#### 5.1 Introduction

In photocatalysis reaction, photogenerated electrons and holes can initiate redox reactions at the surface of the semiconductor catalyst [128, 129]. Although, this photogenerated carrier generation by solar spectrum depends on the bandgap of the semiconductor. As a single semiconductor photocatalyst, TiO<sub>2</sub> has been used widely due to its high chemical stability [61], low toxicity [130], and its potential utility for the destruction of organic compounds in polluted air and waste water [131]. However, due to its large bandgap nature, it is capable of absorbing a very narrow region of the solar spectrum, which is capable of generating electron-hole pair at a very slow rate. To avoid this situation, photocatalyst with composite heterojunction semiconductor of low bandgap with the wide bandgap metal oxide has been investigated widely where photo generated electron can transfer to the conduction band of metal-oxide due to barrier potential [132]-[126]. In earlier reports, a number of metal chalcogenide nanoparticles (like Ag<sub>2</sub>S [133], Cu<sub>2</sub>S[111]) have been used as low bandgap components that absorb solar light mostly[134-136]. In a combination of these two issues, large and narrow bandgap heterojunction photocatalysis has emerged as a promising entrance to visible-near infrared (NIR) lightactive photocatalysts for many applications, such as decomposition of organic pollutants, selective oxidation and reduction reactions of organic compounds and hydrogen generation from aqueous-alcoholic solutions [137-141]. However, photocatalytic proton reduction by the use of sacrificial reluctants like methanol, H<sub>2</sub> evolution rates of these heterojunction catalysts under visible light is still much lower. This lower performance occurs due to poor

heterostructure formation [67, 142]. Although These types of catalyst structures are quite effective, efficiency strongly depends on the nature of metal chalcogenide/metal-oxide interfaces [105, 143-145]. In most of those studies, metal chalcogenide NPs are deposited on top of TiO<sub>2</sub> surfaces that make poor interfaces with significant interface trap states. An ideal metal chalcogenide-metal oxide heterogeneous photocatalysis required a large interface with very low trap state to reach efficient charge transfer without significant recombination in interfacial trap state. Therefore, a better synthetic technique of metal chalcogenide-metal oxide composite is required to achieve higher interfaces with lower interface trap states to improve the catalytic performance.

In this study, a unique approach has been taken to develop *in situ* grown Ag<sub>2</sub>S NPs within titanium oxide (TiO<sub>2</sub>) thin film and has been utilized for photocatalytic H<sub>2</sub> generation. This thin film growth consists of three successive steps, including sol-gel derived ion-conducting thin film fabrication containing loosely bound light ion (Li<sup>+</sup>) followed by ion-exchange (with Ag<sup>+</sup>) and subsequent sulfurization process. In this process, large area Ag<sub>2</sub>S-TiO<sub>2</sub> thin film containing Ag<sub>2</sub>S NPs with size ranging ~10-70 nm was readily obtained. The Ag<sub>2</sub>S-NPs size and interparticle distance were controlled by changing the growth conditions. The photo-electrocatalytic performance of Ag<sub>2</sub>S-TiO<sub>2</sub> composite thin films was evaluated by photo-electrochemical water splitting for the evolution of hydrogen, as discussed in subsequent sections. A transfer-enhancement synergistic mechanism has been proposed to explain the experimental results.

#### 5.2 **Results and Discussions**

#### 5.2.1 Structural and optical characterization

The X-ray diffraction (XRD) patterns of the samples were collected at room temperature. **Figures 5.1(a)** shows the x-ray diffraction (XRD) pattern of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO),

TiO<sub>2</sub>, and Ag<sub>2</sub>S-TiO<sub>2</sub> dip-coated thin films that have been deposited on FTO substrate. The diffraction peaks of LTO are located at  $2\theta \sim 18.5$ , 35.6, 43.7, corresponding reflection planes (111), (311), and (331), respectively, that have been well matching with JCPDS file no. 490207, confirmed the cubic spinel structure with the space group of (F  $\overline{3}$ dm). Similarly, the diffraction peaks of TiO<sub>2</sub> are 25.36°, 37.88°, 48.11° and 54.12° corresponding to the planes (101), (004), (200) and (105) respectively, nicely matched with JCPDS card No. 894921, indicates the tetragonal structure with the space group of (I4<sub>1</sub>).



