈ Φ, ∃ t1 > t0 such that ϕ (t1) ≤ t0. Then (3.9) and the monotonicity of Gx,y,y

give

Gx,y,y (t0) ≥ Gx,y,y (ϕ (t1)) ≥ Gx,y,y (t1) ≥ Gx,y,y (t0) . (3.10)

If case of strict inequality in (3.10) we have a contradiction. So, we assume that

equality holds. Then the set A = {s : Gx,y,y (s) = Gx,y,y (t0) ; s > t0} is non-empty

by the above inequality. Let s̄ =supA be finite. Then there exists a monotonically

increasing sequence {sn} with sn ∈ A, for all n ∈ N, such that sn → s̄. Since Gx,y,y

is left continuous, it follows that

Gx,y,y (s̄) = lim
n→∞

Gx,y,y (sn) = Gx,y,y (t0).

This implies that s̄ ∈ A. Then again treating s̄ in the same way as t0, we obtain

either Gx,y,y (s̄) > Gx,y,y (s̄), which is a contradiction, or there exists s̄1 > s̄ such that

Gx,y,y (s̄1) = Gx,y,y (s̄) = Gx,y,y (t0) , which is again a contradiction with s̄ = supA.

Hence s̄ is not finite, i.e., lim
n→∞

Gx,y,y (sn) = Gx,y,y (s̄) = Gx,y,y (t0) < 1, which is also a

contradiction as s̄ is not finite. Therefore, Gx,y,y (t) = 1, for all t > 0, i.e., x = y.

Theorem 3.8. Let (X,G, T ) be a complete Menger space with a t-norm T of H-type.

If f : X → X is a probabilistic ϕ-contraction, i.e., Gfx,fy,fy (ϕ (t)) ≥ Gx,y,y (t) , ∀

x, y ∈ X and t > 0, where ϕ ∈ Φ, then f has a unique fixed point x ∈ X.
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Proof. We define the sequence {xn} as follows: Let x0 ∈ X and xn = fxn−1, for all

n ∈ N. So, by the given contraction condition,

Gxn,xn+1,xn+1 (ϕ (t)) = Gfxn−1,fxn,fxn (ϕ (t))

≥ Gxn−1,xn,xn (t)

for all n ∈ N and t > 0. Then by Lemma 3.6, we conclude that {xn} is a Cauchy

sequence in (X,G, T ) , and since X is complete, we have that xn → x ∈ X. Since

ϕ ∈ Φ, for each t > 0, there exists r > t such that ϕ (r) ≤ t. Now

Gfxn,fx,fx (t) ≥ Gfxn,fx,fx (ϕ (r))

≥ Gxn,x,x (r)

≥ Gxn,x,x (t) .

Taking limit n → ∞ in this inequality and keeping in mind that xn → x for each

t > 0, we get

lim
n→∞

Gfxn,fx,fx (t) = 1. (3.11)

Now, using (iv) of Definition 1.12 and the continuity of T , we get

Gx,fx,fx (t) ≥ T

(
Gx,xn+1,xn+1

(
t

2

)
, Gxn+1,fx,fx

(
t

2

))
= T

(
Gx,xn+1,xn+1

(
t

2

)
, Gfxn,fx,fx

(
t

2

))
.

Taking limit n→∞ in this inequality, (3.11) and the continuity of T give

Gx,fx,fx (t) ≥ T (1, 1) = 1.

This implies that Gx,fx,fx (t) = 1, for all t > 0. Hence fx = x which proves that x
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is a fixed point of f . To show the uniqueness of fixed point of f, we suppose that y

is another fixed point of f then by condition 3.1, we have

Gx,y,y (ϕ (t)) = Gfx,fy,fy (ϕ (t)) ≥ Gx,y,y (t), for all t > 0. Then by Lemma 3.7, we

get x = y.

