Chapter 3

Fixed points for φ -contraction in Menger PGM-spaces

3.1 Introduction

Contraction is one of the basic tools to prove existence and uniqueness of fixed point theorems in PM-spaces. Sehgal and Bharucha-Reid [101] introduced probabilistic k-contraction and proved probabilistic version of classical Banach fixed point principle. After that Ciric [26] generalizes the k-contraction and introduced the concept of φ -contraction in PM-space. In spite of the fact that probabilistic φ -contractions are natural generalizations of probabilistic k-contractions, the techniques used to prove the existence and uniqueness of fixed point results for probabilistic k-contractions are no longer usable for probabilistic φ -contractions. In 2010, Ciric [26] presented a fixed point theorem for probabilistic φ -contractions. Soon after the publication of Ciric's paper, Jachymski [53] found a counter example to the key lemma in [26],

and established a modified version of Ciric's φ -function. Recently, Fang [39] further weakened the conditions on φ -function.

In 2006, Mustafa and Sims [70] introduced the notion of a generalized metric space. After that many authors obtained several fixed point theorems for mappings satisfying different contractive conditions in generalized metric spaces (see, [31, 68, 69, 89]). In 2014, Zhou et al. [116] introduced the concept of a generalized Menger probabilistic metric space. Further, Zhu et al. [117] obtained some fixed point theorems in PGM-spaces. For some recent results in PGM-spaces, we refer [4, 18, 24, 29, 34, 63, 107].

The purpose of this work is to introduce a new class of φ -contraction in PGM-spaces and to establish important fixed point results. We prove the existence and uniqueness of a fixed point for φ -contraction in PGM-spaces. The obtained results are illustrated by examples.

3.2 Preliminaries

We have already discussed the important definitions in first chapter. Here, we give an example of Menger PGM-space

Example 3.1 ([116]). Let (X, F, T) be a PM-space. Define a function $G: X \times X \times X \to D^+$ by $G_{x,y,z}(t) = \min\{F_{x,y}(t), F_{y,z}(t), F_{x,z}(t)\}$, for all $x, y, z \in X$ and t > 0. Then (X, G, T) is a Menger PGM-space.

Example 3.2. Let (X, d) be a metric space. If we define

$$G_{x,y,z}(t) = \left(\frac{t}{1+t}\right)^{d(x,y)+d(y,z)+d(z,x)}$$

and we choose t-norm as product t-norm defined by

$$T_p(a,b) = a.b \ \forall \ a,b \in [0,1].$$

Then (X, G, T_p) is a Menger PGM-space. In fact, $G_{x,y,z}(0) = 0$. Also, $\sup_{t>0} G_{x,y,z}(t) = 1$, $G_{x,y,z}(t)$ is non-decreasing and continuous in t. Therefore, $G_{x,y,z}(t)$ is a distribution function.

By the definition of $G_{x,y,z}(t)$, it is obvious that (i) and (iii) in Definition 1.12 hold. Next, we will show that (ii) and (iv) of Definition 1.12 also hold. Since $d(x,y) \leq d(x,z) + d(z,y)$, $\forall x,y,z \in X$, with $y \neq z$, we have that

$$d(x, y) + d(x, y) \le d(x, y) + d(x, z) + d(z, y)$$
.

Then

$$\left(\frac{t}{1+t}\right)^{d(x,y)+d(x,y)} \ge \left(\frac{t}{1+t}\right)^{d(x,y)+d(y,z)+d(z,x)}.$$

Thus, $G_{x,x,y}(t) \geq G_{x,y,z}(t)$, for all $x,y,z \in X$ with $y \neq z$, and t > 0. By the definition of $G_{x,y,z}(t)$, we get

$$G_{x,y,z}(t+s) = \left(\frac{t+s}{1+t+s}\right)^{d(x,y)+d(y,z)+d(z,x)}.$$

Since, $\frac{t}{1+t}$ is strictly increasing on [0,1), we have

$$\left(\frac{t+s}{1+t+s}\right)^{d(x,y)+d(y,z)+d(z,x)} \ge \left(\frac{t+s}{1+t+s}\right)^{d(x,a)+d(a,y)+d(y,z)+d(z,a)+d(a,x)} \\
= \left(\frac{t+s}{1+t+s}\right)^{d(x,a)+d(a,x)} \left(\frac{t+s}{1+t+s}\right)^{d(a,y)+d(y,z)+d(z,a)} \\
\ge \left(\frac{t}{1+t}\right)^{d(x,a)+d(x,a)} \left(\frac{s}{1+s}\right)^{d(a,y)+d(y,z)+d(z,a)} \\
= T_P\left(\left(\frac{t}{1+t}\right)^{d(x,a)+d(x,a)}, \left(\frac{s}{1+s}\right)^{d(a,y)+d(y,z)+d(z,a)}\right).$$