*Figure 5.1*: (a) The XRD pattern of bare  $TiO_2$ , LTO and  $Ag_2S$ - $TiO_2$  thin films (b) Normalized UV-VIS absorption spectra of  $TiO_2$  and  $Ag_2S$ - $TiO_2$ nanocomposite thin films.

The diffraction peaks of Ag<sub>2</sub>S-TiO<sub>2</sub> thin film that has been shown in **figure 5.1(a)** indicates the peak positions of  $2\theta \sim 34.42^{\circ}$  and  $37.10^{\circ}$  and the corresponding diffraction planes are (-121), (013), match with JCPDF card number 140072. It is known that TiO<sub>2</sub> has three different crystallographic phases of (a) rutile (a) anatase and (c) brookite, and among these phases, anatase is thermodynamically more stable than rutile and brookite [121, 135, 146]. This XRD study of Ag<sub>2</sub>S-TiO<sub>2</sub> thin film has identified the formation of anatase phase that has a peak position at  $2\theta \sim 25.35^{\circ}$  and 54.  $35^{\circ}$  correspond to the planes (101) and (105) [121]. **Figure 5.1(b)** shows the normalized UV-VIS absorption spectra of different photoanodes coated with TiO<sub>2</sub> (sol-gel), Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> (sol-gel), and Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> NPs thin film within the wavelength range of 300-900 nm. Absorption spectra of TiO<sub>2</sub> (sol-gel) thin-film show strong absorption in the UV region (300 nm) only with a steadily lower absorption in higher wavelength light,



**Figure 5.2** The surface morphology of the (a)  $Ag_2S$ -TiO<sub>2</sub> (dip coated) thin film on FTO coated glass substrate (b) Particle size distribution of  $Ag_2S$ -TiO<sub>2</sub> NPs (c) Energy dispersive spectra of  $Ag_2S$ -TiO<sub>2</sub> thin film, an elemental composition that obtained from EDS is shown in the inset. (d) EDS mapping of  $Ag_2S$ -TiO<sub>2</sub> thin film (i) O (ii) for S, (iii) for Ag, and(iv) for Ti.

which is expected the result for  $TiO_2$  (bandgap ~3.2 eV) thin film. On the other hand,

Ag<sub>2</sub>S-TiO<sub>2</sub> coated thin film shows a significant enhancement of absorption in the visible

region due to the formation of narrow bandgap  $Ag_2S$  nanocrystal inside the TiO<sub>2</sub> thin film. Such kind of enhanced absorption has been observed in earlier reports on  $Ag_2S$ -TiO<sub>2</sub> thin film [147, 148].



**Figure 5.3**(a) Transmission electron microscope image of  $Ag_2S$  NP-TiO<sub>2</sub> (b) high resolution image of  $Ag_2S$  NP-TiO<sub>2</sub>, green circle indicates the lattice d-fringe of  $Ag_2S$  and pinck circle for TiO<sub>2</sub>(c) Slected area diffraction pattern of  $Ag_2S$  NPs-TiO<sub>2</sub> (d) Size distrbution of  $Ag_2S$  NPs-TiO<sub>2</sub>.



*Figure 5.4*:*High-resolution XPS spectra of Ag*<sub>2</sub>*S-TiO*<sub>2</sub> *sample (a) Ag 3d (b) O 1s. (c) Ti 2p and (d) S 3p* 

