LIST OF FIGURES

Fig. 1.1	Graphical representation of the multidisciplinary concept of tribology with other sciences.	2
Fig. 2.1	Lubrication mechanism of lamellar solid lubricants.	18
Fig. 2.2	Schematic structure of (a) graphene, (b) graphite, (c) carbon nanotube and (d) fullerene.	19
Fig. 2.3	Triangular sublattices of graphene.	20
Fig. 2.4	Overview of "graphene-on-surface" systems showing the surface and interface influences and relevant applications.	22
Fig. 2.5	Methods of graphene synthesis.	24
Fig. 2.6	Schematic representation of the mechanical exfoliation of graphene from HOPG using Scotch tape.	25
Fig. 2.7	Schematic of thermal expansion mechanism of graphite/graphite oxide to produce functionalised graphene sheets.	26
Fig. 2.8	Schematics of the electrochemical exfoliation mechanism of graphene production.	26
Fig. 2.9	Schematic illustration of the thermal decomposition method.	28
Fig. 2.10	A schematic of the unzipping of carbon nanotubes to form graphene.	28
Fig. 2.11	Scalability, cost, and graphene quality trends for different manufacturing techniques.	29
Fig. 2.12	Schematic diagram of a CVD process.	31
Fig. 2.13	Summarised representation of the interaction between graphene and transition metals.	33

Fig. 2.14	Schematic of CVD graphene grown on Cu foil.	35
Fig. 2.15	Illustration of carbon segregation at the metal surface with high carbon solubility such as nickel.	35
Fig. 3.1	Schematic diagram of a typical setup for chemical cleaning.	53
Fig. 3.2	Schematic diagram of a standard setup for nickel electroplating.	53
Fig. 3.3	Schematic representation of the thermal CVD set-up used for graphene synthesis.	54
Fig. 3.4	Temperature-time cycle of a typical CVD growth of graphene.	56
Fig. 3.5	Schematic representation of a ball-on-disc contact assembly for friction and wear tests.	58
Fig. 4.1	Surface roughness of bearing steel measured by a 3D optical profilometer.	66
Fig. 4.2	Surface roughness of nickel-plated steel measured by a 3D optical profilometer.	68
Fig. 4.3	Cross-sectional SEM micrograph showing the thickness of the nickel layer after electroplating.	68
Fig. 4.4	Optical images of CVD-grown graphene for various growth temperatures: (a) 650 °C, (b) 750 °C, (c) 850 °C, and (d) 950 °C under a gas mixture of 6 sccm C_2H_2 and 20 sccm H_2 for 20 min.	70
Fig. 4.5	Raman spectra of graphene grown on nickel-plated bearing steel at various growth temperatures under a gas mixture of 6 sccm C_2H_2 and 20 sccm H_2 for 20 min.	71
Fig. 4.6	The ratios of I_D/I_G and I_{2D}/I_G of graphene grown on nickel-plated steel at various growth temperatures under a gas mixture of 6 sccm C_2H_2 and 20 sccm H_2 for 20 min.	72

Fig. 4.7	Optical images of CVD-grown graphene for growth temperatures of 850 °C under various gas mixture of (a) 8 sccm, (b) 10 sccm C_2H_2 , and 20 sccm H_2 for 20 min.	73
Fig. 4.8	Raman spectra of graphene grown on nickel-plated steel for various acetylene flow rates at 850 °C growth temperature and 20 min reaction time.	74
Fig. 4.9	The ratios of I_D/I_G and I_{2D}/I_G of graphene grown on nickel-plated steel for various acetylene flow rates at 850 °C growth temperature and 20 min reaction time.	74
Fig. 4.10	Optical image of CVD-grown graphene for 10 min reaction time at 850 °C under an acetylene flow rate of 6 sccm.	75
Fig. 4.11	Raman spectra of graphene grown on nickel-plated steel at 850 °C under a gas mixture 6 sccm C_2H_2 and 20 sccm of H_2 for 10 and 20 min growth time.	76
Fig. 4.12	Surface roughness of multi-layer graphene-coated steel measured by a 3D optical profilometer under a growth temperature of 850 °C with 6 sccm acetylene flow for a reaction time of 10 min.	77
Fig. 4.13	XPS of as-deposited mult-ilayer graphene film at 850 °C: (a) a broad XPS spectrum, and (b) C_{1s} XPS spectrum showing different peak fittings.	78
Fig. 4.14	Cross-sectional TEM images of synthesized graphene films under low (a) and high (b) magnifications revealing the thickness and layered structure of synthesized multi-layer graphene coatings.	80
Fig. 4.15	The coefficient of friction as a function of sliding cycles of steel ball against base steel, nickel-plated steel, and multi-layer graphene-coated steel for 800 cycles at a normal load of 0.5 N.	81
Fig. 4.16	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against base steel after the friction test of 800 cycles at a normal load of 0.5 N.	83

