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Figure 1.8 Weak ferroelectricity induced by the exchange-striction 
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Figure 1.9 Crystal structure of bulk BiFeO3 at room temperature: 
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that the successive oxygen octahedron along the polar 

[111] axis rotate in opposite sense. Arrows on Fe atoms 
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indicate the orientation of the magnetic moments in the 
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BiFeO3 at 10 K. At low fields, P is proportional to H2, 
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blue triangle, BiFeO3/Nb-SrTiO3. The inset shows a 

typical hysteresis loop. Magnetometer axis in-plane and 

parallel to SrTiO3 [100]. 

 

33 
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Figure 1.18(a) (Electric field (E) dependence of polarization 

components obtained for E parallel to [001]. 
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Figure1.18(b) Electric field (E) dependence of antiferrodistortive 

vector (ω) components obtained for E parallel to [001]. 
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magnetization Vs magnetic field of BiFeO3 at high 
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Figure 1.23 Temperature-dependent variation of the spontaneous 

polarization for 0.80BiFeO3-0.20BaTiO3 ceramic 

calculated from the positional coordinates obtained from 

Rietveld structure refinement. 

 

43 

Figure 1.24 Rietveld fit for the x-ray diffraction pattern of 
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structure with Pbnm space group. 
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Figure 1.25 Rietveld fit for the x-ray diffraction pattern of 

SrFe0.5Nb0.5O3; crosses are observed intensities, the red 

line represents calculated pattern and the lower curve is 

the difference between observed and calculated XRD 

patterns. Vertical bars show the reflection positions. 
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Inset highlights fit for 65° ≤ 2θ ≤ 100°. 

 

Figure 1.26 Temperature dependence of dielectric constant and 
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Figure 1.28 Temperature dependence of the ZFC and FC magnetic 
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Figure 1.29 Left panel: Magnetization curves of Ba2FeNbO6, 

Sr2FeNbO6, BaSrFeNbO6, and Ba2MnNbO6. The arrow 

points to temperature TN. Right panel: corresponding 

1/x vs T plots. The arrow indicates the magnetic 

correlations above TN. Solid lines represent the fits to 

Curie-Weiss law. 
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Figure 1.30 Composition dependent variation of (a) refined 
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volume (c) isotropic thermal parameters for the 
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x)BiFeO3-xPbTiO3 solid solution. 

 

56 
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synthesis of the (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 samples 

(a) Bi2O3 (b) Fe2O3 (c) Nb2O5 and (d) SrCO3. 
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Figure 2.2 The XRD patterns of 0.90BiFeO3-0.10Sr(Fe0.5Nb0.5)O3 

powders calcined at different temperatures for 6 hours. 

XRD Patterns are zoomed vertically to see the presence 

of impurity reflections if any. 
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xSr(Fe0.5Nb0.5)O3 powders with x = 0.10, 0.20, 0.30, 

0.40 and 0.50. The weak impurity peak at 29.5o is seen 

to be eliminated for higher SFN concentrations. 

 

Figure 2.4 XRD patterns of the calcined (1-x)BiFeO3-

xSr(Fe0.5Nb0.5)O3 powders with x = 0.60, 0.70, 0.80, 

0.90, and 1.00 compositions. 
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Figure 2.5 XRD patterns of sintered (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

samples for compositions x = 0.10, 0.15, 0.20, 0.25, 

0.30, 0.33, 0.36 and 0.40. The letter ‘S’ represents the 

superlattice reflection. 
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Figure 2.6 XRD patterns of sintered (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

samples for the compositions x = 0.50, 0.60, 0.70, 0.75, 

0.80, 0.85, 0.90 and 1.00. The letter ‘S’ represents the 

superlattice reflection. 
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Figure 2.7 Scanning electron micrographs and EDS spectra of (1-

x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramics for x = 0.10, 0.30 

and x = 0.40. 
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Figure 2.8 Scanning electron micrographs and EDS spectra of (1-

x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramics for x = 0.50, 0.80 

and 0.90. 
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Figure 2.9 Scanning electron micrographs (SEM) and EDX spectra 

of Sr(Fe0.5Nb0.5)O3 ceramics. 
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Figure 3.1 Powder XRD pattern of Sr(Fe0.5Nb0.5)O3 ceramic. A 

superlattice reflection at 37.5o is marked with arrow. 

