
Chapter 1

Introduction

The fixed point theory has been originated to establish the solutions of differential

equations via the method of successive approximations discussed independently by

Picard [83] and Liouville [65]. But formally it was initiated in the starting of twenti-

eth century as a significant part of analysis. In 1906, Frechet introduced the concept

of metric spaces. The distance between two points in these spaces is a non-negative

real number. Following this idea, in 1922, the great Polish mathematician Stefan

Banach [9] established the first result on metric fixed point theory. This result is

known as Banach contraction mapping principle which states that “a contraction

mapping on a complete metric space has a unique fixed point”. Banach used the

idea of contraction map to obtain this celebrated result. Another important fixed

point theorem is due to Brouwer stating that “a continuous map on a closed unit

ball in Rn has a fixed point”. Brouwer fixed point theorem is of an important tool

for the numerical treatment of various types of equations. Schauder’s fixed point

theorem [97] is a generalization of Brouwer fixed point theorem which exactly states

that “a continuous map on a convex compact subspace of a Banach space has a fixed

point”. These celebrated results have been used and extended in different ways by
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several authors (see, [10, 13]).

In 1942, K. Menger [67] introduced the idea of probabilistic metric spaces as a gen-

eralization of metric spaces. Probabilistic metric spaces are mathematical structures

in which the distance between any two objects is given by a probability distribu-

tion function rather than by a non-negative number. After that many authors have

extended this concept in various directions. Menger space is a particular type of

such spaces where the probabilistic triangular inequalities obtained by the use of

a t-norm. The theory of this structure was developed mainly after 1960 through

the works of different mathematicians. A comprehensive account of this is found in

the book of Schweizer and Sklar [98] published in 1983. The theoretical aspects of

this structure are considered important as a study in probabilistic analysis which

is an extension of metric space concepts into the domain of theoretical probability.

It is also important in applications due to the inherent probabilistic nature of its

geometry. A recent example of such an application in nuclear fusion related prob-

lem can be found in [41]. There are also several studies in analysis which have been

extended to probabilistic metric spaces. For such extension, one can refer to [14]

where a probabilistic fixed point result is used to prove the existence of the solution

of the differential equation in probabilistic metric spaces.

The probabilistic metric space has been generalized in many directions. These ex-

tensions are motivated by the same needs as that of generalizing ordinary metric

spaces. Fixed point results in those generalizations have also been developed in

recent years. In 1963, Gahler [40] introduced the idea of 2-metric spaces as a natu-

ral generalization of an ordinary metric space. But some authors pointed out that

2-metric need not be continuous function of its variables. Later, Dhage [31] de-

fined D-metric spaces as another class of generalized metric spaces. However, it is

found that the D-metric need not be continuous in its variables as mentioned in [70].
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Further, in 2006 this concept is extended by Mustafa and Sims [70] to define gener-

alized metric spaces (G-metric spaces). In the sequel to such developments, different

probabilistic generalization had been proposed (see [95, 96, 98, 112]) and the study

of the triangle inequalities played a central role to the development of generalized

probabilistic metric spaces. In 2014, Zhou et al. [116] introduced a Menger proba-

bilistic G-metric space ( Menger PGM-space) which generalizes the Menger space.

The detailed development of this space can be seen in [4, 24, 29, 34, 63, 107]. For

more details about the major steps in this development, we refer [99] to the readers.

In 1965, Zadeh [114] introduced the idea of fuzzy set to tackle uncertainty in day

to day life. Afterwards, it was explored by several authors towards its various ap-

plications. This theory played as a powerful tool in handling uncertainty in nature,

industry and engineering applications etc. In the lack of complete and precise in-

formation in various situations, this theory has lead to the idea of approximate

reasoning to tackle decision making problems. This has helped in dealing with com-

plex situations for which other traditional mathematical tools fail to give a proper

solution. Moreover, quantum particle physics in particular string theory has been

explained using fuzzy topology by El Naschie [35]. To apply this concept in analysis

and topology, fuzzy metric spaces have been defined in different ways by several re-

searchers [42, 100]. Kramosil and Michalek [100] developed the idea of fuzzy metric

space. A fixed point result in such space was given by Grabiec in [44] by extending

the contraction mapping principle due to Banach. Another concept of Fuzzy Metric

spaces was introduced by George and Veeramani [42] by modifying the idea of fuzzy

metric spaces and constructed a Hausdorff topology there. They proved that a fuzzy

metric can be induced in Hausdorff topology for any given metric.