Fig. 4.17	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against nickel-plated steel after the friction test of 800 cycles at a normal load of 0.5 N.	83
Fig. 4.18	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against multi-layer graphene-coated steel after the friction test of 800 cycles at a normal load of 0.5 N.	83
Fig. 4.19	Wear volumes and wear rates of steel ball against base steel, nickel- plated steel, multi-layer graphene-coated steel for 800 cycles.	84
Fig. 4.20	SEM image and corresponding energy dispersive spectroscopy (EDS) analysis of wear track on the base steel disc after the friction test of 800 cycles at a normal load of 0.5 N.	86
Fig. 4.21	SEM image and corresponding energy dispersive spectroscopy (EDS) analysis of wear track on the nickel-plated steel disc after the friction test of 800 cycles at a normal load of 0.5 N.	86
Fig. 4.22	SEM image and corresponding energy dispersive spectroscopy (EDS) analysis of wear track on the multi-layer graphene-coated steel disc after the friction test of 800 cycles at a normal load of 0.5 N.	87
Fig. 4.23	SEM images of the worn counterpart surfaces (balls) slid against (a) base steel, (b) nickel-plated steel, and (c) multi-layer graphene-coated steel after the friction tests of 800 cycles under the normal load of 0.5 N.	88
Fig. 4.24	Optical micrographs and the corresponding Raman analysis of wear track (a, b) and wear scar (c, d) for 800 cycles.	90
Fig. 4.25	Coefficients of friction as a function of sliding cycles and (b) wear volumes and wear rates of steel ball against steel, Nickel-plated steel, Multi-layer graphene-coated steel for 5600 cycles.	91
Fig. 4.26	Optical micrographs of wear morphologies of the ball (a) and disc (b) counterpairs for steel against base steel after the friction test of 5600 cycles.	92

Fig. 4.27	Optical micrographs of wear morphologies of the ball (a) and disc (b) counterpairs for steel against nickel-plated steel after the friction test of 5600 cycles.	92
Fig. 4.28	Optical micrographs of wear morphologies of the ball (a) and disc (b) counterpairs for steel against multi-layer graphene-coated steel after the friction test of 5600 cycles.	92
Fig. 4.29	Wear volumes and wear rates of steel ball against base steel, nickel- plated steel, multi-layer graphene-coated steel for 5600 cycles.	93
Fig. 4.30	SEM images of wear tracks (a, c, and e) on the disc and respective wear scar (b, d, and f) on the ball for steel- base steel (a and b), steel-nickel plated steel (c and d), and steel-graphene coated steel (e and f) tribo-pair after the friction test of 5600 cycles at a normal load of 0.5 N.	95
Fig. 4.31	Raman spectra of the wear track (disc) and wear scar (ball) for 5600 cycles.	96
Fig. 4.32	The coefficients of friction as a function of sliding cycles of steel ball against base steel, nickel-plated steel, and multi-layer graphene-coated steel for 600 cycles at a normal load of 0.5 N.	98
Fig. 4.33	Coefficient of friction as a function of sliding cycles under different loads for multi-layer graphene-coated steel.	99
Fig. 4.34	Variation of the average coefficient of friction with applied normal load for base steel, nickel-plated steel, and multi-layer graphene- coated steel.	100
Fig.4.35	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against base steel after the friction test of 600 cycles at a normal load of 0.5 N.	102
Fig. 4.36	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against nickel-plated steel after the friction test of 600 cycles at a normal load of 0.5 N.	102

