
Chapter 2

Probabilistic contraction under a

control function

2.1 Introduction

The purpose of this work is to give a generalization of Sehgal’s contraction [101]

by defining and utilizing a new class of control functions. One of the early uses of

control functions in probabilistic fixed point theory is due to Choudhury et al. [18].

Other results involving control functions in fixed point theory on PM-spaces have

appeared in works of [4, 26, 46, 53, 63, 100, 113]. Recently, several such control

functions were generalized in a definition given by Fang [39].

Characteristics of the probabilistic metric spaces strongly depend on the t-norm asso-

ciated with the space. Further, the notion of G-Cauchy sequence and G-completeness

used in this chapter weaker than the ordinary Cauchy sequence and completeness

of the probabilistic metric space. Here, we have established two theorems, in one
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of which it is shown that the contraction defined has a unique fixed point in a G-

complete probabilistic metric space with any continuous t-norm while in the other

theorem, we show that the same result is true in a complete probabilistic metric

space provided we make a particular choice of minimum t-norm.

In the following, we mention some features of the present work:

(i) We introduce a new contraction mapping with the help of a control function.

(ii) The control function is new and independent of other such functions in litera-

ture given by different authors.

(iii) In one theorem, we use the weak version of completeness, namely G-completeness.

(iv) Probabilistic generalizations of the contraction mapping principle are estab-

lished in G-complete and complete metric spaces.

(v) The results are further illustrated with suitable examples.

2.2 Preliminaries

Now, we describe the definitions and mathematical conventions which are required

for the discussion of the results established in this chapter.

Definition 2.1. [63]

1. A sequence {xn} in (X,F, T ) is called a G-Cauchy sequence if for any given

ε > 0 and λ ∈ (0, 1], there exists N ∈ N depending on ε and λ such that

Fxn,xn+k
(ε) > 1− λ, for all n ≥ N and k ∈ N.
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2. A Menger space (X,F, T ) is said to be G-complete if each G-Cauchy sequence

{xn} in X is convergent to some point x ∈ X.

G-Cauchy property of a sequence is weaker than the Cauchy property of a sequence

with the latter implying the former. We now introduce the class Φ of a function ϕ

as follows:

Definition 2.2. Φ is the class all of functions ϕ : R+ → R+ such that for each t > 0

there exists r > t with ϕ (r) ≤ t.

An example of this type of function is given below:

Example 2.1. ϕ (t) =


0 if t = 0

1
2n

if 1
2n
≤ t < 1

2n−1 for n ∈ N

kt if t ≥ 1, where 0 < k < 1.

In the above example, it can be shown that the class Φ of Definition 2.2 is not

covered by the class used by Fang [39].

2.3 Main results

Lemma 2.3. Let (X,F, T ) be a Menger space. Let {xn} be a sequence in X

and {tm} be a sequence of non-negative real numbers. Suppose that the sequence{
Fxn,xn+1 (tm)

}
is non-decreasing in both variables m and n, for each m,n ∈ N, that

is , Fxn,xn+1 (tm) ≥ Fxn−1,xn (tm) and Fxn,xn+1 (tm+1) ≥ Fxn,xn+1 (tm) for each m and

n. Then lim
n→∞

(
lim
m→∞

F xn,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

F xn,xn+1 (tm)
)

.
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Proof. Denote bn = lim
m→∞

F xn,xn+1 (tm) and cm = lim
n→∞

F xn,xn+1 (tm) .

Our assumption of monotonicity and boundedness of distribution function imply

that these limits are finite.

Since F xn+1,xn+2 (tm) ≥ F xn,xn+1 (tm) , we have lim
m→∞

F xn,xn+1 (tm) ≥ lim
m→∞

F xn−1,xn (tm) .

This gives that bn+1 ≥ bn, that is , the sequence {bn} is non-decreasing. Similarly,

we find that the sequence {cm} is non-decreasing.

Let b = lim
n→∞

bn and c = lim
m→∞

cm.

We have F xn,xn+1 (tm) ≤ cm ⇒ lim
m→∞

F xn,xn+1 (tm) ≤ lim
m→∞

cm which implies that

bn ≤ c, that is, lim
n→∞

bn ≤ c.