Corollary 3.9. Let (X,G, T ) be a complete Menger PGM-space with a t-norm T of

H-type. Let f0, f1 : X → X be two mappings such that Gf0x,f0y,f0y (ϕ (t)) ≥ Gx,y,y (t)

and Gf1x,f1y,f1y (ϕ (t)) ≥ Gx,y,y (t) hold for all x, y ∈ X and t > 0, where ϕ ∈ Φ. If

f0f1 = f1f0 then there exists a unique common fixed point of f0 and f1.

Proof. Let f = f0f1. Since ϕ ∈ Φ, for each t > 0, there exists r > t such that

ϕ (r) ≤ t.

Gfx,fy,fy (ϕ (t)) = G(f0f1)x,(f0f1)y,(f0f1)y (ϕ (t))

= Gf0(f1x),f0(f1y),f0(f1y) (ϕ (t))

≥ Gf1x,f1y,f1y (t)

≥ Gf1x,f1y,f1y (ϕ (r))

≥ Gx,y,y (r)

≥ Gx,y,y (t) .

This implies that f is a probabilistic ϕ-contraction. Then by the Theorem 3.8,

we conclude that f has a unique fixed point z in X. Since f0f1 = f1f0, we have

f (f0z) = f0f1 (f0z) = f0 (f1f0z) = f0z and f (f1z) = f1f0 (f1z) = f1 (f0f1z) = f1z.

This gives that f0z and f1z are also fixed points of f. By the uniqueness of fixed

point of f , we have f0z = f1z = z, i.e., z is a common fixed point of f0 and f1. It

is clear that z is a unique common fixed point of f0 and f1.
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Theorem 3.10. Let (X,G, T ) be a complete Menger PGM-space with a t-norm T

of H-type. Let f : X → X be a mapping satisfying

Gfx,fy,fz (ϕ (t)) ≥ 1

3
(Gx,fx,fx(t) +Gy,fy,fy(t) +Gz,fz,fz(t)) (3.12)

for all x, y, z ∈ X, where ϕ ∈ Φ. Then, for any x0 ∈ X the sequence {fn (x0)}

converges to a unique fixed point of f.

Proof. Take an arbitrary point x0 ∈ X. Construct a sequence {xn} by xn+1 =

fn (x0) for all n ≥ 0. Since ϕ ∈ Φ, for each t > 0 there exists r > t such that

ϕ (r) ≤ t. Then

Gxn,xn+1,xn+1 (t) ≥ Gxn,xn+1,xn+1 (ϕ (r))

= Gfxn−1,fxn,fxn (ϕ (r))

≥ 1

3

(
Gxn−1,fxn−1,fxn−1(t) + 2Gxn,fxn,fxn (r)

)
≥ 1

3

(
Gxn−1,fxn−1,fxn−1(t) + 2Gxn,fxn,fxn (t)

)
=

1

3

(
Gxn−1,xn,xn(t) + 2Gxn,xn+1,xn+1 (t)

)
.

That is, for all t > 0,

Gxn,xn+1,xn+1 (t) ≥ Gxn−1,xn,xn (t) . (3.13)
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Now, we prove that f is a ϕ-contraction in Menger PGM-space. For this, we have

Gxn,xn+1,xn+1 (ϕ (t)) = Gfxn−1,fxn,fxn (ϕ (t))

≥ 1

3

(
Gxn−1,fxn−1,fxn−1(t) + 2Gxn,fxn,fxn(t)

)
=

1

3

(
Gxn−1,xn,xn(t) + 2Gxn,fxn,fxn(t)

)
≥ 1

3

(
Gxn−1,xn,xn(t) + 2Gfxn−1,fxn,fxn (ϕ (r))

)
≥ 1

3

(
Gxn−1,xn,xn(t) +

2

3

(
Gxn−1,fxn−1,fxn−1(r) + 2Gxn,fxn,fxn(r)

))
=

1

3

(
Gxn−1,xn,xn(t) +

2

3
Gxn−1,xn,xn(r) +

4

3
Gxn,xn+1,xn+1(r)

)
≥ 1

3

(
Gxn−1,xn,xn(t) +

2

3
Gxn−1,xn,xn(t) +

4

3
Gxn,xn+1,xn+1(t)

)
=

1

3

(
5

3
Gxn−1,xn,xn(t) +

4

3
Gxn,xn+1,xn+1(t)

)
≥ 1

3

(
5

3
Gxn−1,xn,xn(t) +

4

3
Gxn−1,xn,xn(t)

)
= Gxn−1,xn,xn(t).