This implies that $G_{x,y,z}(t+s) \geq T_P(G_{x,a,a}(t), G_{a,y,z}(s))$. Thus, (X, G, T_P) is a Menger PGM-space.

Definition 3.1 ([4]). Let (X, G, T) be a Menger PGM-space with a continuous t-norm T. A mapping $f: X \to X$ is said to be a φ -contraction in Menger PGM-spaces if there exists a function $\varphi \in \Phi$ such that

$$G_{fx,fy,fz}\left(\varphi\left(t\right)\right) \geq G_{x,y,z}\left(t\right), \text{ for all } x,y,z\in X \text{ and } t>0.$$
 (3.1)

Definition 3.2 ([46]). A t-norm T is said to be of H-type if the family $\{T^p\}_{p\in\mathbb{N}}$ of its iterates defined for each $t\in(0,1)$ by $T^0(t)=1$, $T^m(t)=T(t,T^{m-1}(t))$ for all $m\in\mathbb{N}$ is equicontinuous at t=1.

Definition 3.3. In second chapter, we have defined the class Φ of functions φ as follows: Φ contains all functions $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ such that for each t > 0 there exists r > t with $\varphi(r) \le t$.

An example of this type of function is given as: Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ defined by

$$\varphi(t) = \begin{cases} 0 & \text{if } t = 0 \\ \frac{t}{4^n} & \text{if } \frac{1}{4^n} \le t < \frac{1}{4^{n-1}} \\ kt & \text{if } t \ge 1, \text{where } 0 < k < 1. \end{cases}$$

3.3 Main Results

Lemma 3.4. Suppose that the sequence $\{G_{x_n,x_{n+1},x_{n+1}}(t_m)\}$ is non-decreasing in both the variables m and n, i.e., $G_{x_n,x_{n+1},x_{n+1}}(t_m) \geq G_{x_{n-1},x_n,x_n}(t_m)$ and $G_{x_n,x_{n+1},x_{n+1}}(t_{m+1}) \geq G_{x_n,x_{n+1},x_{n+1}}(t_m)$ for each $m,n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left(\lim_{m \to \infty} G_{x_n,x_{n+1},x_{n+1}}(t_m)\right) = \lim_{m \to \infty} \left(\lim_{n \to \infty} G_{x_n,x_{n+1},x_{n+1}}(t_m)\right).$

Proof. The proof follows the similar way as that of Lemma 2.3.

Lemma 3.5. Let (X, G, T) be a Menger PGM-space with a t-norm T. Let $\{x_n\}$ be a sequence in (X, G, T). If there exists a function $\varphi \in \Phi$ such that $G_{x_n, x_{n+1}, x_{n+1}}$ $(\varphi(t)) \geq G_{x_{n-1}, x_n, x_n}(t)$, for all $n \in \mathbb{N}$ and t > 0, then $\lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}}(t) = 1$.

Proof. Let $t_0 > 0$ be arbitrary. Since $\varphi \in \Phi$, there exists $t_1 > t_0$ such that $\varphi(t_1) \le t_0$. Now, since $G_{x_n,x_{n+1},x_{n+1}}(\varphi(t)) \ge G_{x_{n-1},x_n,x_n}(t)$, by the monotonic increasing property of distribution function, we have

$$G_{x_{n},x_{n+1},x_{n+1}}(t_{1}) \geq G_{x_{n},x_{n+1},x_{n+1}}(t_{0})$$

$$\geq G_{x_{n},x_{n+1},x_{n+1}}(\varphi(t_{1}))$$

$$\geq G_{x_{n-1},x_{n},x_{n}}(t_{1})$$

$$\geq G_{x_{n-1},x_{n},x_{n}}(t_{0}).$$

Thus, the sequence $\{G_{x_n,x_{n+1},x_{n+1}}(t_0)\}$ is monotonically increasing in n and being bounded above, it is convergent. Let $\lim_{n\to\infty} G_{x_n,x_{n+1},x_{n+1}}(t_0) = l$. We shall show that l=1. On contrary, suppose l<1. Then $\lim_{n\to\infty} G_{x_n,x_{n+1},x_{n+1}}(t_1) = l$ (by the above inequality). By squeeze lemma,

$$\lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}}(t) = l < 1, \, \forall \, t \in [t_0, \, t_1] \,.$$