## 5.2.2 Surface morphology and microstructral characterization

The surface morphology and size of  $Ag_2S$  nanoparticle were investigated by scanning electron microscopy (SEM), which shown in **figure 5.2(a)**. For SEM analysis, the **s**amples were prepared on a glass substrate by the dip-coating method. Similar dip-coating samples were prepared with a 300 mM precursor solution of LTO with a dipping speed of 2 mm/s followed by an annealing process. After that, all these substrates were gone through the ion-exchange process and subsequent sulfurization process to grow Ag<sub>2</sub>S NPs-TiO<sub>2</sub> thin film. **Figure 5.2(a)** shows the Ag<sub>2</sub>S-TiO<sub>2</sub> film that was prepared by a dip-coating method with a concentration of 300 mM which indicates the Ag<sub>2</sub>S nanocrystal formation inside the TiO<sub>2</sub> matrix. Additionally, it gives information about the size of Ag<sub>2</sub>S NP are spherical with an average particle size of 21 nm and uniformly distributed shown in the **figure 5.2(b).** The composition and content of the metallic element of the Ag<sub>2</sub>S-TiO<sub>2</sub> samples were determined by an energy-dispersive X-ray spectrometer (EDX) attached to the HR-SEM (**in figure 5.2(c)**). This picture clearly shows the existence of Ag, S, Ti and O elements inside thin film. Elemental mapping is carried out by using Energy Dispersive Xray Spectrometry (EDS), which shown in **figure 5.2(d)**. A uniform distribution of Ti, Ag, and S through the film indicates the uniform growth of Ag<sub>2</sub>S NP in the TiO<sub>2</sub>the film.

For more detail structural analysis, a transmission electron microscopy (TEM) study has been done which shown in **figure 5.3**. For sample preparation of this study, Ag<sub>2</sub>S-TiO<sub>2</sub> thin film was scratched from the substrate and made a fine powder by using a grinding mortar that was dispersed in chloroform by keeping the solution in an ultrasonic bath for 1 hour. Figure 5.3(a) shows the lower magnification of TEM image, which indicated  $Ag_2S$ -NPs formation in the TiO<sub>2</sub> matrix. This picture also shows that the particle size is distributed mostly within the range of 10-70 nm with an average particle size of 19 nm. Particle size distribution has been shown in the **figure 5.3(b)**. This distribution is very much similar to SEM analysis. High-resolution image (Figure 5.3(c) of Ag<sub>2</sub>S NP-TiO<sub>2</sub> shows the lattice fringe formation of Ag<sub>2</sub>S-NPs and TiO<sub>2</sub> individually and their coexistence. The average value of d spacing for  $Ag_2S$ -NPs and TiO<sub>2</sub> are 0.26 and 0.35 nm, respectively, that are corresponding to Ag<sub>2</sub>S (-121) and anatase TiO<sub>2</sub>(101) planes and d spacing also match with selected area diffraction pattern (SAD) shown in the figure 5.3 (d). The XRD analysis of the  $Ag_2S$ -TiO<sub>2</sub> sample (Figure 5.1(a)), these two respective planes of Ag<sub>2</sub>S and TiO<sub>2</sub> have been seen clearly.

## 5.2.3 X-ray photoemission spectroscopy (XPS)

X-ray photoemission spectroscopy (XPS) study was carried out to investigate the chemical oxidation state of the elements presented in the nanocomposite  $Ag_2S$ -TiO<sub>2</sub> thin film. The XPS spectra of Ag 3d, O 1s, Ti 2p, and S 3p are detected in the Ag<sub>2</sub>S-TiO<sub>2</sub> system and shown in figure 5.4. Figure 5.4(a) shows that the Ag 3d has two intense peaks at 374.02 and 368.02 eV, which corresponds to the binding energy of Ag  $3d_{3/2}$  and Ag  $3d_{5/2}$ respectively, Two peaks (Figure. 5.4(b) appear for O 1s at the binding energies of 531.81eV, 529.71 eV which correspond to O in TiO<sub>2</sub> and oxygen vacancies respectively, two peaks appear with intensities of Ti  $2p_{1/2}$  and Ti  $2p_{3/2}$  at 465.47 eV, and 459.71 eV which are characteristic for  $Ti^{+4}$  are shown in figure 4c, this is attributed that to the Ti-O-Ti bond. Which supporting the presence of  $TiO_2$  [149]. Two peaks appear with intensities of S  $3p_{1/2}$  and S  $3p_{3/2}$  at 162.23 eV and 160.13 eV, which are characteristic for S<sup>2-</sup> are shown in figure 5.4(d). These peaks are supporting the presence of Ag and S in the Ag<sub>2</sub>S system [150]. All these peak positions are well-matched with earlier reported of Ag<sub>2</sub>S-TiO<sub>2</sub> systems [135, 151]. Therefore, the XPS study of this sample gives another proof of the formation of Ag<sub>2</sub>S-TiO<sub>2</sub> film.