Insets show the zoomed portion of the XRD pattern. 
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Figure 3.2 Rietveld fits for the selected XRD profiles of 

Sr(Fe0.5Nb0.5)O3 using tetragonal (I4/mcm space group, 

upper panel) and orthorhombic (Pbnm space group, 

lower panel) structures. The positions of superlattice 

reflections along with the indices, expected for 

orthorhombic structure with Pbnm space group, are 

marked by arrows. All the indices are written with 

respect to double cubic perovskite cell. 
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Figure 3.3 Observed (dots), Rietveld calculated (overlapping 

continuous plot) and difference (bottom curve) XRD 

profiles for Sr(Fe0.5Nb0.5)O3  ceramic at RT using 

tetragonal I4/mcm space group. 
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Figure 3.4 Temperature dependent variation of (a) real part of 

permittivity (εr′), (b) loss tangent tan (δ) and (c) 

modulus (M′′) for Sr(Fe0.5Nb0.5)O3 ceramic. Arrhenius 

fit for the dielectric relaxation is shown in (d). The 

insets to figure (a) shows zoomed portion of real part of 

permittivity (εr′). 
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Figure 3.5 Temperature dependence of (a) tanδ at frequencies 

5MHz and 9MHz (b) zero field cooled (ZFC), field 

cooled cooling (FCC), field cooled warming (FCW) 

magnetization M(T) of Sr(Fe0.5Nb0.5)O3 ceramic sample. 

Inset to figure (a) and (b) show the magnetization (M) 

versus magnetic field (H) hysteresis loop and first 

derivative (dM/dT) of magnetization curve, 

respectively. 
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Figure 3.6 The XPS spectra of the Fe-2p level and O-1s level for 

Sr(Fe0.5Nb0.5)O3 ceramic showing presence of oxygen 

vacancies and Fe2+/Fe3+ ions. Experimental data (Black 

dots), overall fitted curve (red curve overlapping to 

observed data) and deconvoluted peaks corresponding to 

various contributions. 
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Figure 3.7  Evolution of the pseudocubic 111pc, 200pc and 220pc 

XRD profiles of Sr(Fe0.5Nb0.5)O3 ceramic at various 

temperatures 300, 500, 600, 650, 675, 700 and 850 K 

showing structural phase transition near ~ 650 K. The 
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Figure 3.8 Observed (dots), Rietveld calculated (overlapping 

continuous plot) and difference (bottom curve) XRD 

profiles for some selected pseudocubic reflections 200, 

220 and 222 obtained after full pattern structure 

refinements using various structural models, I4/mcm at 

300 to 600 K and Pm3̅m at 650 K to 800 K for 

Sr(Fe0.5Nb0.5)O3 ceramic. Vertical bars are the Bragg’s 

peak positions. 
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Figure 3.9 Observed (dots), Rietveld calculated (overlapping 

continuous plot) and difference (bottom curve) XRD 

profiles obtained after full pattern Rietveld structure 

refinement of Sr(Fe0.5Nb0.5)O3 ceramic using tetragonal 

I4/mcm space group at temperatures (a) 400 K, (b) 600 

K and cubic Pm3̅m space group at temperatures (c) 650 

K, (d) 800 K. Vertical bars are the Bragg’s peak 

positions. 
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Figure 3.10 Temperature dependent variation of (a) lattice 

parameters (b) primitive unit cell volume and (c) Fe/Nb-

O6 octahedral tilt angle (φ) (d) Integrated intensity (ISL) 

of superlattice reflection at 37.5o for Sr(Fe0.5Nb0.5)O3 

ceramic. Insets to (c) and (d) show temperature variation 

of Fe/Nb-O-Fe/Nb bond angle (in degrees) and heat 

flow results respectively. A clear dip corresponding to 

phase transition is marked by arrow in the heat flow 

curve. 
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Figure 3.11 Temperature dependent variations of Fe/Nb-O1 and 

Fe/Nb-O2 bond lengths for Sr(Fe0.5Nb0.5)O3 ceramic. 