Let $\bar{t} = \sup A$, where

$$A = \left\{ t : \lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}}(t) = l \right\}.$$
 (3.2)

If \bar{t} is finite then there exists a monotonically increasing sequence $\{t_m\}$ such that for all $m \in \mathbb{N}$, $\lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}}(t_m) = l$ and $t_m \to \bar{t}$ as $m \to \infty$. Since $G_{x_n, x_{n+1}, x_{n+1}}$ is left continuous,

$$G_{x_n,x_{n+1},x_{n+1}}(\bar{t}) = \lim_{m \to \infty} G_{x_n,x_{n+1},x_{n+1}}(t_m).$$

Therefore, by using Lemma 3.4 and $\lim_{n\to\infty} G_{x_n,x_{n+1},x_{n+1}}(t_m)=l$, we have

$$\lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}} \left(\overline{t} \right) = \lim_{n \to \infty} \left(\lim_{m \to \infty} G_{x_n, x_{n+1}, x_{n+1}} \left(t_m \right) \right)$$
$$= \lim_{m \to \infty} \left(\lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}} \left(t_m \right) \right) = l$$

Therefore, $\lim_{n\to\infty} G_{x_n,x_{n+1},x_{n+1}}(\bar{t}) = l$. Then proceeding as above, there exists \bar{t}_1 such that $\lim_{n\to\infty} G_{x_n,x_{n+1},x_{n+1}}(\bar{t}_1) = l$ and $\bar{t}_1 > \bar{t}$, which is a contradiction to (3.2). Thus, for all $t > t_0$,

$$\lim_{n \to \infty} G_{x_n, x_{n+1}, x_{n+1}}(t) = l. \tag{3.3}$$

Since $G_{x,y,y}(t) \to 1$ as $t \to \infty$, there exists $s > t_0$ such that $G_{x_k,x_{k+1},x_{k+1}}(s) > l$, for given $k \in \mathbb{N}$. Now, since $\{G_{x_n,x_{n+1},x_{n+1}}(t_0)\}$ is monotonically increasing in n and as $t_0 > 0$ is arbitrary, we get that $\{G_{x_n,x_{n+1},x_{n+1}}(t)\}$ is monotonically increasing in n for all t > 0. Thus, the sequence $\{G_{x_n,x_{n+1},x_{n+1}}(s)\}$ is monotonically increasing in n and we have $G_{x_n,x_{n+1},x_{n+1}}(s) > l$. But this is a contradiction as l < 1. Therefore, $\lim_{n \to \infty} G_{x_n,x_{n+1},x_{n+1}}(t) = 1$, for all $t > t_0$. Since $t_0 > 0$ is arbitrary, we conclude that $\lim_{n \to \infty} G_{x_n,x_{n+1},x_{n+1}}(t) = 1$, for all t > 0.

Lemma 3.6. Let (X, G, T) be a Menger PGM-space with a t-norm T of H-type. Let $\{x_n\}$ be a sequence in (X, G, T). If there exists a function $\varphi \in \Phi$ such that

$$G_{x_{n},x_{n+1},x_{n+1}}(\varphi(t)) \ge G_{x_{n-1},x_{n},x_{n}}(t),$$
 (3.4)

for all $n \in \mathbb{N}$ and t > 0 then $\{x_n\}$ is a Cauchy sequence in X.

Proof. Let $\beta > 0$ be arbitrary.

Since $\varphi \in \Phi$, then for each t_1 with $0 < t_1 < \beta$ there exists $r_1 > t_1$ such that $\varphi(r_1) \leq t_1$.

Now, if $\varphi(r_1) < t_1$, then we take $t = t_1$ and $r = r_1$.