We are interested in fixed point theory in probabilistic and fuzzy metric spaces.

Probabilistic fixed point theory is widely recognized to have initiated by the work

of Sehgal et al. [101] where the authors developed probabilistic metric spaces by
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extending the Banach’s contraction mapping principle. The importance of the type

of space we consider is that the metric in a probabilistic metric space takes val-

ues in a set of distribution functions rather than non-negative real numbers. In

this way these spaces have randomness within their structures. Several aspects of

mathematical theory of these spaces have developed over the years (for details see

[2, 21, 52, 98, 110]). During last four decades, the theory of fixed point has devel-

oped enormously to solve many interesting problems in these spaces. Many aspects

of such developments are described in the book of Hadzic et al.[47]. Some other re-

sults on these spaces are noted in [3, 14, 17, 18, 19, 20, 27, 28, 32, 33, 36, 37, 38, 43,

46, 47, 48, 50, 58, 60, 61, 62, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 85, 86, 102, 103]

This chapter is divided into five sections.

In section 1.1, we give a description of probabilistic metric spaces.

In section 1.2, we discuss on probabilistic generalized metric spaces.

In section 1.3, we describe the concept of fuzzy metric spaces.

In section 1.4 and 1.5 we give contraction and some fixed point results on metric

and probabilistic metric spaces.

1.1 A description of probabilistic metric spaces

In this section, we present the following important definitions on probabilistic metric

spaces, which are essential for the discussion of the thesis. Just for the purpose of

comparison and reference we first give the following definition of a metric space due

to Frechet (1906).
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Definition 1.1. Let X be an abstract set and d : X × X → R be a mapping

that associate a real number d(a, b) with every pair (a, b) of elements of X. If the

mapping d satisfy the following conditions:

(i) d(a, b) = 0 if and only if a = b,

(ii) d(a, b) > 0,

(iii) d(a, b) = d(b, a),

(iv) d(a, d) ≤ d(a, c) + d(c, a) for all a, b, c ∈ X.

Then d is called a metric and the pair (X, d) is called a metric space.

Definition 1.2. Distribution Function [67]

A mapping F : R → [0,∞) is called a distribution function if it is non-decreasing

and left-continuous with inf
x∈R

F (x) = 0 and sup
x∈R

F (x) = 1. The set of all distribution

functions is denoted by D+.

An example of distribution function is:

Example 1.1. H (t) =


0 if t ≤ 0

1 if t > 0.

Definition 1.3. Probabilistic metric space [47, 99]

Let X be a non empty set and F : X ×X → D+ be a mapping We denote F (x, y)

by Fx,y and Fx,y(t) represents the value of Fx,y at t ∈ R. If the function Fx,y satisfies

the following conditions for all x, y ∈ X,

(i) Fx,y(0) = 0,
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(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,

(iii) Fx,y(t) = Fy,x(t) for all t > 0,

(iv) if Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(t1 + t2) = 1 for t1, t2 > 0,

then ordered pair (X,F ) is said to be probabilistic metric space (PM-space).

In view of the condition (i) of 1.3 which states that Fx,y(0) = 0,, the condition (ii) of

1.3 is equivalent to the condition: x = y if and only if Fx,y(t) = H(t). Further, with

the description of Fx,y(t) as the probability that the distance between x and y is at

most x, we know that the first three conditions of 1.3 are the generalization of the

first three conditions of 1.1. The condition (iv) of 1.3 is a ‘minimal’ generalization

of the triangle inequality (iv) of 1.1 which is interpreted as follows: If it is true that

the distance between x and y is less than t1, and likewise true that the distance

between y and z is less than t2, then it is true that the distance between x and z is

less than t1 + t2.