The Fe/Nb-O bond lengths become equal in cubic 

phase.  
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Figure 4.1 Evolution of the x-ray powder diffraction profiles of the 

pseudocubic (111), (200), (220) and (222) reflections 

(considering pseudocubic unit cell) as a function of 

composition for the (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

ceramic. 
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Figure 4.2 (a) A zoomed view of (222) XRD profile for x = 0.10. 

Arrows indicate the splitting in the XRD profile. (b) 

Composition dependent variation of the FWHM ratio of 

(200) to (111) profiles for (1-x)BiFeO3-

xSr(Fe0.5Nb0.5)O3 ceramics. 
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Figure 4.3 Composition dependent variation of (a) x-ray diffraction 

pattern in the selected 2θ range of 36.8  to  40.2°  for 

various compositions of (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

ceramic (b) composition dependence of integrated  

intensity  of  the strongest superlattice  reflection around 

2θ ⁓ 37.5° for 0.10 ≤ x ≤ 0.30. Asterisks in (a) indicate 

the presence of superlattice reflections, while the arrow 

in (b) indicates the composition at xc ~ 0.33 for 

crystallographic phase transition. The inset to (b) shows 

zoomed view of the superlattice reflection for x=0.30. 
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Figure 4.4 Evolution of x-ray diffraction patterns in the selected 2θ 

range 34.25 to 42° for various compositions of (1-

x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic (0.70 ≤ x ≤ 1.00). 

Asterisks (*) mark the superlattice reflections. 
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Figure 4.5 The experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot) and difference XRD 

profiles (bottom curve) obtained after Rietveld structural 
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analysis by using (a) Cc space group and (b) R3c space 

group for (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic with x 

= 0.10. The vertical tick marks above the difference 

profile represent the position of Bragg’s reflections. The 

inset to (a) and (b) represent the zoomed portion of 

Rietveld fits of respective diffraction patterns. 

 

Figure 4.6 The experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot) and difference XRD 

patterns (bottom curve) obtained after Rietveld 

structural analysis by using Cc space group for (1-

x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic with x = 0.15. The 

vertical tick marks above the difference profile represent 

position of Bragg’s reflections. The inset depicts the 

zoomed portion of diffraction pattern for Rietveld fits. 
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Figure 4.7 The experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot) and difference XRD 

profiles (bottom curve) obtained after Rietveld structural 

analysis by using Cc + Pm-3m space group for (1-

x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic with x=0.25. The 

lower panel shows the goodness of fits for zoomed 

pseudocubic perovskite peaks (111), (200) and (220) 

which clearly reveals the phase coexistence. The upper 

and lower vertical tick marks over the difference profile 

represent positions of Bragg’s reflections corresponding 

to Cc and Pm-3m space group respectively. 
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Figure 4.8 Experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot) and difference XRD 

profiles (bottom curve) obtained after Rietveld structural 

analysis using Pm-3m space group for (1-x)BiFeO3-

xSr(Fe0.5Nb0.5)O3 ceramic with (a) x = 0.30 and (b) x = 

0.60 compositions. The vertical tick marks above the 

difference profile represent position of Bragg’s 

reflections. The inset indicates the zoomed portion in 

the 2θ range of 70-120°. 
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Figure 4.9 The experimentally observed (dots), calculated (solid 

line) and difference profiles (bottom solid line) obtained 

after Rietveld structural analysis by using I4/mcm + Pm-

3m space group for (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

ceramic with x=0.80. The lower panel shows the fits for 

zoomed perovskite peaks (111), (200) and (220). The 

upper and lower vertical tick marks over the difference 

profile represent position of Bragg’s reflections 
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corresponding to I4/mcm and Pm-3m space groups, 

respectively. 

