List of Figures

Figure 1.1: The classification of nanostructured materials based on quantum confishape, and size.	nement, 3
Figure 1.2: The classification of nanostructured materials based on the materials	4
Figure 1.3: The application of nanostructured materials	5
Figure 1.4: The properties of nanostructure materials	9

Figure 1.5: The properties of nanostructure semiconductor materials under UV excitation. 10

Figure 1.6: The classification plasmonic nanostructure with semiconductor (a) the metal NPs embedded in the semiconductor (ii) the metal NPs are buried in the semiconductor, and (iii) isolated from the semiconductor 11

Figure 1.7: Surface-plasmon decay, generation and injection of hot-electron in the metallic nanostructure, (a), Localized surface plasmons can decay radiatively via reemitted photons and non-radiatively via excitation of hot electrons, (b) In plasmonic nanostructures, non-radiative decay can occur through or through interband excitations resulting from transitions between other bands (for example, d bands) and the conduction band or intraband excitations within the conduction band, (c) Plasmonic energy conversion at the metal (Ag)-semiconductor (n-TiO₂) interface. 12

Figure 1.8: (a) Basic principle of water splitting for H_2 generation (b) The complete circuit of the H_2 generation mechanism (c) the band structure of some semiconductor with redox potential. 15

Figure 1.9: (a) The ideal band edge positioning of H_2 and O_2 evolution photo-catalysts (b) The band edge positions of pure metal oxide (TiO₂) with respect to water redox potential towards H_2 production. 16

Figure 1.10: The type of photodetector (a) Photoconductor, (b) Photodiode, and (c) Phototransistor 19

Figure 2.1: The schematic steps for the substrate cleaning process	25

Figure 2.2: The schematic steps for the LTO solution preparation	. 27
--	------

Figure 2.3: Schematic growth process of in-situ grown Ag-TiO₂ thin film in five successive steps (a) TiO₂ thin film on FTO coated glass by spin coating of sol-gel precursor or TiO₂ NP followed by annealing (b) dip coating of precursor of LTO thin film (c) annealing of precursor film at 550 °C for 1 hour to obtain polycrystalline Li₄Ti₅O₁₂thin film (d) ion exchange process to exchange Li⁺ ion of Li₄Ti₅O₁₂ by Ag^+ of solution. (e) Reduction process that converts Ag^+ to Ag^o to form Ag-TiO₂ thin film containing Ag NCs inside TiO₂ thin film.

Figure 2.4: Schematic growth process of in-situ grown Ag_2S -TiO₂thin film in four successive steps (a) Dip coating precursor of LTO on the FTO, TiO₂ (sol-gel)/FTO and TiO₂ (NPs)/FTO) coated glass substrate followed by annealing respectively at 550 °C for 1 hour to obtain polycrystalline Li₄Ti₅O₁₂ thin film (b) for ion exchange process to exchange Li⁺ ions by Ag^+ (c) in this step sample dip for sulfurization process that convert Ag^+ to Ag and to form Ag_2S inside TiO₂ thin film (d) this thin film wash with DI water to remove extra Na₂S solution from the samples. 5

Figure 2.5: Schematic growth process of in-situ grown Cu_2S (NPs)-TiO₂ thin film in three successive steps (a) LTO precursor coated on the three different including FTO, TS/FTO, and TN/FTO, ZnO coated glass or glass substrate by dip coating followed by annealing respectively at 550 °C for 1 hour to obtain polycrystalline Li₄Ti₅O₁₂ thin film (b) for ion exchange process to exchange Li⁺ ions by metal ion (Li⁺ $\leftarrow Cu^+$), from metal solution) to form Cu₄Ti₅O₁₂ thin film. (c) For sulfurization process that converts Cu₄Ti₅O₁₂ to Cu₂S-TiO₂ thin films respectively and these thin films containing Cu₂S NCs inside TiO₂ thin film (d), these samples wash with DI water to remove extra Na₂S solution from the surface 32

Figure 2.6: The schematic diagram of IPCE or EQE, Responsivity measurements for PEC cell or photodetector 35

Figure 2.7: Schematic representation of three-electrode systems for I-V Characterization. In this figure, three different photoanodes used as a working electrode (Ag-TiO₂, Ag₂S-TiO₂, and Cu₂S-TiO₂), platinum as a counter electrode and Ag/AgCl as a reference electrode. 2

Figure 3.1: (a) The XRD pattern of LTO and Ag-TiO₂, (b) and normalized UV-VIS absorption spectra of different photoanodes coated with TiO₂, Ag-TiO₂, Ag-TiO₂/TiO₂ solgel, and Ag-TiO₂/TiO₂NP, respectively. (c) The images of Ag-TiO₂ and TiO₂ thin films, (d) UV-VIS absorption spectra of Cu-TiO₂ thin film. 41