The condition (iv) of 1.3 is always satisfied in metric spaces, where it reduces to

the ordinary triangle inequality. However, in those PM-spaces in which the equality

Fx,z(t1) = 1 does not hold for any finite t1, the condition (iv) of 1.3 will be satisfied

only vacuously. It is therefore of interest to have ‘stronger’ generalization of triangle

inequality.

Definition 1.4. t-norm [67, 99]

A t-norm is a function T : [0, 1]× [0, 1]→ [0, 1] satisfying:

(i) T (1, a) = a,

(ii) T (a, b) = T (b, a),
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(iii) T (c, d) ≥ T (a, b) whenever c ≥ a and d ≥ b,

(iv) T (T (a, b), c) = T (a, T (b, c)), for all a, b, c, d ∈ [0, 1].

The three basic continuous t-norms can be given as:

(i) minimum t-norm, say Tm, defined by Tm(a, b) = min{a, b},

(ii) product t-norm, say Tp, defined by Tp(a, b) = a.b,

(iii) The Lukasiewicz t-norm, say TL, defined by TL(a, b) = max{a+ b− 1, 0}.

These t-norms are related as: TL ≤ Tp ≤ Tm.

Another important t-norm, introduced by Hadzic and Pap is known as Hadzic type

t-norm.

Definition 1.5. Hadzic type t-norm [47]

A t-norm T is said to be Hadzic type t-norm if the family {T n}n∈N of the iterates,

defined for each s ∈ (0, 1) as T 0(s) = 1, T n+1(s) = T (T n(s), s) for all integer n ≥ 0,

is equi-continuous at s = 1, that is, given ε > 0 there exists η(ε) ∈ (0, 1) such that

1 ≥ s > η(ε)⇒ T n(s) ≥ 1− ε for all n ≥ 0.

Using t-norm probabilistic metric spaces have been generalized to Menger proba-

bilistic metric spaces.

Definition 1.6. Menger probabilistic metric space [47, 99]

A Menger probabilistic metric space or simply Menger space is a triplet (X,F, T )

where X is a non empty set, F : X×X → D+ be a function and T is a t-norm such

that the following hold:



Chapter 1. Introduction 8

1. Fx,y(0) = 0 for all x, y ∈ X

2. Fx,y(t) = 1 for all t > 0 and x, y ∈ X if and only if x = y,

3. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t > 0,

4. Fx,y(t+ s) ≥ T (Fx,z(s), Fz,y(t)) for all s, t ≥ 0 and x, y, z ∈ X.

Let (X,F, T ) be a Menger PM-space. If p ∈ X and for positive real numbers t

and r such that r < 1, the open ball Np(r, t) with center at p ∈ X is defined by

Np(r, t) = {q ∈ X : Fp,q(t) > 1 − r}. The interpretation is that, Np(r, t) is the set

of all points q in X for which the probability of the distance between p and q being

less than t is greater than 1− r.

A subset O ⊂ X is open if for each p ∈ O, there exist t > 0 and 0 < r < 1 such that

Bp(r, t) ⊂ O. Let β denote the family of all open subsets of X. Then β is a topology

on X induced by the Menger probabilistic metric F . This topology is Hausdorff

topology.

Definition 1.7. Convergent sequence in Menger space [47, 99]

A sequence {xn} ⊂ X is said to converge to some point x ∈ X if given ε > 0, λ > 0

we can find a positive integer Nε,λ such that for all n > Nε,λ, Fxn,x(ε) > 1− λ holds.

Definition 1.8. Cauchy sequence in Menger space [47, 99]

A sequence {xn} is said to be a Cauchy sequence in X if given ε > 0, λ > 0 we can

find a positive integer Nε,λ such that Fxn,xm(ε) > 1− λ for all m,n > Nε,λ.

Definition 1.9. Complete Menger space [47, 99]

A Menger space (X,F, T ) is said to be complete if every Cauchy sequence in X is

convergent to a point in X.
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1.2 A description of generalized Menger spaces

Branciari [12] introduced the idea of generalized metric spaces to generalize the

definition of metric spaces. He replaced the triangle inequality by a quadrangular

inequality. The definition of generalized metric space is as follows:

Definition 1.10. Generalized metric spaces [12]

Let X be a non empty set. R+ be the set of all non negative real numbers and d is

a mapping from X ×X into R+. If for all x, y ∈ X and for all points p, q ∈ X, each

of them different from x and y, the following holds.