If $\varphi(r_1) = t_1$, then choose t as $\min\{r_1, \beta\} > t > t_1$ and $r = r_1$.

Then in each case we have $\beta > t > \varphi(r)$ and r > t.

Let $n \geq 1$. Then for each t chosen in this way, we prove by induction that for any $k \in \mathbb{N}$,

$$G_{x_n, x_{n+k}, x_{n+k}}(t) \ge T^{k-1} \left(G_{x_n, x_{n+1}, x_{n+1}} \left(t - \varphi(r) \right) \right).$$
 (3.5)

For k = 1, from (3.5) we have $G_{x_n, x_{n+1}, x_{n+1}}(t) \ge T^0 \left(G_{x_n, x_{n+1}, x_{n+1}}(t - \varphi(r)) \right) = G_{x_n, x_{n+1}, x_{n+1}}(t - \varphi(r))$.

Therefore, (3.5) holds for k = 1. Assume that (3.5) holds for some k. Now, since T is monotone, from (iv) of Definition 1.12 and (3.4) we have

$$G_{x_n,x_{n+k+1},x_{n+k+1}}(t) = G_{x_n,x_{n+k+1},x_{n+k+1}}(t - \varphi(r) + \varphi(r))$$

$$\geq T\left(G_{x_{n},x_{n+1},x_{n+1}}\left(t-\varphi(r)\right),G_{x_{n+1},x_{n+k+1},x_{n+k+1}}\left(\varphi(r)\right)\right)$$

$$\geq T\left(G_{x_{n},x_{n+1},x_{n+1}}\left(t-\varphi(r)\right),G_{x_{n},x_{n+k},x_{n+k}}\left(r\right)\right)$$

$$\geq T\left(G_{x_{n},x_{n+1},x_{n+1}}\left(t-\varphi(r)\right),G_{x_{n},x_{n+k},x_{n+k}}\left(t\right)\right)$$

$$= T^k \left(G_{x_n, x_{n+1}, x_{n+1}} \left(t - \varphi(r) \right) \right),$$

which completes the induction steps. Hence, (3.5) holds for all $k \in \mathbb{N}$ and for any $t < \beta$. To prove $\{x_n\}$ is a Cauchy sequence, we need to prove that $\lim_{m,n,l\to\infty} G_{x_n,x_m,x_l}(t) = 1$, for all t > 0. To this end, we first prove that $\lim_{m,n\to\infty} G_{x_n,x_m,x_m}(t) = 1$, for all t > 0.

Now, let $0 < \varepsilon < 1$. Since $\{T^n(t)\}$ is equicontinuous at t = 1 and $T^n(1) = 1$, so there exists $\delta > 0$ such that

$$T^n(s) > 1 - \varepsilon$$
, for all $s \in (1 - \delta, 1]$ and $n \ge 1$. (3.6)

From Lemma 3.5, it follows that $\lim_{n\to\infty} G_{x_n,x_{n+1},x_{n+1}}(t-\varphi(r)) = 1$. Hence, there exists $n_0 \in \mathbb{N}$ such that $G_{x_n,x_{n+1},x_{n+1}}(t-\varphi(r)) > 1-\delta$, for all $n \geq n_0$. Therefore, by (3.5) and (3.6), we have $G_{x_n,x_{n+k},x_{n+k}}(t) > 1-\varepsilon$, for all $k \geq 0$. Hence,

$$\lim_{n,m\to\infty} G_{x_n,x_m,x_m}(t) = 1,$$
(3.7)

for any $0 < t < \beta$. Now, by (iv) in Definition 1.12, we have, for all $t < \beta$,

$$G_{x_{n},x_{m},x_{l}}\left(t\right) \geq T\left(G_{x_{n},x_{m},x_{m}}\left(\frac{t}{2}\right),G_{x_{m},x_{m},x_{l}}\left(\frac{t}{2}\right)\right)$$

$$= T\left(G_{x_{n},x_{m},x_{m}}\left(\frac{t}{2}\right),G_{x_{l},x_{m},x_{m}}\left(\frac{t}{2}\right)\right).$$