 

Figure 4.10 The experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot) and difference XRD 

profiles (bottom curve) obtained after Rietveld structural 

analysis using I4/mcm space group for (1-x)BiFeO3-

xSr(Fe0.5Nb0.5)O3 ceramic with x=0.90. The lower panel 

show the zoomed Rietveld fits for the (222), (400) and 

(440) XRD profiles. The vertical tick marks above the 

difference profile represent positions of Bragg’s 

reflections. 
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Figure 4.11 Composition variation of (a) refined pseudocubic lattice 

parameters ap, bp and cp (b) pseudocubic unit cell 

volume (left axis scale) and ratio of cp to ap (right axis 

scale) for (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic (c) 

evolution of cubic fraction (Pm-3m) (%) with 

composition (x). Dots represent the experimental data 

while continuous lines are guide to eyes. 
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Figure 4.12 Composition dependent variation of dielectric 

permittivity (ε′) for (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

ceramic at room temperature.  Dots are experimental 

values while line is guide to eyes. 
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Figure 4.13 Temperature dependence of magnetization for various 

compositions of (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic 

in the range 0.1 ≤ x ≤ 1.0 measured at 500 Oe magnetic 

fields. TN and SPT stand for antiferromagnetic and spin-

reorientation phase transition temperatures, respectively. 
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Figure 4.14 Composition dependence of (a) spin reorientation 

transition (SPT) temperature and (b) antiferromagnetic 

transition (TN) temperature for (1-x)BiFeO3-

xSr(Fe0.5Nb0.5)O3 ceramic. 
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Figure 4.15 Magnetization versus (M) magnetic field (H) plot for 

various compositions of (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 

ceramic. 
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Figure 4.16 Composition dependence of remnant magnetization (Mr) 

for (1-x)BiFeO3-xSr(Fe0.5Nb0.5)O3 ceramic  
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Figure 5.1 Temperature dependence of ZFC, FCC and FCW 

magnetization for 0.90BF-0.10SFN ceramic. 
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Figure 5.2 Temperature dependence of (a) M-H hysteresis loop (b) 

coercive field Hc (c) remnant magnetization Mr for 

0.90BF-0.10SFN ceramic. 
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Figure 5.3 Evolution of the XRD profiles of pseudocubic 

perovskite peaks (222), (400) and (440) and superlattice 

reflection at some selected temperatures 12, 50, 80, 100, 

160, 200, 230, 250, 270 and 300 K for 0.90BF-0.10SFN 

ceramic, showing the absence of any crystallographic 

phase transition. 
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Figure 5.4 The experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot), and difference (bottom 

curve) XRD profiles for 0.9BiFeO3-0.10Sr(Fe0.5Nb0.5)O3 

ceramic at various temperatures using Cc space group. 
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Figure 5.5 The experimentally observed (dots), Rietveld calculated 

(overlapping continuous plot), and difference (bottom 

curve) XRD profiles of pseudocubic perovskite peaks 

(222), (400) and (440) for 0.90BF-0.10SFN ceramic at 

temperatures 300K, 200K, 100K and 12K. 

 

154 

Figure 5.6 Temperature dependent variation of (a) unit cell volume 

(V), arrows indicate the temperature at which unit cell 

volume shows anomaly (b) static permittivity (dielectric 

permittivity in the limit ω→0), where dots are 

experimental data and dotted line shows extrapolation in 

the lower temperature region and (c) magnetic ac 

susceptibility χ(ω, T), for 0.90BiFeO3-

0.10Sr(Fe0.5Nb0.5)O3 ceramic. 
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Figure 5.7 Temperature dependent variation of monoclinic (Cc) 

unit cell parameters a, b, c and angle (β) (in degrees) for 

0.90BiFeO3-0.10Sr(Fe0.5Nb0.5)O3 ceramic. 
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Figure 5.8 Temperature dependence of (a) real part εr′(T) and (b) 