Figure 3.2 The microstructure and surface morphology of the (a) Ag-TiO₂ (dip coated) thin film on Si substrate (b) Particle size distribution of Ag-NP (c) Energy dispersive spectra of Ag-TiO₂ thin film, an elemental composition that obtained from EDS shown in the inset. (d) EDS mapping of Ag-TiO₂ thin film (i) original SEM image (ii) for O, (iii) for Ag, and (iv) for Ti 42 **Figure 3.3** (a) Transmission electron microscope image of Ag NPs-TiO₂ (b) particle size distribution of Ag NP, (c) high-resolution image of Ag NP-TiO₂, the green circle indicates the lattice spacing d-fringe of Ag and yellow circle for TiO₂ (d) selected area electron diffraction (SAED) pattern of Ag NP-TiO₂ 43

*Figure 3.4: High-resolution XPS spectra of Ag-TiO*₂ *sample (a) Ag 3d (b) Ti 2p and (c) O Is. (d) the full scan of XPS for the Ag-TiO*₂ *thin film* 44

Figure 3.5 (a) Current density vs. (V vs.RHE) potential of different Ag-TiO₂ thin film under light and dark in 1 M KOH solution (b) schematic diagram of photocatalytic water splitting mechanism by Ag-TiO₂ based photoanode due to the SPR effect of Ag NP. (c) IPCE data for different photoanode in the range of 350 nm to 800 nm under -1.0V external bias with 1 M KOH electrolyte solution. Inset shows the magnified IPCE data in the wavelength range from 390 nm to 510 nm. (d) Mott–Schottky (M-S) plot for different photoanodes in 1 kHz operation under dark condition. 47

Figure 3.6: (a) Current density vs. (V vs. RHE) potential of Ag- TiO_2 and TiO_2 thin film under light and dark in 1 M KOH solution, (b) The EIS spectra for Ag- TiO_2 and TiO_2 photoanodes. (c) The EIS spectra of three different Ag- TiO_2 photoanodes. The inset shows the equivalent circuit. (d) Volumetric hydrogen generation over the time in five different cycles for Ag- TiO_2/TiO_2 NPs/FTO photoanode under one sun white light irradiation. 53

Figure 3.7(*a*) Photostability tested for Ag-TiO₂/TiO₂ NPs/FTO thin film under continues light illumination in 1M KOH solution. (b) Time response of different photoanode under light (100 mw/cm²) and dark with -0.3 V external bias, (i) for TiO₂/FTO (ii) for Ag-TiO₂/TiO₂ sol-gel /FTO (iv) for Ag-TiO₂/TiO₂ NPs/FTO. 54

Figure 4.1: (a) The XRD pattern of bare TiO₂, LTO and Cu₂S-TiO₂ (CSTO) thin films on the FTO substrate (b) Normalized UV-VIS absorption spectra of TiO₂ only and Cu₂S-TiO₂ coated with three different substrate including FTO, TS/FTO, and TN/FTO nanocomposite thin films (b-d) Taue plot from UV-VIS absorption spectra of (b)TiO₂ only (c)Cu₂S-TiO₂ coated thin films 59

Figure 4.2 The microstructure and surface morphology of the (a) Cu_2S -TiO₂ (dip coated) thin film on Si substrate (b) Particle size distribution of Ag-NP (c) Energy dispersive spectra of Cu_2S -TiO₂ thin film, an elemental composition that obtained from EDS is shown in the inset. (d) EDS mapping of Cu_2S -TiO₂ thin film (i) Cu(ii) for S, (iii) for Ti, and (iv) for O.

Figure 4.3:(a) Transmission electron microscope image of Cu_2S NP-TiO₂ (b) size distribution of Cu_2S NP-TiO₂ (c) high resolution image of Cu_2S NP-TiO₂, white circle indicates the lattice d-fringe of Cu_2S and magenta circle for TiO₂ (d) selected area electron diffraction (SAED) pattern of Cu_2S NP-TiO₂. 61

Figure 4.4: (a) The Image of the samples, bare TiO_2 , and Cu_2S - TiO_2 (CSTO) thin films on the FTO substrate, (b) Survey scane of XPS for the Cu_2S - TiO_2 thin film 63

Figure 4.5: *High-resolution XPS spectra of* Cu_2S - TiO_2 *sample (a)* Cu 2p *(b)* S 2p *(c)* Ti 2p *and (d)* O 1s. 63

Figure 4.6 (a-b) Current density vs. (V vs. RHE) potential of different Cu₂S-TiO₂ thin film under light and dark in 1 M KOH solution with three different substrates (a) for HER evolution, (b) for OER evolution (b) Schematic charge transfer process of Cu₂S-TiO₂ interface and H₂ evalution, (d) IPCE of bare TiO₂, Cu₂S-TiO₂ with three different substrate. 64

Figure 4.7: The comparative study of (a) current density vs. (V vs. RHE) potential of bare TiO₂ and Cu₂S-TiO₂ thin film (b) EIS data of bare TiO₂ and Cu₂S-TiO₂ thin film (c) electrochemical impedance spectroscopy (EIS) measurement for three different Cu₂S-TiO₂photoanodes under light and dark conditions in 1 M KOH solution (d) The Mott–Schottky (M-S) plot for different photoanodes in 1 kHz operation under dark condition inset show the positive slop. 69