#### 5.2.4 Photoelectro-chemical H<sub>2</sub> generation study

Figure 5.5(a) shows the photoelectrochemical properties for three different  $Ag_2S$ -TiO<sub>2</sub>coated photoanodes that are grown on three different substrates, including FTO, TiO<sub>2</sub> (sol-gel)/FTO and TiO<sub>2</sub>-NPs/FTO thin films, in 1 M KOH solution under white light (100 mW/m<sup>2</sup>) and dark conditions. As it is shown in this **figure 5.5(a)**, for all three different types of  $Ag_2S$ -TiO<sub>2</sub> photoanodes, there is around one order difference of current between



**Figure 5.5** (a) Current density vs. (V vs. RHE) potential of different  $Ag_2S$ -TiO<sub>2</sub> thin film under light and dark in 1 M KOH solution (b) schematic diagram of photocatalytic water splitting mechanism by  $Ag_2S$ -TiO<sub>2</sub> based photoanode (c) IPCE data for different photoanode in the range of 350 nm to 800 nm under -1.0V external bias with 1 M KOH electrolyte solution. (d) The Mott–Schottky (M-S) plot for different photoanodes in 1 kHz operation under dark condition.

light and dark conditions. Again, the photocurrent of Ag<sub>2</sub>S-TiO<sub>2</sub>photoanode increases considerably in addition to underlying TiO<sub>2</sub> thin film. Highest photocurrent was observed of Ag<sub>2</sub>S-TiO<sub>2</sub> photoanode with TiO<sub>2</sub> NPs with a current density of 49 mA.cm<sup>-2</sup> at -0.5 V external bias whereas photocurrent for Ag<sub>2</sub>S-TiO<sub>2</sub>/FTO, Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> (sol-gel)/FTO under same conditions are 35 and 29 mAcm<sup>-2</sup> respectively. To the best of our knowledge, these current densities are significantly higher with respect to earlier publications on Ag<sub>2</sub>S-

TiO<sub>2</sub> photoanode systems [71, 146, 147, 152]. Again, this current density is ~5000 times higher compared to the only TiO<sub>2</sub> coated photoanode (0.01 mAcm<sup>-2</sup>) under the same visible light illumination (in the figure 5.6(a)). This enhancement of photocurrent density has been occurred due to two different reasons. One of them is due to the larger amount of solar light absorption by low band Ag<sub>2</sub>S NPs (0.9-1.1 eV), resulting there is of a large enhancement of photogenerated electron-hole generation. The other reason is the fast charge transfer of the photogenerated electrons from electronically coupled Ag<sub>2</sub>S NPs to TiO<sub>2</sub>, resulting in a significant reduction of the electron-hole recombination. This phenomenon has been schematically presented in figure 5.5(b). This picture indicates that as soon, visible light is illuminated on Ag<sub>2</sub>S-TiO<sub>2</sub> photoanodes, major part of that spectrum is absorbed by lower bandgap Ag<sub>2</sub>S NPs and generates electron-hole pair. This photogenerated electron of Ag<sub>2</sub>S NPs is then transferred to the CB of TiO<sub>2</sub>. This charge transfer process of electronically coupled Ag<sub>2</sub>S/TiO<sub>2</sub> heterojunction is energetically favorable because of the existence of CB of  $Ag_2S$  above that of TiO<sub>2</sub>. Of course, a small fraction of solar spectrum that lies in UV region is absorbed by TiO<sub>2</sub> and generates electron-hole pair. The photogenerated electron of Ag<sub>2</sub>S-TiO<sub>2</sub> thin film is then transferred from CB of TiO<sub>2</sub> to FTO electrode from where it reaches the Pt cathode where it generates  $H_2$ . Similarly, photogenerated hole of TiO<sub>2</sub> is added with the photogenerated hole of Ag<sub>2</sub>S NP due to the existence of VB of Ag<sub>2</sub>S NP above the VB of TiO<sub>2</sub>. These photogenerated holes of Ag<sub>2</sub>S NPs are then reacted with electrolyte solution, which produced OH and  $H^+$  that has been described by equations (5.7) and (5.8). These  $h^+$  ions then reach to Pt cathode where it accepts one electron to form H<sub>2</sub>. This complete photoelectrochemical process has been shown in equations (5.1) to (5.8). As observed in our photoelectrochemical study, these charge transfer processes can be