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) and

3. d(x, y) ≤ d(x, p) + d(p, q) + d(q, y).

Then d is called generalized metric and (X, d) is generalized metric space.

Banach contraction mapping theorem in generalized metric spaces was established

by Branciari [12] in the same work. By an example, he showed that there exist gen-

eralized metric spaces which are not the metric spaces. After that some other type

of fixed point theorem are established by various authors. Some of these results may

be seen in [89, 90, 91]. Apart from the way 1.10, many others have introduced gen-

eralized metric spaces in different ways. Recently, Mustafa and Sims [70] introduced

a new class of generalized metric spaces, called G-metric spaces, as follows:

Definition 1.11. G-Metric space [70]

Let X be a non-empty set and G be a function defined on X ×X ×X to R+. Then

(X,G) is a G-metric space if for all x, y, z, a ∈ X, G satisfy the following conditions:
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(i) G(x, y, z) = 0 if x = y = z,

(ii) G(x, x, z) > 0 for x 6= y,

(iii) G(x, y, z) ≥ G(x, x, y) for z 6= y,

(iv) G(x, y, z) = G(x, z, y) = G(y, z, x) = G(y, x, z) = G(z, x, y) = G(z, y, x),

(v) G(x, a, a) +G(a, y, z) ≥ G(x, y, z).

It was shown in [70] that ordinary metric can be generalized as the G-metric. In

the same vein, Zhou et al. [116] introduced the probabilistic generalization of G-

metric spaces with obtaining some fixed point results. This metric space is known

as Menger probabilistic generalized metric space or Menger PGM-space.

Definition 1.12. Menger PGM-space [116]

The 3-tuple (X,G, T ) is called a Menger PGM-space if X is a non-empty set, T is a

continuous t-norm and G : X ×X ×X → D+ be a mapping satisfying the following

conditions:

(i) Gx,y,z(t) = 1, for all x, y, z ∈ X and t > 0 if and only if x = y = z,

(ii) Gx,x,y(t) ≥ Gx,y,z(t), for all x, y ∈ X with z 6= y and t > 0,

(iii) Gx,y,z(t) = Gp(x,y,z)(t), where p is a permutation function,

(iv) Gx,y,z(t+ s) ≥ T (Gx,a,a (s) , Ga,y,z(t)), for all x, y, z, a ∈ X and s, t > 0.

Example 1.2. [116]

Let (X,F, T ) be a PM-space. Define a function G : X×X×X → D+ by Gx,y,z(t) =

min {Fx,y(t), Fy,z(t), Fx,z(t)} ∀ x, y, z ∈ X and t > 0. Then (X,G, T ) is a Menger

PGM-space.
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Definition 1.13. Cauchy sequence in Menger PGM-space [116]

Let (X,G, T ) be a Menger PGM-space. Then {xn} ⊂ X is said to be convergent to

x ∈ X if given λ > 0, ε > 0 we can find n0 ∈ N depending upon ε and λ > 0 such

that for all n ≥ n0, Gx,xn,xn (ε) ≥ 1− λ holds.

Definition 1.14. Convergent sequence in Menger PGM-space [116]

Let (X,G, T ) be a Menger PGM-space. A {xn} ⊂ X is called a Cauchy sequence if

for any given ε > 0 and λ ∈ (0, 1] there exists n0 ∈ N depending upon ε and λ > 0

such that Gxn,xm,xl (ε) ≥ 1− λ, whenever m,n, l ≥ n0.

Definition 1.15. Complete Menger PGM-space [116]

A Menger PGM-space (X,G, T ) is said to be complete if every Cauchy sequence

{xn} in X is convergent to some point x ∈ X.