Here, first and third inequalities are due to (3.12), second and fourth are due to the

monotonic increasing property of distribution function while the last one is due to

(3.13). Therefore, f is ϕ-contraction, and Lemma 3.6 shows that {xn} is a Cauchy

sequence. Since X is complete Menger PGM-space, there exists a point x ∈ X

such that xn → x as n → ∞. Now, since ϕ (r) ≤ t and Gfxn,fx,fx is monotonically

increasing, from (3.12) we have

Gfxn,fx,fx(t) ≥ Gfxn,fx,fx(ϕ (r)) ≥ 1
3

(Gxn,fxn,fxn(r) + 2Gx,fx,fx(r)) .

Taking limit as n→∞ in this inequality, we get

Gx,fx,fx(t) ≥ 1
3

(Gx,x,x(r) + 2Gx,fx,fx(r)) ≥ 1
3

(Gx,x,x(t) + 2Gx,fx,fx(t)) ,
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which gives Gx,fx,fx(t) ≥ Gx,x,x(t) = 1, for all t > 0. Thus, we have proved that

fx = x. To show the uniqueness of the fixed point of f, we suppose that y is another

fixed point of f. Then, for all t > 0

Gx,y,y (t) ≥ Gx,y,y (ϕ (r))

= Gfx,fy,fy (ϕ (r))

≥ 1

3
(Gx,fx,fx (r) + 2Gy,fy,fy (r))

≥ 1

3
(Gx,fx,fx (t) + 2Gy,fy,fy (t))

= 1.

Here, first and third inequality is due to the monotonic increasing property of dis-

tribution function and the second one is due to (3.12). This shows that x = y.

Therefore, f has a unique fixed point.

Example 3.3. Let X = [0,∞) and T (a, b) = min{a, b}, for all a, b ∈ X. Define a

function G : X ×X ×X × [0,∞)→ [0,∞) by Gx,y,z (t) = t
t+(|x−y|+|y−z|+|z−x|) . Then

(X,G, T ) is a complete Menger PGM-space. Define f : X → X by f (x) = x
4
, for

each x ∈ X and ϕ : [0,∞)→ [0,∞) by

ϕ (t) =


0 if t = 0

1
4n

if 1
4n
≤ t < 1

4n−1

kt if t ≥ 1,where 1
4
≤ k < 1.

Obviously, ϕ ∈ Φ. Now, we want to show that f is ϕ-contraction.

Case 1: 1
4n
≤ t < 1

4n−1

Since 1
4n−1 > t, we have 1

4n
> t

4
, i.e., ϕ(t) ≥ t

4
.

Case 2: t ≥ 1

Since k ≥ 1
4
, we have kt ≥ t

4
, i.e., ϕ(t) ≥ t

4
.
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Thus, we have ϕ(t) ≥ t
4

for each t > 0. Now, since the function t
t+1

is strictly

increasing on [0,∞) , we have

Gfx,fy,fz (ϕ (t)) =
ϕ (t)

ϕ (t) + (|fx− fy|+ |fy − fz|+ |fz − fx|)

=
ϕ (t)

ϕ (t) + 1
4

(|x− y|+ |y − z|+ |z − x|)

≥
t
4

t
4

+ 1
4

(|x− y|+ |y − z|+ |z − x|)

=
t

t+ (|x− y|+ |y − z|+ |z − x|)

= Gx,y,z (t) .

Therefore, from the Theorem 3.8 f has unique fixed point. In fact, the fixed point is

x = 0.

***********