Thus, b ≤ c. The proof of c ≤ b is analogous. Therefore, b = c, that is,

lim
n→∞

(
lim
m→∞

F xn,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

F xn,xn+1 (tm)
)
.

Lemma 2.4. Let (X,F, T ) be a Menger space with a t-norm T . Let {xn} be a

sequence in (X,F, T ). If there exists a function ϕ ∈ Φ such that

F xn,xn+1 (ϕ (t)) ≥ F xn−1,xn (t) , for all n ∈ N and t > 0. (2.1)

Then lim
n→∞

F xn,xn+1 (t) = 1.

Proof. Let t0 > 0 be arbitrary.

Since ϕ ∈ Φ, there exists t1 > t0 such that

ϕ (t1) ≤ t0. (2.2)
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Now, since F xn,xn+1 (ϕ (t)) ≥ F xn−1,xn (t) , by the monotonic increasing property of

the distribution function along with equations (2.1) and (2.2), we have

F xn,xn+1 (t1) ≥ F xn,xn+1 (t0) ≥ F xn,xn+1 (ϕ (t1)) ≥ F xn−1,xn (t1) ≥ F xn−1,xn (t0) . (2.3)

Since the choice of t0 > 0 is arbitrary, {Fxn,xn+1} is monotonically increasing in n for

all t > 0. In particular, the sequence
{
Fxn,xn+1 (t0)

}
is monotonically increasing in n

and being bounded above, is convergent. Let lim
n→∞

F xn,xn+1 (t0) = l. Let, if possible,

l < 1. Then lim
n→∞

F xn,xn+1 (t1) = l (by inequality (2.3)). Then, by sandwich theorem,

lim
n→∞

F xn,xn+1 (t) = l < 1, for all t ∈ [t0, t1] . Let

t̄ = supA, whereA =
{
t : lim

n→∞
F xn,xn+1 (t) = l

}
. (2.4)

If t̄ is finite then there exists monotonically increasing sequence {tm} ⊂ A such that

for all m ∈ N,

lim
n→∞

F xn,xn+1 (tm) = l and tm → t̄ asm→∞. (2.5)

Since F xn,xn+1 is left continuous, F xn,xn+1 (t̄) = lim
m→∞

F xn,xn+1 (tm) .

Therefore, lim
n→∞

F xn,xn+1 (t̄) = lim
n→∞

(
lim
m→∞

F xn,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

F xn,xn+1 (tm)
)

=

l (by Lemma 2.3 and (2.5)).

Therefore, lim
n→∞

F xn,xn+1 (t̄) = l. Then proceeding, as in the above case of t0, there

exists t̄1 such that lim
n→∞

F xn,xn+1 (t̄1) = l and t̄1 > t̄, which is a contradiction with

(2.4). Thus, for all t > t0

lim
n→∞

F xn,xn+1 (t) = l. (2.6)

Since Fx,y (t) → 1 as t → ∞, there exists s > t0 such that F xk,xk+1
(s) > l for some

k ∈ N. Also, we have established that
{
F xn,xn+1 (t)

}
is monotonically increasing in

n for all t > 0. Thus, the sequence
{
F xn,xn+1 (s)

}
is monotonically increasing in
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n, and that lim
n→∞

Fxn,xn+1 (s) > l. But this is a contradiction to (2.6) since s > t0.

Therefore, lim
n→∞

F xn,xn+1 (t) = 1 for all t > t0. Since t0 > 0 is arbitrary, we conclude

that

lim
n→∞

F xn,xn+1 (t) = 1, for all t > 0. (2.7)

Lemma 2.5. Let (X,F, T ) be a Menger space with a t-norm T. Let {xn} be a

sequence in (X,F, T ). If there exists a function ϕ ∈ Φ such that

F xn,xn+1 (ϕ (t)) ≥ F xn−1,xn (t) , for all n ∈ N and t > 0. (2.8)

Then {xn} is a G-Cauchy sequence in X.