1.3 A description of fuzzy metric spaces

Definition 1.16. KM-fuzzy metric spaces[59]

The 3-tuple (X,M, T ) is a fuzzy metric space in the sense of Kramosil and Michalek

if X is a non-empty set, T is a t-norm and M is a fuzzy set on X × X × [0,∞)

satisfying the following axioms:

(KM1) M(x, y, 0) = 0.

(KM2) M(x, y, t) = 1, for all t > 0 if and only if x = y.

(KM3) M(x, y, t) = M(y, x, t).

(KM4) T (M(x, y, t),M(y, z, s)) ≤M(x, z, t+ s).
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(KM5) The function M(x, y, .) : (0,∞) → [0, 1] is left continuous, for all x, y, z ∈ X

and t, s > 0.

George and Veeramani in their paper [42] introduced a modification of the above

definition to induce a Hausdorff topology on such spaces.

Definition 1.17. GV-fuzzy metric spaces

The 3-tuple (X,M, T ) is called a fuzzy metric space in the sense of George and

Veeramani if X is a non-empty set, T is a continuous t-norm and M is a fuzzy

set on X × X × [0,∞) satisfying the following conditions for each x, y, z ∈ X and

t, s > 0 :

(GV1) M(x, y, t) > 0.

(GV2) M(x, y, t) = 1, for all t > 0 if and only if x = y.

(GV3) M(x, y, t) = M(y, x, t).

(GV4) T (M(x, y, s),M(y, z, t)) ≤M(x, z, s+ t).

(GV5) The function M(x, y, .) : (0,∞) → (0, 1] is continuous, for all x, y, z ∈ X and

t, s > 0.

Fuzzy metric spaces in the sense of Kramosil and Michalek will be referred as KM-

fuzzy metric spaces and that of George and Veeramani will be referred as GV-fuzzy

metric space. However, in our thesis, we restrict ourself only in GV-fuzzy metric

space and we write it simply as fuzzy metric space. The following details of this

space are described in the introductory paper of George and Veeramani [42]. Suppose

(X,M, T ) denote a fuzzy metric space. For t > 0, 0 < r < 1, the open ball U(x, ε, t)

with center x ∈ X is defined by U(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε}. A set
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O ⊂ X is open if for each x ∈ O, ∃ 0 < ε < 1 and t > 0 such that B(x, ε, t) ⊂ O.

Suppose that the family of all open subsets of X is denoted by β. Then β induces

a Hausdorff topology on X.

Example 1.3. [42] Let X = R. For each t ∈ (0,∞) and x, y ∈ X, let M(x, y, t) =

t
t+|x−y| . Then, (R,M, Tp) is a fuzzy metric space.

Definition 1.18. Convergent sequence in fuzzy metric space [42, 100]

Let (X,M, T ) be a fuzzy metric space. Then A sequence {xn} in (X,M, T ) is said

to be convergent to x ∈ X, if M(xn, x, t) = 1, ∀ t > 0.

Definition 1.19. Cauchy sequence in fuzzy metric space [42, 100]

A sequence {xn} in (X,M, T ) is said to be Cauchy if for each 0 < ε < 1 and t > 0,

∃ k ∈ N such that M(xm, xn, t) > 1− ε, for each m,n ≥ k.

Definition 1.20. Complete fuzzy metric space [42, 100]

A fuzzy metric space (X,M, T ) in which every Cauchy sequence is convergent to a

point in it, is called complete fuzzy metric space.

Lemma 1.21. [42] M(x, y, .) is non decreasing ∀ x, y ∈ X.

Definition 1.22. [42, 100]

Suppose (X,M, T ) is a fuzzy metric space, then M is continuous on X×X×(0,∞) if

lim
m→∞

M(xm, ym, tm) = M(x, y, t), where {(xm, ym, tm)} be a sequence in X2× (0,∞)

converging to (x, y, t) in X2 × (0,∞).

Lemma 1.23. [42]

M is continuous function on X ×X × (0,∞).
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1.4 Development of fixed point theory in proba-

bilistic metric spaces

The classical Banach contraction principle states that “a contraction mapping on a

complete metric space has a unique fixed point”, that is,

Theorem 1.24. If (X, d) be a complete metric space and f : X → X is a self

mapping such that for every x, y ∈ X, f satisfy the following contraction condition:

d(fx, fy) ≤ kd(x, y), where 0 < k < 1,

then f has a fixed point x ∈ X, which is unique.