imaginary part  εr″(T) of dielectric permittivity. The 

insets of (a) and (b) represent corresponding Arrhenius 

fits for 0.90BiFeO3-0.10Sr(Fe0.5Nb0.5)O3 ceramic. The 

data points and activation energy (Ea) shown in the inset 

(a) (in blue colour) are calculated from Cole-Cole 

analysis. The symbols, in each inset, are experimental 

data and solid lines are the least square fits. 
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Figure 5.9 Cole-Cole analysis plots for permittivity at four 163 
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different temperatures in the absence of magnetic field 

for 0.90BiFeO3-0.10Sr(Fe0.5Nb0.5)O3 ceramic. Open 

circles (blue) are data points and continuous curve (red) 

is the fitted circle. 

 

Figure 5.10 Temperature dependence of Magnetodielectric response 

calculated from static dielectric permittivity (εrs) for 

0.90BiFeO3-0.10Sr(Fe0.5Nb0.5)O3 ceramic. 
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Figure 6.1 Temperature dependent variation of (a) dc 

magnetization (M) and (b) its first derivative with 

respect to temperature (dM/dT). 
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Figure 6.2 Temperature dependent variation of (a) real part of 

permittivity (ε′) (b) imaginary part of permittivity (ε′′) 

and (c) Arrhenius fit of relaxation time. The insets to 

figure (a) and (b) show zoomed portion of the respective 

plots. 
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Figure 6.3 The observed (red dots), Rietveld calculated 

(overlapping black curve) and their difference profiles 

(bottom blue curve) obtained after Rietveld structure 

refinement of 0.1BF-0.9SFN using I4/mcm space group. 

The vertical bars above the difference plot mark the 

positions of Bragg’s reflections. Insets show the quality 

of Rietveld fits for some selected XRD profiles.  
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Figure 6.4 Temperature evolution of the selected XRD profiles of 

0.1BF-0.9SFN ceramics showing absence of any 

crystallographic phase transition. 
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Figure 6.5 The observed (red dots), Rietveld calculated 

(overlapping continuous plot), and their difference 

(bottom blue curve) XRD profiles obtained after 

Rietveld structure refinement of 0.1BF-0.9SFN ceramic 

using tetragonal I4/mcm space group at various 

temperatures. Vertical bars mark the Bragg’s peak 

positions. 
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Figure 6.6 Observed (red dots), Rietveld calculated (overlapping 

continuous plot) and their difference (bottom blue 

curve) XRD profiles obtained after full pattern Rietveld 

structure refinement of 0.1BF-0.9SFN ceramic using 

tetragonal I4/mcm space group at temperatures (a) 

250K, (b) 130K and (c) 30 K. Vertical bars mark the 

Bragg’s peak positions. 
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Figure 6.7 Temperature dependent variation of (a) unit cell volume 

and dc magnetization (M), (b) lattice parameters, (c) 

tetragonality and real part of dielectric permittivity (ε′) 

at frequencies 90, 150, 200 and 250 kHz for 0.1BF-

0.9SFN ceramic. 
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Figure 6.8 Temperature dependent variation of (a) Fe/Nb-O6 

octahedral tilt angle (φ) (b) Sr/Bi-O bond length and (c) 

Fe/Nb-O-Fe/Nb bond angle for 0.1BF-0.9SFN ceramic. 
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Figure 6.9 (a) polarization (P)-electric field (E) loop at 50Hz and 

(b) magnetization (M)-magnetic field (H) hysteresis 

loop at room temperature for 0.1BF-0.9SFN ceramic. 

The inset to figure (b) shows zoomed portion. 
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Figure 6.10 Magnetization (M)-Magnetic field (H) hysteresis loops 

of 0.1BF-0.9SFN ceramic at various temperatures. The 

inset shows a zoomed portion of M-H plots. 
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Figure 6.11 Temperature dependent variation of (a) remnant 

magnetization (Mr) and (b) exchange bias field (HEB). 
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