Proof. In view of the definition of G-Cauchy sequence, we have to prove that

lim
n→∞

F xn,xn+k
(t) = 1, (2.9)

for all t > 0 and k∈ N. We use induction on k to prove this result. For k = 1,

equation (2.9) becomes lim
n→∞

F xn,xn+1 (t) = 1, which is true for all t > 0 by equation

(2.7). Now, assume that equation (2.9) holds for some k ∈ N and for all t > 0, that

is, for all t > 0,

lim
n→∞

F xn,xn+k
(t) = 1. (2.10)

Then,

F xn,xn+k+1
(t) ≥ T

(
F xn,xn+k

(
t

2

)
, F xn+k,xn+k+1

(
t

2

))
.

Since, T is continuous,

lim inf
n→∞

F xn,xn+k+1
(t) ≥ T

(
lim
n→∞

F xn,xn+k

(
t

2

)
, lim
n→∞

F xn+k,xn+k+1

(
t

2

))
. (2.11)
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Using equations (2.7) and (2.10) in the inequality (2.11), we get

lim inf
n→∞

F xn,xn+k+1
(t) ≥ T (1, 1) = 1,

which implies that lim
n→∞

F xn,xn+k+1
(t) = 1, for all t > 0. Thus, equation (2.9) is true

if we replace k by k + 1. Then, by induction, we conclude that lim
n→∞

F xn,xn+k
(t) = 1,

for all t > 0. Hence {xn} is a G-Cauchy sequence.

In the next theorem, we establish the existence of a fixed point for the probabilistic

Φ-contraction.

Theorem 2.6. Let (X,F, T ) be a G-complete Menger space with a continuous t-

norm T. If f : X → X is a probabilistic ϕ-contraction , that is,

Ffx,fy (ϕ (t)) ≥ Fx,y (t) , for all x, y ∈ X and t > 0, (2.12)

where ϕ ∈ Φ, then f has a fixed point x∗ ∈ X and {fn (x0)} converges to x∗ for

arbitrary x0 ∈ X.

Proof. Taking an arbitrary x0 ∈ X, we define the sequence {xn} as follows: Let

x0 ∈ X and xn = fxn−1, for all n ∈ N. Then by (2.12),

F xn,xn+1 (ϕ (t)) = Ffxn−1,fxn (ϕ (t))

≥Fxn−1,xn (t) , for alln ∈ N and t > 0.

Then by Lemma 2.5, we conclude that {xn} is a G-Cauchy sequence in X. Since X

is G-complete, we have xn → x∗ for some x∗ ∈ X. Since ϕ ∈ Φ, for each t > 0 there

exists r > t such that ϕ (r) ≤ t. Now, F fxn,fx∗ (t) ≥ F fxn,fx∗ (ϕ (r)) ≥ F xn,x∗ (r) .

This gives, F fxn,fx∗ (t) ≥ F xn,x∗ (r) . Taking limit n → ∞ in this inequality and



Chapter 2. Probabilistic contraction under... 28

since xn → x∗, for each t > 0, we get

lim
n→∞

F fxn,fx∗ (t) = 1. (2.13)

Then,

F x∗,fx∗ (t) ≥ T

(
F x∗,xn+1

(
t

2

)
, F xn+1,fx∗

(
t

2

))
=T

(
F x∗,xn+1

(
t

2

)
, F fxn,fx∗

(
t

2

))
.

Taking limit n→∞ in the above inequality, using equation (2.13) and the continuity

of T, we get, for all t > 0,

F x∗,fx∗ (t) ≥ T (1, 1) = 1.

Hence, fx∗ = x∗, which proves that x∗ is a fixed point of f .

In the next result we prove the uniqueness of the fixed point of f, for which we

require the following lemma.

Lemma 2.7. Let (X,F, T ) be a Menger space and x, y ∈ X. If there exists a

function ϕ ∈ Φ such that

Fx,y (ϕ (t)) ≥ Fx,y (t) , (2.14)

for all t > 0, then x = y.

Proof. In order to show x = y, we need to prove that Fx,y (t) = 1, for all t > 0.