Banach contraction principle has been extensively generalized in many settings

due to its several applications in various disciplines of mathematics. Sehgal and

Bharucha-Reid [101] has extended the notion of metric fixed point contraction prin-

ciple to probabilistic and fuzzy metric spaces (probabilistic k-contraction). Further

they obtained the following result:

Theorem 1.25. Let (X,F, Tm) be a complete Menger PM-space where Tm is the

minimum t-norm defined by Tm(a, b) = min{a, b}. f : X → X is a self mapping

such that for every x, y ∈ X and t > 0,

Ffx,fy(kt) ≥ Fx,y(t) where 0 < k < 1 (1.1)

then f has a fixed point x ∈ X, which is unique and fn(x0) converges to x for each

x0 ∈ X.

It is interesting to obtain the generalizations of probabilistic k-contraction to estab-

lish fixed point theorems in probabilistic metric spaces. A natural generalization of
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probabilistic k-contraction is the so-called probabilistic ϕ-contraction . A mapping

f : X → X is called a probabilistic ϕ-contraction in probabilistic metric space if it

satisfies Ffx,fy(ϕ(t)) ≥ Fx,y(t) ∀ x, y ∈ X and t > 0, where ϕ : R+ → R+ is a control

function or a gauge function.

Control functions have been used in many results in fixed point theory. Such use

was initiated in metric fixed point theory by khan et al. [57] in 1984. The essential

feature of a control function is that it alters the metric distance which makes the

triangle inequality directly unavailable in the proofs of the theorems. New methods

in the proof are then to be introduced in order to obtain the final results. The idea

of control function was extended by Choudhury et al. [18] to fixed point theory in

Menger spaces which is twin branch of fuzzy fixed point theory. To establish the

fixed point results for ϕ-contractions on a complete Menger space, many researchers

have given various conditions on the control function ϕ [26, 39, 53] . Most of the

results for probabilistic ϕ-contraction were established with the consideration that

ϕ is nondecreasing and
∑∞

k=0 ϕ
n(t) < ∞ for t > 0. Ciric [26] has pointed out that

these conditions were very strong and difficult to apply in general. After that, these

conditions have been weakened in the recent papers [26, 39, 53, 108, 111]. Recently,

several such control function were generalized in a definition given by Fang [39]. A

brief description of the development of control functions in fixed point problem on

probabilistic metric spaces are as follows:

Theorem 1.26. [26, Ciric] Let (X,F, T ) be a complete Menger space with a con-

tinuous t-norm T of Hadzic-type. If f : X → X is a probabilistic ϕ-contraction ,

that is,

Ffx,fy (ϕ (t)) ≥ Fx,y (t) , for all x, y ∈ X and t > 0, (1.2)

where ϕ : R+ → R+ satisfying the condition:

ϕ(0) = 0, ϕ(t) < t and lim
n→∞

ϕn(t) = 0, for t > 0 then f has a fixed point in X
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which is unique.

To establish the results of the Theorem 1.26, Jaychimski [53] modified the conditions

on the control function ϕ and defined a new type of control function ϕ : R+ → R+

satisfying the condition: 0 < ϕ(s) < s and lim
n→∞

ϕn(s) = 0, for s > 0. Fang [39]

has shown that if control function ϕ : R+ → R+ be such that for each s > 0 there

exists r ≥ s with lim
n→∞

ϕn(r) = 0, for all s > 0 then results of the Theorem 1.26

hold. Wang et al. [111] further weakened the conditions on control function ϕ by

defining a new type of control function ϕ : R+ → R+ satisfying: for each s1, s2 > 0,

there exists r ≥ max(s1, s2) and N ∈ N such that ϕn(r) < min(s1, s2) for all s > 0

and n ≥ N.

An another notion of contraction different from Sehgal’s contraction [101] was in-

troduced by T.L. Hicks [50] which is called as C-contraction on probabilistic metric

spaces.

