7.1 Conclusions

In conclusion, thesis work has mainly focused on the simple technique to grow metal or metal sulfide nanoparticle within TiO_2 thin film by a cost effective solution-processed *in-situ* growth technique. These metal/TiO₂ or metal sulfide/TiO₂ heterojunction nanocomposite thin films have been utilized for photo-electrochemical hydrogen generation and broad band photodetector fabrication. For this synthesis, initially Li₄Ti₅O₁₂, a popular ion-conducting metal has been synthesis in a sol-gel technique. Due to the ionconducting nature of this ceramic thin film, Li-ion can move through the crystal channel freely. Taking the advantage of this feature, Li⁺ of this ceramic film has been exchanged with $Ag^+(or Cu^+)$ by an ion-exchange process toform $Ag_4Ti_5O_{12}(or Cu_4Ti_5O_{12})$. For metal/TiO₂ junctions, these ion-exchange thin films have been reduced by NaBH₄ solution. On the other hand, for metal sulfide/ TiO_2 heterojunctions formation, those ion-exchanged thin films have been dipped inside Na_2S solution to grow the metal sulfide nanoparticle inside TiO_2 . This typical growth technique of nanoparticle allows us to fabricated metal/TiO₂ or metal sulfide/TiO₂ heterojunction with a very low trap state that enables us to utilize this thin film for efficient photo-electrochemical H₂ generation and efficient Vis-NIR photo-detector fabrication.

To date, the performance of photoelectrocatalytic H_2 generation by metal/TiO₂ or metal sulfide/ TiO₂ heterojunctions photoanode is very poor. Because, the charge transfer efficiency from metal or metal sulphideto TiO₂strongly depends on the nature of metal or metal chalcogenide/TiO₂ interfaces. In most of those studies, metal or metal chalcogenide NPs are deposited on top of TiO₂ surfaces that make poor interfaces exhibiting significant

interface trap states. An ideal metal/metal oxide or metal chalcogenide/metal oxide heterogeneous photocatalysis requires a large interface with very low trap states to reach efficient charge transfer without significant recombination at the interfacial. To resolve those issues, in this thesis work has demonstrated *in situ* grown thechnique thatprovides the formation of metal/metal oxide or metal chalcogenide/metal oxide heterojunctions with less interfacial trap states. The photoelectrochemical H₂ generation performances of these in situ grown heterostructures based photoanodes have been studied in a various device structure. From those studies it was realized that photoanodecoated withmetal/TiO₂ or metal sulphide/TiO₂ heterojunction in combination withunderlaying TiO₂ NP coated FTO gives the best perfornce. In addition, the advantage of batter charge transfer has been realized in a broadband photodetector fabrication.

The summary of those finding are

The photo-electrochemical measurements reveal that photoanodes with Ag-TiO₂, Ag₂S-TiO₂ and Cu₂S-TiO₂ show the excellent photo-electrochmical properties. The comparative studies of three photoanodes show that photoanode with Ag-TiO₂, Ag₂S-TiO₂ and Cu₂S-TiO₂ gives the maximum photocurrent density of 42, 39 and 50 mAcm⁻² respectively in 1M KOH solution under 0.45 V external bias which is more than three order (10³) higher than pure TiO₂ photoanode.

- All photo-anodes show the good photo stability under one and half hour steady operation.and have sufficiently fast photo response.
- > In addition, we have utilized *in situ* grown Cu_2S -TiO₂ heterojunction thin film to fabricatevisible light photo-detector with the device structure of Al/Cu₂S-

TiO₂/ZnO/Glass. The responsivity and detectivity of this optimized photodetector 0.22 A/W and 1.7×10^{11} jones respectively at 830 nm.

7.2 The scope of future work

- In future, this *in situ* grown metal/TiO₂ and metal sulphide/TiO₂ synthesis route can be explored in various ways with different combination of metal/metal oxide junction and metal sulphide/metal oxide heterojunction. For example, ZnO and SnO₂ are very well known metal oxide with higher electron mobility. Due to their higher carrier mobility, charge transfer rate is expected to be higher. Therefore, metal/ZnO(or SnO₂) and metal sulphide/ZnO(or SnO₂) can be synthesize in future. Those in situ grown structures can be studied for various application including photoelectrochemical H₂ generation, photodetector and solar cell application.
- These *in-situ* grown Cu₂S NPs and Ag₂S NP inside TiO₂thin film can be utilized for solar cell application.
- Much lower size Ag NP, Cu₂S NPs and Ag₂S NP can be grown by changing the reaction condition and their different physical behavior can be studied.
- Since these *in situ* grown metal/TiO₂ and metal sulphide/TiO₂heterojunction thin films have been deposited by low cost dip coating method, therefore larger area photoanode or other device can be fabricated and tested in future.
- In place of FTO glass, some metal substrate, like Cu, Ni can be used as anode for these *in situ* grown metal/TiO₂ and metal sulphide/TiO₂heterojunction thin film fabrication that can lower the overall fabrication cost.