enhanced by adding additional  $TiO_2$  thin film that can be fabricated either by sol-gel or by NPs solution that results in higher photocurrent generation that as grown Ag<sub>2</sub>S-TiO<sub>2</sub> thin film.

In electrolyte

$$H_{2}O \longrightarrow OH^{-} + H^{+}$$
(5.1)  
At anode  

$$TiO_{2} + hv (UV light) \longrightarrow CB_{TiO_{2}} (e^{-}) + VB_{TiO_{2}} (h^{+})$$
(5.2)  

$$Ag_{2}S + hv (visible light) \longrightarrow CB_{Ag_{2}S} (e^{-}) + VB_{Ag_{2}S} (h^{+})$$
(5.3)  

$$CB_{Ag_{2}S} (e^{-}) + CB_{TiO_{2}} \longrightarrow VB_{Ag_{2}S} (h^{+}) + CB_{TiO_{2}} (e^{-})$$
(5.4)  

$$CB_{Ag_{2}S} (e^{-}) + CB_{TiO_{2}} (e^{-}) \longrightarrow VB_{Ag_{2}S} (h^{+}, h^{+}) + CB_{TiO_{2}} (e^{-}, e^{-})$$
(5.5)  

$$VB_{Ag_{2}S} (h^{+}) + OH^{-} \longrightarrow OH + H^{+}$$
(5.6)  

$$4OH \longrightarrow 2H_{2}O + O_{2}$$
(5.7)  
At counter electrode

$$2H^+ + 2e^- \longrightarrow H_2 \tag{5.8}$$

## 5.2.5 IPCE Measurements

The photocurrent generation rate in different spectral ranges has been studied by measuring IPCE data of different photoanodes. A comparative IPCE data of different  $Ag_2S$ -TiO<sub>2</sub> photoanode under -1.0 V external bias has been shown in **figure 5.5** (c). In addition, IPCE data of a TiO<sub>2</sub> (sol-gel) coated photoanode has been added as a reference to this study. As it is shown in **figure 5.5**(c), the IPCE spectrum of all  $Ag_2S$ -TiO<sub>2</sub>photoanode is very much similar with a very strong photocurrent generation in the region 350-500 nm thin film (Figure-2b). Compare to the data, TiO<sub>2</sub> (sol-gel) photoanode contributes a very week photocurrent that generated bellow 400 nm wavelength, which is due to the wide bandgap nature of TiO<sub>2</sub>. These features of IPCE data indicated that the major part of photocurrent associated with H<sub>2</sub> generation is originated from the Ag<sub>2</sub>S NPs. Comparative IPCE study of

different Ag<sub>2</sub>S-TiO<sub>2</sub>photoanodes shows that the highest value of IPCE has been achieved for the Ag<sub>2</sub>S-TiO<sub>2</sub> /TiO<sub>2</sub> NPs/FTO sample with a value of ~ 12.5 % at 400 nm. This study implies that additional TiO<sub>2</sub> layer enhanced the charge transfer rate to the FTO electrode. On comparing TiO<sub>2</sub>-NPs and TiO<sub>2</sub> -sol-gel thin film, the earlier one shows higher level photocurrent generation, is mostly due to the more compact TiO<sub>2</sub> thin film that forms relatively fewer trap states.

