List of Figures

Figure 1.1 Examples of potential applications of HfO ₂ in various industries
Figure 1.2 Different phases of HfO ₂ as a function of temperature under normal pressure condition
Figure 1.3 Temperature-Pressure (T-P) phase diagram of HfO ₂ . (adapted from [46])7
Figure 1.4 XRD patterns demonstrating stabilization of the monoclinic and tetragonal phase in stoichiometric and oxygen deficient HfO ₂ films. (adapted from [50])
Figure 1.5 XRD patterns of (a) cubic and (b) monoclinic HfO ₂ nanoparticles. The insets show respective selected area electron diffraction (SAED) patterns. (adapted from [51]) 10
Figure 1.6 The emission spectra of HfO ₂ nanoparticles crystallized in the monoclinic (blue line) and cubic (red line) phase under ambient conditions. The deconvoluted peaks are grey in color (adapted from [86])
Figure 1.7 Typical current-voltage (I-V) curves of RRAM in (a) unipolar and (b) bipolar resistive switching modes
Figure 2.1 Process flow of Sol-gel method for the synthesis of pure HfO ₂ and rare earth doped HfO ₂ powders
Figure 2.2 A schematic representation of electron beam evaporation (EBE) deposition system. (the direction of magnetic field (B) is out of the page)
Figure 2.3 The schematic diagram of metal-insulator-metal (MIM) test structure
Figure 2.4 A representation of the incident X-rays and their diffraction from equidistant lattice planes
Figure 2.5 A standard PL spectrofluorometer indicating different components used in the experimental setup
Figure 3.1 (a) Back scattered electron (BSE) images for $x = 0.05$, 0.07, 0.09 and 0.11, respectively and (b) Wavelength dispersive spectra (WDS) for $x = 0.11$
Figure 3.2 X-ray diffraction patterns of HfO_2 calcined at 500, 700 and 900 °C 53
Figure 3.3 XRD patterns of Hf _{1-x} Dy _x O ₂ ($0 \le x \le 0.11$) samples calcined at 900 °C 54

Figure 3.4 Le-Bail profile fitting of XRD patterns using FULLPROF program (a) $x = 0$ with P2 ₁ /c and (b) $x = 0.11$ with Fm3m
Figure 3.5 Variation of crystallite size (D) and lattice strain (ϵ) in Hf _{1-x} Dy _x O ₂ ($0 \le x \le 0.11$) samples
Figure 3.6 Typical TEM micrograph of pure HfO ₂ nanoparticles calcined at 900 °C 59
Figure 3.7 SAED pattern and high resolution TEM for $x = 0$ (a and b) and $x = 0.11$ (c and d), respectively. Insets of (a) and (c) show the particle size distribution histogram. Insets of (b) and (d) show the lattice planes
Figure 3.8 The XPS spectra of O 1s region for $x = 0$ and $x=0.11$
Figure 3.9 Room temperature M vs.H curves for pure HfO ₂ calcined at 500, 700 and 900 °C. The right panel shows hysteresis at low magnetic field
Figure 3.10 M vs. H curves at 2 and 35 K for pure HfO ₂ calcined at 900 °C65
Figure 3.11 M vs. H dependence measured at (a) 300 K and (b) 2 K for $Hf_{1-x}Dy_xO_2$ (x= 0 and 0.01). The right panel shows a zoomed-in view at lower field for x = 0 and 0.01 66
Figure 3.12 M vs. H dependence measured at (a) 300 K and (b) 2 K for $Hf_{1-x}Dy_xO_2$ (x= 0-0.11)
Figure 3.13 Variation of χ^{-1} vs. T for Hf _{1-x} Dy _x O ₂ (0.01 $\leq x \leq 0.11$)67
Figure 3.14 Variation of susceptibility with temperature in $Hf_{1-x}Dy_xO_2$ (x = 0, 0.05, 0.07 and 0.11) nanoparticles
Figure 3.15 Room temperature excitation spectra of $Hf_{1-x}Dy_xO_2(0 \le x \le 0.11)$ by monitoring the emission wavelength at 490 nm
Figure 3.16 Room temperature emission spectra of $Hf_{1-x}Dy_xO_2$ ($0 \le x \le 0.11$) at an excitation wavelength of 352 nm
Figure 3.17 (a) Dependence of Y–B ratio and the relative intensity of the 490 nm emission peak in $Hf_{1-x}Dy_xO_2$ ($0 \le x \le 0.11$) and (b) the CIE colour space chromaticity diagram (a – f corresponds to $x = 0$ -0.11) under an excitation wavelength of 352 nm
Figure 3.18 The proposed energy band diagram illustrating the charge transfer (CT) mechanism taking place in $Hf_{1-x}Dy_xO_2$

Figure 4.1 (a) X-ray diffraction patterns of $Hf_{1-x}Sm_xO_2$ ($0 \le x \le 0.12$) powders calcined at 900 °C and (**b**) integral peak area ratio of (111) of cubic phase to (T11) or (111) of monoclinic phase as a function of Sm concentration. 83

Figure 4.4 SAED patterns of (**a**) HfO_2 and (**b**) $Hf_{0.88}Sm_{0.12}O_2$ and; High resolution TEM showing different lattice planes of (**c**) HfO_2 and (**d**) $Hf_{0.88}Sm_{0.12}O_2$. The particle size distribution histograms are shown as inset of (**a**) for HfO_2 and inset (**b**) for $Hf_{0.88}Sm_{0.12}O_2$.

Figure 5.1 XRD patterns of xDy,ySm:HfO₂powders ((x=y=6); (x=6, y=7) and (x=7, y=6)) calcined at 900 °C.

Figure 5.3 (a) Variation in crystallite size calculated along (T11) as a function of Dy and Sm concentration; Le-Bail refinement profiles of XRD data of (b)D0S0 (c) D0.5S2 and (d) dependence of lattice constants such as a, b, c and volume upon Dy and Sm concentrations.

Figure 5.5 TEM micrographs of (a) D0S0, (b) D0.5S0, (c) D0.5S0.3 and (d) D0.5S2. a'-d' show corresponding particle size distribution histograms. 108

Figure 5.14 The optical images of latent fingerprints developed using Dy^{3+} and Sm^{3+} coactivated HfO₂ nanophosphors and detected under 395 nm UV irradiation: (a) aluminum

Figure 6.2 EDS spectra for (a)Sm:HfO₂ and (b) Dy:HfO₂ films annealed at 550 $^{\circ}$ C..... 131

Figure 6.3 The XPS spectra of Hf 4f and O1s core levels for (a,a') Hf	O ₂ , (b,b') Sm:HfO ₂
and (c,c') Dy:HfO ₂ , respectively	