Taking limit $m, n, l \to \infty$ in this inequality and using the continuity of T, we get

$$\lim_{m,n,l\to\infty} G_{x_n,x_m,x_l}\left(t\right) \ge T\left(\lim_{m,n\to\infty} G_{x_n,x_m,x_m}\left(\frac{t}{2}\right), \lim_{m,l\to\infty} G_{x_l,x_m,x_m}\left(\frac{t}{2}\right)\right). \tag{3.8}$$

From (3.7), for all $t < \beta$, we have

$$\lim_{n,m\to\infty} G_{x_n,x_m,x_m}\left(\frac{t}{2}\right) = 1,$$

$$\lim_{l,m\to\infty} G_{x_l,x_m,x_m}\left(\frac{t}{2}\right) = 1.$$

Using these two limits in inequality (3.8), we get

$$\lim_{m,n,l\to\infty} G_{x_n,x_m,x_l}\left(t\right) \ge T\left(1,1\right) = 1.$$

That is, $\lim_{m,n,l\to\infty} G_{x_n,x_m,x_l}(t) = 1$, for all $0 < t < \beta$. Since, $\beta > 0$ is arbitrary, we have $\lim_{m,n,l\to\infty} G_{x_n,x_m,x_l}(t) = 1$, for all t > 0.

Hence $\{x_n\}$ is a Cauchy sequence.

Lemma 3.7. Let (X, G, T) be a Menger PGM-space and $x, y \in X$. If there exists a function $\varphi \in \Phi$ such that

$$G_{x,y,y}\left(\varphi\left(t\right)\right) \ge G_{x,y,y}\left(t\right),\tag{3.9}$$

for all t > 0, then x = y.

Proof. In order to show x = y, we only need to prove that $G_{x,y,y}(t) = 1$, for all t > 0. On contrary, we suppose that $\exists t_0 \in \mathbb{R}^+$ such that $G_{x,y,y}(t_0) < 1$. Now, since $\varphi \in \Phi$, $\exists t_1 > t_0$ such that $\varphi(t_1) \leq t_0$. Then (3.9) and the monotonicity of $G_{x,y,y}$ give

$$G_{x,y,y}(t_0) \ge G_{x,y,y}(\varphi(t_1)) \ge G_{x,y,y}(t_1) \ge G_{x,y,y}(t_0).$$
 (3.10)

If case of strict inequality in (3.10) we have a contradiction. So, we assume that equality holds. Then the set $A = \{s : G_{x,y,y}(s) = G_{x,y,y}(t_0) ; s > t_0\}$ is non-empty by the above inequality. Let $\bar{s} = \sup A$ be finite. Then there exists a monotonically increasing sequence $\{s_n\}$ with $s_n \in A$, for all $n \in \mathbb{N}$, such that $s_n \to \bar{s}$. Since $G_{x,y,y}$ is left continuous, it follows that

$$G_{x,y,y}\left(\bar{s}\right) = \lim_{n \to \infty} G_{x,y,y}\left(s_n\right) = G_{x,y,y}\left(t_0\right).$$

This implies that $\bar{s} \in A$. Then again treating \bar{s} in the same way as t_0 , we obtain either $G_{x,y,y}(\bar{s}) > G_{x,y,y}(\bar{s})$, which is a contradiction, or there exists $\bar{s}_1 > \bar{s}$ such that $G_{x,y,y}(\bar{s}_1) = G_{x,y,y}(\bar{s}) = G_{x,y,y}(t_0)$, which is again a contradiction with $\bar{s} = \sup A$.

Hence \bar{s} is not finite, i.e., $\lim_{n\to\infty} G_{x,y,y}(s_n) = G_{x,y,y}(\bar{s}) = G_{x,y,y}(t_0) < 1$, which is also a contradiction as \bar{s} is not finite. Therefore, $G_{x,y,y}(t) = 1$, for all t > 0, i.e., x = y. \square

Theorem 3.8. Let (X, G, T) be a complete Menger space with a t-norm T of H-type. If $f: X \to X$ is a probabilistic φ -contraction, i.e., $G_{fx,fy,fy}(\varphi(t)) \geq G_{x,y,y}(t)$, $\forall x, y \in X$ and t > 0, where $\varphi \in \Phi$, then f has a unique fixed point $x \in X$.