Definition 1.27. Let (X,F, T ) be a Menger space. A self mapping f : X → X

is called a C-contraction if there exists k ∈ (0, 1) such that for every a, b ∈ X, and

r > 0,

Fa,b(r) > 1− r =⇒ Ffa,fc(kr) > 1− kr holds. (1.3)

Hicks proved that in a complete Menger space (X,F, Tm) with a strongest t-norm

Tm, there exists a unique fixed point of f where f : X → X is a C-contraction. Radu

[47] proved that the above result 1.3 holds in a complete Menger space (X,F, T ) if

T satisfy sup
t<1

T (t, t) = 1. A comparative study of the C-contraction and the Sehgal

contraction was also made in [47]. By giving an example of C-contraction on a

complete Menger space (X,F, T ), it was concluded that a probabilistic k-contraction

need not be a C-contraction.
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As a generalization of the notion of C-contraction 1.3, the concept of (ϕ,C)-contraction

was introduced in [47]:

Definition 1.28. Let (X,F, T ) be a Menger space. The mapping f : X → X is

called a (ϕ,C)-contraction, if for every a, b ∈ X and for every r > 0,

Fa,b(r) > 1− r ⇒ Ffa,fb(ϕ(r)) > 1− ϕ(r) (1.4)

where ϕ : R+ → R+ is a control function.

Further, the concept of C-contraction has been generalized and extended in Menger

spaces. Consequently, the notion of g-contraction was given in [43]:

Definition 1.29. Let (X,F, T ) be a Menger space. The mappings f, g : X → X be

such that g is bijective then f is called a probabilistic g-contraction if for 0 < k < 1

Fga,gb(r) > 1− r ⇒ Ffa,fb(kr) > 1− kr holds ∀ r > 0. (1.5)

1.5 Development of fixed point theory in fuzzy

metric spaces

In 1988, M. Grabiec [44] introduced the idea of fixed point theory in fuzzy metric

space and proved the fuzzy Banach contraction and fuzzy Edelstein contraction

theorem. In order to obtain his theorems, Grabiec introduced the following notions.

Recently, many authors have studied the fixed point theory in the fuzzy metric space

and number of fixed point theorems have been obtained in fuzzy metric spaces by

using the contraction condition of self mappings. In 1983, M. Grabiec [44] extended
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the known fixed point results of Banach and Edelstein contraction principle in fuzzy

metric space in the sense of Kramosil and Michelek.

Theorem 1.30. Fuzzy Banach contraction Theorem Let (X,M, T ) denote a

complete fuzzy metric space such that

(i) lim
t→∞

M(x, y, t) = 1,

(ii) M(fx, fy, kt) ≥M(x, y, t)

for all x, y ∈ X where 0 < k < 1. Then f has a fixed point, which is unique.

Extensions of this result have been obtained in different settings. Khan et al. gave

the notion of altering distance function which alters the distance in metric space.

Definition 1.31. The function ϕ : R+ → R+ is called an altering distance function

if it is continuous, non-decreasing and ϕ = 0 if and only if t = 0.

The concept of weak ϕ-contraction was introduced by Alber and Guerre [1].

Definition 1.32. Let (X, d) be an usual metric space. A self mapping f on X is

called weak ϕ-contraction if d(fx, fy) ≤ d(x, y)−ϕ(d(x, y)) for each x, y ∈ X where

ϕ : R+ → R+ is a non-decreasing and continuous function with ϕ(t) = 0 if and only

if t = 0.

Dutta et al. [32] gave the notion of (ϕ− ψ)-weak contraction mappings:

Definition 1.33. A self mapping f on X is called weak (ϕ, ψ)-weak contraction if

ψ(d(fx, fy)) ≤ ψ(d(x, y))− ϕ(d(x, y)) for each x, y ∈ X where ϕ, ψ : R+ → R+ is a

non-decreasing and continuous function with ϕ(t) = ψ(t) = 0 if and only if t = 0.
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These notions of weak contraction have been extended in fuzzy metric spaces and

proved several fixed point results (see, [5, 6, 7, 22, 23]).

***********