#### 5.2.6 AC impedance study and Mott–Schottky (M-S) Measurements

Mott–Schottky (M-S) measurements were carried out for a better understanding of the hot-electron transport properties in photoanodes, which is shown in **figure 5.5(d)**. This experiment has been performed on different photoanodes coated with pure TiO<sub>2</sub> (sol-gel), Ag<sub>2</sub>S-TiO<sub>2</sub>, Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> sol-gel, and Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> NPs at an applied frequency of 1 kHz under dark conditions. The flat band potential ( $E_{FD}$ ) of the semiconductor-electrolyte interface and the surface charge density (N<sub>D</sub>) values were calculated by using the Mott–Schottky [75, 76] equation (5.9).

$$\frac{1}{c^2} = \frac{2}{\epsilon \varepsilon_0 \varepsilon_r N_D} \left( E_{app} - E_{FD} - \frac{kT}{\epsilon} \right)$$
(5.9)

Where C is the interfacial capacitance,  $E_{FD}$  is the flat band potential, k (1.3807×10<sup>-23</sup>) is the Boltzmann constant; e is the electronic charge (1.6×10<sup>-19</sup> coulomb), and T is the temperature of the system (~300K). The Mott–Schottky plot for different photoanodes shows a linear variation of 1/C<sup>2</sup> with the applied potential. The M-S plot of all photoanodes shows positive slopes which indicate the n-type semiconductor nature of photoanodes. The flat  $E_{FD}$  of the photoanode was determined from the intersection of the slope with the xaxis of the plot. A positive shift of  $E_{FD}$  has been observed in all Ag<sub>2</sub>S-TiO<sub>2</sub>photoanodes with respect to the reference TiO<sub>2</sub>photoanode, which implies a significant enhancement of charge transfer rate due to the formation of Ag<sub>2</sub>S. The highest value of  $E_{FD}$  has been observed for Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> NPs coated photoanode, which implies the most efficient charge transfer rate among four different photoanodes. The surface charge density(N<sub>D</sub>) has been calculated by using the slop of M-S plot which is related by following equation[75, 76] (5.10).



**Figure 5.6:**(a) The comparative study of current density vs. (V vs. RHE) potential of bare  $TiO_2$  and  $Ag_2S$ - $TiO_2$  thin film (b) The EIS spectra  $TiO_2$  and  $Ag_2S$   $TiO_2$  photoanodes. The inset shows the equivalent circuit, (c) The electrochemical impedance spectroscopy (EIS) measurement for three different  $Ag_2S$ - $TiO_2$ photoanodes under light and dark conditions in1 M KOH solution (d) The images of the  $Ag_2S$ - $TiO_2$  and  $TiO_2$  (NP) photoanodes.

$$N_D = \frac{2}{\varepsilon \varepsilon_0 \varepsilon_r} \frac{dE}{d(\frac{1}{C^2})}$$
(5.10)

It is observed that the extracted values of  $N_D$  are largely enhanced due to the Ag<sub>2</sub>S-TiO<sub>2</sub> thin film formation with respect to TiO<sub>2</sub> (only) thin film. The highest value of  $N_D$  has been determined for Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> NPs thin film, which is responsible for the reduction in the ohmic resistance of the film that leads to improving the higher rate charge transfer from photoanode to the FTO electrode.



**Figure 5.7:** (a) Time response of same photoanode with different substrates (b) Photostability tested for  $Ag_2S$ -TiO<sub>2</sub>/TiO<sub>2</sub> sol-gel/FTO photoanode under light (100 mW/cm<sup>2</sup>) with -0.5 V external bias in 1M KOH medium, The volumetric hydrogen generation under one sun white light irradiation with the time (c) for three different photoanodes. (d) In five successive cycles by  $Ag_2S$ -TiO<sub>2</sub>/TiO<sub>2</sub> NP photoanode.

The summary of  $E_{FD}$  and  $N_D$  values for all of these photoanodes are summarized in the table 5.1.

| Device structure                                              | Slope from M-S curve at 1KHz | Flat Band potential (V) | $N_D$ (cm <sup>-3</sup> ) |
|---------------------------------------------------------------|------------------------------|-------------------------|---------------------------|
| Pure TiO <sub>2</sub>                                         | 9.20×10 <sup>8</sup>         | 0.280                   | 1.53×10 <sup>19</sup>     |
| Ag <sub>2</sub> S-TiO <sub>2</sub>                            | 6.48×10 <sup>8</sup>         | 0.290                   | 2.17×10 <sup>19</sup>     |
| Ag <sub>2</sub> S-TiO <sub>2</sub> / TiO <sub>2</sub> sol-gel | 4.06×10 <sup>8</sup>         | 0.296                   | 3.47×10 <sup>19</sup>     |
| Ag <sub>2</sub> S-TiO <sub>2</sub> / TiO <sub>2</sub> NPs     | $2.62 \times 10^{8}$         | 0.301                   | 5.38×10 <sup>19</sup>     |

**Table 5.1:** The summary of the flat band potential and surface charge density  $(N_D)$  at 1kHz for the different devices.