Proof. We define the sequence $\{x_n\}$ as follows: Let $x_0 \in X$ and $x_n = fx_{n-1}$, for all $n \in \mathbb{N}$. So, by the given contraction condition,

$$G_{x_{n},x_{n+1},x_{n+1}}\left(\varphi\left(t\right)\right) = G_{fx_{n-1},fx_{n},fx_{n}}\left(\varphi\left(t\right)\right)$$

$$\geq G_{x_{n-1},x_{n},x_{n}}\left(t\right)$$

for all $n \in \mathbb{N}$ and t > 0. Then by Lemma 3.6, we conclude that $\{x_n\}$ is a Cauchy sequence in (X, G, T), and since X is complete, we have that $x_n \to x \in X$. Since $\varphi \in \Phi$, for each t > 0, there exists r > t such that $\varphi(r) \leq t$. Now

$$G_{fx_n,fx,fx}(t) \ge G_{fx_n,fx,fx}(\varphi(r))$$

$$\ge G_{x_n,x,x}(r)$$

$$\ge G_{x_n,x,x}(t).$$

Taking limit $n \to \infty$ in this inequality and keeping in mind that $x_n \to x$ for each t > 0, we get

$$\lim_{n \to \infty} G_{fx_n, fx, fx}(t) = 1. \tag{3.11}$$

Now, using (iv) of Definition 1.12 and the continuity of T, we get

$$G_{x,fx,fx}\left(t\right) \ge T\left(G_{x,x_{n+1},x_{n+1}}\left(\frac{t}{2}\right),G_{x_{n+1},fx,fx}\left(\frac{t}{2}\right)\right)$$

$$= T\left(G_{x,x_{n+1},x_{n+1}}\left(\frac{t}{2}\right),G_{fx_n,fx,fx}\left(\frac{t}{2}\right)\right).$$

Taking limit $n \to \infty$ in this inequality, (3.11) and the continuity of T give

$$G_{x,fx,fx}(t) \ge T(1,1) = 1.$$

This implies that $G_{x,fx,fx}(t) = 1$, for all t > 0. Hence fx = x which proves that x

is a fixed point of f. To show the uniqueness of fixed point of f, we suppose that y is another fixed point of f then by condition 3.1, we have

$$G_{x,y,y}\left(\varphi\left(t\right)\right)=G_{fx,fy,fy}\left(\varphi\left(t\right)\right)\geq G_{x,y,y}\left(t\right), \text{ for all } t>0. \text{ Then by Lemma 3.7, we}$$
 get $x=y.$

Corollary 3.9. Let (X, G, T) be a complete Menger PGM-space with a t-norm T of H-type. Let $f_0, f_1 : X \to X$ be two mappings such that $G_{f_0x, f_0y, f_0y}(\varphi(t)) \ge G_{x,y,y}(t)$ and $G_{f_1x, f_1y, f_1y}(\varphi(t)) \ge G_{x,y,y}(t)$ hold for all $x, y \in X$ and t > 0, where $\varphi \in \Phi$. If $f_0f_1 = f_1f_0$ then there exists a unique common fixed point of f_0 and f_1 .

Proof. Let $f = f_0 f_1$. Since $\varphi \in \Phi$, for each t > 0, there exists r > t such that $\varphi(r) \leq t$.

$$G_{fx,fy,fy}(\varphi(t)) = G_{(f_0f_1)x,(f_0f_1)y,(f_0f_1)y}(\varphi(t))$$

$$= G_{f_0(f_1x),f_0(f_1y),f_0(f_1y)}(\varphi(t))$$

$$\geq G_{f_1x,f_1y,f_1y}(t)$$

$$\geq G_{f_1x,f_1y,f_1y}(\varphi(r))$$

$$\geq G_{x,y,y}(r)$$

$$\geq G_{x,y,y}(t).$$

This implies that f is a probabilistic φ -contraction. Then by the Theorem 3.8, we conclude that f has a unique fixed point z in X. Since $f_0f_1 = f_1f_0$, we have $f(f_0z) = f_0f_1(f_0z) = f_0(f_1f_0z) = f_0z$ and $f(f_1z) = f_1f_0(f_1z) = f_1(f_0f_1z) = f_1z$. This gives that f_0z and f_1z are also fixed points of f. By the uniqueness of fixed point of f, we have $f_0z = f_1z = z$, i.e., z is a common fixed point of f_0 and f_1 . It is clear that z is a unique common fixed point of f_0 and f_1 .