Figure 4.8: (a)The time response of different photoanodes (b) the photostability of Cu_2S -TiO₂/TiO₂ sol-gel, (c) The volumetric hydrogen generation under one sun white light irradiation over the time for three different photoanodes. (d) For five successive cycle by Cu_2S -TiO₂/TiO₂ NPs photoaode. 70

Figure 5.1: (a) The XRD pattern of bare TiO_2 , LTO and Ag_2S - TiO_2 thin films (b) Normalized UV-VIS absorptionspectra of TiO_2 and Ag_2S - TiO_2 nanocomposite thin films. 77

Figure 5.2 The surface morphology of the (a) Ag_2S -TiO₂ (dip coated) thin film on FTO coated glass substrate (b) Particle size distribution of Ag_2S -TiO₂ NPs (c) Energy dispersive spectra of Cu_2S -TiO₂ thin film, an elemental composition that obtained from EDS is shown in the inset. (d) EDS mapping of Ag_2S -TiO₂ thin film (i)O (ii) for S, (iii) for Ag, and (iv) forTi.

Figure 5.3(a) Transmission electron microscope image of Ag_2S NP-TiO₂ (b) high resolution image of Ag_2S NP-TiO₂, green circle indicates the lattice d-fringe of Ag_2S and pinck circle for TiO₂.(c) Slected area diffraction pattern of Ag_2S NPs-TiO₂ (d) Size distribution of Ag_2S NPs-TiO₂. 79

Figure 5.4:*High-resolution XPS spectra of Ag*₂*S-TiO*2 *sample (a) Ag 3d (b) O 1s. (c) Ti 2p and (d) S 3p* 80

Figure 5.5 (a) Current density vs. (V vs. RHE) potential of different Ag_2S -TiO₂ thin film under light and dark in 1 M KOH solution (b) schematic diagram of photocatalytic water splitting mechanism by Ag_2S -TiO₂ based photoanode (c) IPCE data for different photoanode in the range of 350 nm to 800 nm under -1.0V external bias with 1 M KOH electrolyte solution. (d) The Mott–Schottky (M-S) plot for different photoanodes in 1 kHz operation under dark condition. 83

Figure 5.6:(a) The comparative study of current density vs. (V vs. RHE) potential of bare TiO₂ and Ag₂S-TiO₂ thin film (b) The EIS spectra TiO₂ and Ag₂S TiO₂ photoanodes. The inset shows the equivalent circuit, (c) The electrochemical impedance spectroscopy (EIS) measurement for three different Ag₂S-TiO₂photoanodes under light and dark conditions in1 M KOH solution (d) The images of the Ag₂S-TiO₂ and TiO₂ (NP) photoanodes 87

Figure 5.7: (a) Time response of same photoanode with different substrates under light (100 mW/cm²) and dark with -0.5 (b)Photostability tested for Ag_2S -TiO₂/TiO₂ sol-gel/FTO photoanode V external bias in 1M KOH medium, the volumetric hydrogen generation under one sun white light irradiation with the time (c) for three different photoanodes. (d) in five successive cycles by Ag_2S -TiO₂/TiO₂ NP photoanode 88

Figure 6.1: The XRD pattern of (a) Cu₂S- TiO₂ and pure LTO (b) UV-Vis spectra of LTO, TiO₂, and Cu₂S- TiO₂ thin films. 95

Figure 6.2. (a) SEM image of Ag_2S -TiO₂ thin film b) transmission electron microscope image of Cu_2S NP-TiO₂ b) high-resolution image of Cu_2S (NP)-TiO₂, the greenish circle indicates the lattice d-fringe of Cu_2S and pink circle for TiO₂. d) Selected area diffraction pattern of Cu_2S (NP)-TiO₂. 96

Figure 6.3: Size distribution of Ag_2SNP inside TiO_2 thin film from (a) SEM image,(b) TEM image,(c)Photoconductivity of Glass/ZnO/TiO_2-Cu_2S/Al, Glass/ZnO/LTO/Al, Glass/ZnO/Al under dark and light conditions,(d) The elemental and composition analysis show the spectrum and table of Cu_2S-TiO_2. 97

Figure 6.4:(*a-b*) Semi log plot shows the photoconductivity of a)Glass/ZnO/TiO₂-Cu₂S/Al, b)Glass/ZnO/Al under dark and light conditions. Band alignment, band bending, and charge separation of (c) Al/Cu₂S-TiO₂/ZnO (d) Al/ZnO heterostructure photodetector devices. 100

Figure 6.5: Cu₂S-TiO₂/ZnO lateral heterojunction photoconductor device performance (a) External quantum efficiency (EQE) vs. Wavelength, (b) Extracted responsivity vs wavelength (c) Extracted detectivity vs wavelength and d) Transient time response of these same set of devices structures Glass/ZnO/TiO₂-Cu₂S/Al, Glass/ZnO/LTO/Al, and Glass/ZnO/Al. 101