Suppose that there exists t0 such that Fx,y (t0) < 1. Since ϕ ∈ Φ, there exists t1 > t0

such that ϕ (t1) ≤ t0. Then equation (2.14) and monotonic increasing property of
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Fx,y together imply the following inequality

Fx,y (t0) ≥ Fx,y (ϕ (t1)) ≥ Fx,y (t1) ≥ Fx,y (t0) . (2.15)

In case of strict inequality anywhere in (2.15), we have a contradiction. So we assume

that equality holds, and in particular, Fx,y(t1) = Fx,y(t0).

Clearly, the set A = {s : Fx,y (s) = Fx,y (t0) ; s > t0} is non-empty by the above con-

sideration. Let, if possible, s̄ =supA be finite. Then there exists a monotonically

increasing sequence {sn} with sn ∈ A for all n ∈ N such that sn → s̄. Since Fx,y is

left continuous, it follows that Fx,y (s̄) = lim
n→∞

Fx,y (sn) = Fx,y (t0) < 1. This implies

that s̄ ∈ A. Then again treating s̄ in the same way as t0 we obtain some s̄1 > s̄ such

that Fx,y (s̄1) = Fx,y (s̄) = Fx,y (t0) which contradictions the fact that s̄ = supA.

Hence, A is unbounded above. Therefore, there exists {sn} ⊂ A which is monotone

increasing and diverges to infinity. Hence, lim
n→∞

Fx,y (sn) = 1. But sn ∈ A. Therefore,

Fx,y(sn) = Fx,y(t0) < 1, for all n ∈ N, which is a contradiction.

Hence, Fx,y (t) = 1 for all t > 0, that is x = y.

Theorem 2.8. The fixed point in the Theorem 2.6 is unique.

Proof. Suppose that y∗ is another fixed point of f. Then using (2.12), we get

Fx∗,y∗ (ϕ (t)) = Ffx∗,fy∗ (ϕ (t))

≥Fx∗,y∗ (t) , for all t > 0.

Then by Lemma 2.7, we get x∗ = y∗.

In our next result, We show that Theorems 2.6 and 2.8 are valid if the space is

complete Menger space as well if the t-norm is minimum t-norm.
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Theorem 2.9. Let (X,F, T ) be a complete Menger space with minimum t-norm T.

If f : X → X is a probabilistic ϕ-contraction, that is,

Ffx,fy (ϕ (t)) ≥ Fx,y (t) , for all x, y ∈ X and t > 0, (2.16)

where ϕ ∈ Φ. Then f has a unique fixed point.

Proof. Starting with arbitrary x0 ∈ X, we construct the sequence xn = fxn−1 =

fnx0 for all n ≥ 1. Then by Lemma 2.4, we prove that

Fxn,xn+1(t)→ 1 as n→∞ for all t > 0. (2.17)

Next we prove that {xn} is a Cauchy sequence. If {xn} is not a Cauchy sequence,

then due to violation of Definition 1.19, there exist ε > 0 and 0 < λ < 1 and

sequences of integers {m(k)} and {n(k)} with n(k) > m(k) > k such that for all

k ≥ 1,

Fxm(k),xn(k)
(ε) ≤ 1− λ (2.18)

and

Fxm(k),xn(k)−1
(ε) > 1− λ. (2.19)

Now, by a property of ϕ, there exists r > ε such that ϕ(r) ≤ ε. Let r = ε+ η, where

η > 0. Then for all k ≥ 1,

1− λ ≥ Fxm(k),xn(k)
(ε) (by (2.18))

≥ Ffxm(k)−1,fxn(k)−1
(ϕ(r))

≥ Fxm(k)−1,xn(k)−1
(r) (by (2.16))

= Fxm(k)−1,xn(k)−1
(ε+ η) (since r = ε+ η)

≥ T (Fxm(k)−1,xm(k)
(η), Fxm(k),xn(k)−1

(ε)). (2.20)
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In view of (2.17), there exists an integer k0 such that

Fxm(k)−1,xm(k)
(η) > 1− λ for all k > k0. (2.21)

Then choosing k > k0, by virtue of (2.19) and (2.21), since T is a minimum t-norm,

we obtain,

1− λ ≥ min(Fxm(k)−1,xm(k)
(η), Fxm(k),xn(k)−1

(ε)) > 1− λ,

which is a contradiction. Therefore, {xn} is a Cauchy sequence and hence converges

to some x∗ ∈ X. The rest of the proof is analogous to Theorem 2.6 and the uniqueness

of fixed point is by an application of Theorem 2.8.