Theorem 3.10. Let (X, G, T) be a complete Menger PGM-space with a t-norm T of H-type. Let $f: X \to X$ be a mapping satisfying

$$G_{fx,fy,fz}(\varphi(t)) \ge \frac{1}{3} (G_{x,fx,fx}(t) + G_{y,fy,fy}(t) + G_{z,fz,fz}(t))$$
 (3.12)

for all $x, y, z \in X$, where $\varphi \in \Phi$. Then, for any $x_0 \in X$ the sequence $\{f^n(x_0)\}$ converges to a unique fixed point of f.

Proof. Take an arbitrary point $x_0 \in X$. Construct a sequence $\{x_n\}$ by $x_{n+1} = f^n(x_0)$ for all $n \geq 0$. Since $\varphi \in \Phi$, for each t > 0 there exists r > t such that $\varphi(r) \leq t$. Then

$$G_{x_{n},x_{n+1},x_{n+1}}(t) \geq G_{x_{n},x_{n+1},x_{n+1}}(\varphi(r))$$

$$= G_{fx_{n-1},fx_{n},fx_{n}}(\varphi(r))$$

$$\geq \frac{1}{3} \left(G_{x_{n-1},fx_{n-1},fx_{n-1}}(t) + 2G_{x_{n},fx_{n},fx_{n}}(r) \right)$$

$$\geq \frac{1}{3} \left(G_{x_{n-1},fx_{n-1},fx_{n-1}}(t) + 2G_{x_{n},fx_{n},fx_{n}}(t) \right)$$

$$= \frac{1}{3} \left(G_{x_{n-1},x_{n},x_{n}}(t) + 2G_{x_{n},x_{n+1},x_{n+1}}(t) \right).$$

That is, for all t > 0,

$$G_{x_n,x_{n+1},x_{n+1}}(t) \ge G_{x_{n-1},x_n,x_n}(t)$$
. (3.13)

Now, we prove that f is a φ -contraction in Menger PGM-space. For this, we have

$$G_{x_{n},x_{n+1},x_{n+1}}(\varphi(t)) = G_{fx_{n-1},fx_{n},fx_{n}}(\varphi(t))$$

$$\geq \frac{1}{3} \left(G_{x_{n-1},fx_{n-1},fx_{n-1}}(t) + 2G_{x_{n},fx_{n},fx_{n}}(t) \right)$$

$$= \frac{1}{3} \left(G_{x_{n-1},x_{n},x_{n}}(t) + 2G_{x_{n},fx_{n},fx_{n}}(t) \right)$$

$$\geq \frac{1}{3} \left(G_{x_{n-1},x_{n},x_{n}}(t) + 2G_{fx_{n-1},fx_{n},fx_{n}}(\varphi(r)) \right)$$

$$\geq \frac{1}{3} \left(G_{x_{n-1},x_{n},x_{n}}(t) + \frac{2}{3} \left(G_{x_{n-1},fx_{n-1},fx_{n-1}}(r) + 2G_{x_{n},fx_{n},fx_{n}}(r) \right) \right)$$

$$= \frac{1}{3} \left(G_{x_{n-1},x_{n},x_{n}}(t) + \frac{2}{3}G_{x_{n-1},x_{n},x_{n}}(r) + \frac{4}{3}G_{x_{n},x_{n+1},x_{n+1}}(r) \right)$$

$$\geq \frac{1}{3} \left(G_{x_{n-1},x_{n},x_{n}}(t) + \frac{2}{3}G_{x_{n-1},x_{n},x_{n}}(t) + \frac{4}{3}G_{x_{n},x_{n+1},x_{n+1}}(t) \right)$$

$$= \frac{1}{3} \left(\frac{5}{3}G_{x_{n-1},x_{n},x_{n}}(t) + \frac{4}{3}G_{x_{n},x_{n+1},x_{n+1}}(t) \right)$$

$$\geq \frac{1}{3} \left(\frac{5}{3}G_{x_{n-1},x_{n},x_{n}}(t) + \frac{4}{3}G_{x_{n-1},x_{n},x_{n}}(t) \right)$$