**Figure 5.6(b-c)** shows the electrochemical impedance spectroscopy (EIS) measurement for three different Ag<sub>2</sub>S-TiO<sub>2</sub>photoanodes under light and dark conditions. As observed, there is a big difference of EIS data under dark and light for all these photoanodes, indicating that there is a large variation of resistances under these two conditions. The comparative EIS study shows that the semicircles of Ag<sub>2</sub>S-TiO<sub>2</sub>/TiO<sub>2</sub> NP/FTO are smaller than two other photoanodes both under dark and light conditions, which indicates the resistance of this sample is least than two others. Moreover, the smaller semicircle suggests that the charge transfer rate and separation rate of photogenerated electron-hole are higher compare to other samples. Inset shows the equivalent circuit of photoelectrochemical measurement set-up that includes the solution resistance ( $R_s$ ) in series with the parallel connection of interfacial charge-transfer resistance of the photoanode/electrolyte interface ( $R_1$ ) and double-layer capacitance ( $C_1$ ) associated with the charge transfer process. All EIS data are fitted according to this equivalent circuit. Summary of  $R_1$  for all three Ag<sub>2</sub>S-TiO<sub>2</sub>photoanode under light and dark conditions are given in the table 5.2. The comparative EIS study between different Ag<sub>2</sub>S-TiO<sub>2</sub>photoanodes is shown in **figure 5.6(c)**.

**Table 5.2:** Fitting value of  $R_s$  and  $R_1$  for bare TiO<sub>2</sub> and Ag<sub>2</sub>S-TiO<sub>2</sub> for all different photoanodes under dark and light conditions.

| Device structure                                              | Rs (kΩ)    |             | $R_1(k\Omega)$ |             |
|---------------------------------------------------------------|------------|-------------|----------------|-------------|
|                                                               | under dark | under light | under dark     | under light |
| Pure TiO <sub>2</sub>                                         | 0.040      | 0.012       | 40.24          | 21.02       |
| Ag <sub>2</sub> S-TiO <sub>2</sub>                            | 0.030      | 0.009       | 3.80           | 0.756       |
| Ag <sub>2</sub> S-TiO <sub>2</sub> / TiO <sub>2</sub> sol-gel | 0.024      | 0.007       | 3.50           | 0.605       |
| Ag <sub>2</sub> S-TiO <sub>2</sub> / TiO <sub>2</sub> NPs     | 0.025      | 0.007       | 2.80           | 0.484       |

**Table 5.3** Summary of rising and falling time of different photoanodes.

| Device structure                                             | Raising time (Second) | Falling time (Second) |
|--------------------------------------------------------------|-----------------------|-----------------------|
| Pure TiO <sub>2</sub>                                        | 3.82                  | 6.85                  |
| Ag <sub>2</sub> S-TiO <sub>2</sub>                           | 3.61                  | 6.51                  |
| Ag <sub>2</sub> S-TiO <sub>2</sub> /TiO <sub>2</sub> sol-gel | 3.41                  | 5.42                  |
| Ag <sub>2</sub> S-TiO <sub>2</sub> /TiO <sub>2</sub> NPs     | 3.40                  | 5.34                  |

This shows that the formation of  $Ag_2S$  NPs inside  $TiO_2$  thin film reduces the resistance of the photoanode both under dark and light conditions. The image of the samples shown in the **figure 5.6(d)**.