In the following, we have the corollary of Theorem 2.9 which is the Sehgal’s contrac-

tion mapping theorem in the above mentioned space.

Corollary 2.10. [101] Let (X,F, T ) be a complete Menger space with T (a, b) =

min{a, b}. Let f : X → X be such that for some 0 < k < 1, for all x, y ∈ X and

t > 0, the following inequality holds:

Ffx,fy(kt) ≥ Fx,y(t).

Then f has a unique fixed point.

Proof. The corollary follows by assuming ϕ(t) = kt, for all t ≥ 0, in Theorem

2.9.
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2.4 Illustrations

In this section, we discuss two examples to illustrate the results obtained in the

previous sections.

Example 2.2. Let X = { 1
n
;n ∈ N} ∪ {0} and T (a, b) = min(a, b), for all a, b ∈ X.

Define a function F : X ×X → D+, by Fx,y (t) = t
t+|x−y| . Then, clearly (X,F, T ) is

a G-complete Menger space. Define f : X → X by f (x) = x2

4
, for each x ∈ X and

ϕ : [0,∞)→ [0,∞) by

ϕ (t) =


0 if t = 0

1
2n

if 1
2n
≤ t < 1

2n−1

kt if t ≥ 1,where 1
2
≤ k < 1.

Obviously, ϕ ∈ Φ. Now, we want to show that f is ϕ-contraction.

Case 1: t = 0.

Then ϕ(t) = 0 = t.

Case 2: 1
2n
≤ t < 1

2n−1 .

Since 1
2n−1 > t, we have 1

2n
> t

2
, that is, ϕ(t) ≥ t

2
.

Case 3: t ≥ 1.

Since, k ≥ 1
2
, we have kt ≥ t

2
, that is, ϕ(t) ≥ t

2
.

Thus, we get ϕ(t) ≥ t
2
, for all t ∈ [0,∞) . Now, since the function t

t+1
is strictly

increasing on [0,∞) , we have
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Ffx,fy (ϕ (t)) =
ϕ (t)

ϕ (t) + |fx− fy|

=
ϕ (t)

ϕ (t) + 1
4
|x2 − y2|

(since |x2 − y2| = |x− y||x+ y| ≤ 2|x− y| as x, y ∈ X)

≥
t
2

t
2

+ 1
2
|x− y|

=
t

t+ |x− y|

= Fx,y (t) .

Therefore, from the Theorem 2.6, f has a unique fixed point. In fact, the unique

fixed point is x = 0.

Example 2.3. We consider the complete Menger space (X,F, T ), where X = [0,∞),

T (a, b) = min{a, b} and F is defined as

Fx,y(t) =


t

t+|x−y| if |x− y| ≥ t

1 if |x− y| < t.

Let ϕ(t) =


0 if t = 0

1
2n

if 1
2n
≤ t < 1

2n−1 , for n ≥ 1

k if k ≤ t < k + 1,

and fx = x
x+1

, for all x ∈ X. Then ϕ(t) > t
1+t
. If |fx−fy| < ϕ(t), then the inequality

(2.16) is satisfied. So we assume that |fx − fy| ≥ ϕ(t). Now, |fx − fy| ≤ |x−y|
1+|x−y| .

Then, t
t+1
≤ |x−y|

1+|x−y| . Since t
t+1

is monotone increasing in t, we have |x− y| ≥ t,



Chapter 2. Probabilistic contraction under... 34

and then it follows that

Ffx,fy(ϕ(t)) =
ϕ(t)

ϕ(t) + |fx− fy|

≥
t
t+1

t
t+1

+ |x−y|
1+|x−y|

≥
t
t+1

t
t+1

+ |x− y|

>
t

t+ |x− y|
= Fx,y(t).

Then by Theorem 2.9 there exist a unique fixed point in this example. Here, 0 is the

unique fixed point.

***********