$$= G_{x_{n-1},x_{n},x_{n}}(t).$$

Here, first and third inequalities are due to (3.12), second and fourth are due to the monotonic increasing property of distribution function while the last one is due to (3.13). Therefore, f is φ -contraction, and Lemma 3.6 shows that $\{x_n\}$ is a Cauchy sequence. Since X is complete Menger PGM-space, there exists a point $x \in X$ such that $x_n \to x$ as $n \to \infty$. Now, since $\varphi(r) \leq t$ and $G_{fx_n,fx,fx}$ is monotonically increasing, from (3.12) we have

$$G_{fx_n,fx,fx}(t) \ge G_{fx_n,fx,fx}(\varphi(r)) \ge \frac{1}{3} (G_{x_n,fx_n,fx_n}(r) + 2G_{x,fx,fx}(r)).$$

Taking limit as $n \to \infty$ in this inequality, we get

$$G_{x,fx,fx}(t) \ge \frac{1}{3} \left(G_{x,x,x}(r) + 2G_{x,fx,fx}(r) \right) \ge \frac{1}{3} \left(G_{x,x,x}(t) + 2G_{x,fx,fx}(t) \right),$$

which gives $G_{x,fx,fx}(t) \geq G_{x,x,x}(t) = 1$, for all t > 0. Thus, we have proved that fx = x. To show the uniqueness of the fixed point of f, we suppose that y is another fixed point of f. Then, for all t > 0

$$G_{x,y,y}(t) \ge G_{x,y,y}(\varphi(r))$$

$$= G_{fx,fy,fy}(\varphi(r))$$

$$\ge \frac{1}{3}(G_{x,fx,fx}(r) + 2G_{y,fy,fy}(r))$$

$$\ge \frac{1}{3}(G_{x,fx,fx}(t) + 2G_{y,fy,fy}(t))$$

$$= 1.$$

Here, first and third inequality is due to the monotonic increasing property of distribution function and the second one is due to (3.12). This shows that x = y. Therefore, f has a unique fixed point.

Example 3.3. Let $X = [0, \infty)$ and $T(a, b) = \min\{a, b\}$, for all $a, b \in X$. Define a function $G: X \times X \times X \times [0, \infty) \to [0, \infty)$ by $G_{x,y,z}(t) = \frac{t}{t + (|x-y| + |y-z| + |z-x|)}$. Then (X, G, T) is a complete Menger PGM-space. Define $f: X \to X$ by $f(x) = \frac{x}{4}$, for each $x \in X$ and $\varphi: [0, \infty) \to [0, \infty)$ by

$$\varphi(t) = \begin{cases} 0 & \text{if } t = 0 \\ \frac{1}{4^n} & \text{if } \frac{1}{4^n} \le t < \frac{1}{4^{n-1}} \\ kt & \text{if } t \ge 1, where } \frac{1}{4} \le k < 1. \end{cases}$$

Obviously, $\varphi \in \Phi$. Now, we want to show that f is φ -contraction.

Case 1:
$$\frac{1}{4^n} \le t < \frac{1}{4^{n-1}}$$

Since $\frac{1}{4^{n-1}} > t$, we have $\frac{1}{4^n} > \frac{t}{4}$, i.e., $\varphi(t) \ge \frac{t}{4}$.

Case 2: $t \ge 1$

Since $k \ge \frac{1}{4}$, we have $kt \ge \frac{t}{4}$, i.e., $\varphi(t) \ge \frac{t}{4}$.

Thus, we have $\varphi(t) \geq \frac{t}{4}$ for each t > 0. Now, since the function $\frac{t}{t+1}$ is strictly increasing on $[0, \infty)$, we have

$$G_{fx,fy,fz}(\varphi(t)) = \frac{\varphi(t)}{\varphi(t) + (|fx - fy| + |fy - fz| + |fz - fx|)}$$

$$= \frac{\varphi(t)}{\varphi(t) + \frac{1}{4}(|x - y| + |y - z| + |z - x|)}$$

$$\geq \frac{\frac{t}{4}}{\frac{t}{4} + \frac{1}{4}(|x - y| + |y - z| + |z - x|)}$$

$$= \frac{t}{t + (|x - y| + |y - z| + |z - x|)}$$

$$= G_{x,y,z}(t).$$

Therefore, from the Theorem 3.8 f has unique fixed point. In fact, the fixed point is x = 0.