# 5.2.7 Volumetric hydrogen generation rate and time response Measurements

Time response of different photoanodes under light (100 mW/cm<sup>2</sup>) and dark with - 0.5 V external bias has been shown in **figure 5.7(b)** for  $Ag_2S$ -TiO<sub>2</sub> that indicates that the

photoresponse is repeatable. Rise time and fall time of  $Ag_2S$ -TiO<sub>2</sub>/TiO<sub>2</sub> (NPs)/FTO are 3.4S and 5.3S respectively that implies that fast response of these photoanodes.Summary of rising time and fall time of all samples are summarized in table 5.3. The stability of  $Ag_2S$ -TiO<sub>2</sub> photoanode with TiO<sub>2</sub> sol-gel thin film was carried out in 1 M KOH for around 200 minutes under white light illumination, which shows the initial growth of photocurrent and then becomes stable over time. This study implies the good stability of these  $Ag_2S$ -TiO<sub>2</sub> thin films (**Figure 5.7(a**)).

The volumetric hydrogen generation over 60 minutes has observed by continuous irradiation by the white light of one sun and by collecting generated hydrogen, which shown in figure-5.7(c). This experiment has been performed for  $Ag_2S$ -TiO<sub>2</sub> thin film with and without TiO<sub>2</sub> NPs under laying photoanode. In addition, the TiO<sub>2</sub> (sol-gel) photoanode has been tested for references. As it showed from **figure 5.7(c)**, the higher rate of H<sub>2</sub> has been generated by  $Ag_2S$ -TiO<sub>2</sub>/TiO<sub>2</sub> (NPs)/FTO photoanode with a production rate of ~ 90  $\mu$ mol/cm<sup>2</sup> which isalmost ~1.5 times higher than  $Ag_2S$ -TiO<sub>2</sub>/FTO photoanode and 20 times of TiO<sub>2</sub>/FTO photoanode. This H<sub>2</sub> generation experiment has been performed in five successive cycles with  $Ag_2S$ -TiO<sub>2</sub> /TiO<sub>2</sub> NPs/FTO photoanode, which shown in **figure 5.7(d)**. As observed, this production rate is very much similar in all five different cycles.

## 5.3 Conclusions

In summary, large area  $Ag_2S$ -TiO<sub>2</sub> thin film has been fabricated in a simple solutionbased technique. This growth technique requires three successive steps that include the fabrication of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> ceramic thin film by sol-gel technique followed by an ionexchange process that replaces Li<sup>+</sup> by Ag<sup>+</sup> to form Ag<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> thin film. Finally, Ag<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> thin-film converted to Ag<sub>2</sub>S -TiO<sub>2</sub> due to the conversion of Ag<sup>+</sup> to Ag<sub>2</sub>S. Such kind of *in*  situ growth of Ag<sub>2</sub>S NP inside TiO<sub>2</sub> allows forming a large interface area of Ag<sub>2</sub>S /TiO<sub>2</sub> composite with a lesser interface trap state. Formation of Ag<sub>2</sub>S-TiO<sub>2</sub> was confirmed by SEM, XRD, XPS and UV-VIS absorption study. Photoelectrochemical measurements were carried out of this Ag<sub>2</sub>S-TiO<sub>2</sub> thin film photoanodes to identify its applicability for H<sub>2</sub> generation. For this study, Ag<sub>2</sub>S-TiO<sub>2</sub> thin films are grown on three different substrates including FTO, TiO<sub>2</sub> sol-gel/FTO, and TiO<sub>2</sub> NP/FTO coated glass and the comparative photo-electrocatalytic measurement of these photoanodes showed that sample onTiO<sub>2</sub> NP/FTO substrate generates the highest photocurrent of density 50 mA cm<sup>-2</sup>at 0.5 V vs NHE in 1M KOH solution which is ~5000 times higher than pure TiO<sub>2</sub>photoanode. Volumetric measurement shows that this generation rate is ~ 90  $\mu$ mol/cm<sup>2</sup>/hour. This current density is significantly higher than earlier reported Ag<sub>2</sub>S/TiO<sub>2</sub> system. Moreover, this photocurrent shows good stability that has been tested for more than 1.5 hours. In futuristic, the present process can be extended for the fabrication of other metal chalcogenides-metal oxide composite systems for energy-related applications.