Fig. 4.37	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against multi-layer graphene-coated steel after the friction test of 600 cycles at a normal load of 0.5 N.	102
Fig. 4.38	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, for steel against multi-layer graphene-coated steel after the friction test of 600 cycles at a normal load of 1 N.	103
Fig. 4.39	Average wear scar diameter of the counterpart steel balls as a function of applied normal load after the friction tests.	104
Fig. 4.40	Wear volume of the counterpart steel balls as a function of applied normal load after the friction tests.	105
Fig. 4.41	SEM image and corresponding energy dispersive spectroscopy (EDS) analysis of wear track on the base steel disc after the friction test of 600 cycles at a normal load of 0.5 N.	107
Fig. 4.42	SEM image and corresponding energy dispersive spectroscopy (EDS) analysis of wear track on the nickel-plated steel disc after the friction test of 600 cycles at a normal load of 0.5 N.	107
Fig. 4.43	SEM image and corresponding energy dispersive spectroscopy (EDS) analysis of wear track on the multi-layer graphene-coated steel disc after the friction test of 600 cycles at a normal load of 0.5 N.	107
Fig. 4.44	SEM images of the worn counterpart surfaces (balls) slid against (a) base steel, (b) nickel-plated steel, (c, d) multi-layer graphene-coated steel after the friction tests of 600 cycles under the normal loads of (c) 0.5 N and (d) 1N.	108
Fig. 4.45	Raman spectra of the wear track and wear scar after the friction test under 0.5 N load for multi-layer graphene-coated steel.	110
Fig. 4.46	Cross-sectional TEM images of wear scar (a, b) on the steel ball and wear track (c, d) on the multi-layer graphene-coated steel disc after the wear test under a normal load of 0.5 N.	111
Fig. 4.47	Graphical representation of wear mechanisms of graphene coatings (a) initial graphene-coated steel and steel ball, (b) wear track and (c) transferred graphene on steel ball after the friction tests.	121

Fig. 5.1	Surface roughness of stainless steel measured by a 3D optical profilometer.	123
Fig. 5.2	Raman spectrum of graphene oxide powder.	124
Fig. 5.3	Digital images of graphene oxide-water dispersion after 2 h sonication with different concentrations of graphene oxide.	125
Fig. 5.4	2D AFM image and height profile across the line of dispersed graphene oxide.	125
Fig. 5.5	TEM image of the dispersed graphene oxide powder.	126
Fig. 5.6	Variation of the dynamic viscosity as a function of shear rate for different concentrations of graphene oxide in water.	127
Fig. 5.7	Coefficient of friction as a function of the number of cycles for different concentrations of graphene oxide in water and for pure water at a normal load of 5 N.	129
Fig. 5.8	Variation of average coefficients of friction as a function of the concentration of graphene oxide in water at a normal load of 5 N.	129
Fig. 5.9	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, after the friction test under pure water lubrication at a normal load of 5 N.	131
Fig. 5.10	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, after the friction test lubricated with 0.01 wt. % graphene oxide in water at a normal load of 5 N.	132
Fig. 5.11	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, after the friction test lubricated with 0.05 wt. % graphene oxide in water at a normal load of 5 N.	132
Fig. 5.12	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, after the friction test lubricated with 0.1 wt. % graphene oxide in water at a normal load of 5 N.	132

Fig. 5.13	Optical micrographs of wear scar (a) and wear track (b) on the ball and disc, respectively, after the friction test lubricated with 0.5 wt. % graphene oxide in water at a normal load of 5 N.	133
Fig. 5.14	Wear volume of stainless-steel balls as a function of the concentration of graphene oxide in water at a normal load of 5 N.	134
Fig. 5.15	HRSEM micrograph (a) and energy dispersive spectroscopy (EDS) analysis (b) of wear track lubricated with pure water.	135
Fig. 5.16	HRSEM micrograph (a) and energy dispersive spectroscopy (EDS) analysis (b) of wear track lubricated with 0.01 wt. % graphene oxide in water.	136
Fig. 5.17	HRSEM micrograph (a) and energy dispersive spectroscopy (EDS) analysis (b) of wear track lubricated with 0.05 wt. % graphene oxide in water.	136
Fig. 5.18	HRSEM micrograph (a) and energy dispersive spectroscopy (EDS) analysis (b) of wear track lubricated with 0.1 wt. % graphene oxide in water.	136
Fig. 5.19	HRSEM micrograph (a) and energy dispersive spectroscopy (EDS) analysis (b) of wear track lubricated with 0.5 wt. % graphene oxide in water	137
Fig. 5.20	Raman spectra of the pristine graphene oxide and worn surfaces of ball and disc lubricated with 0.1 wt. % graphene oxide in water at a normal load of 5N.	138
Fig. 5.21	(a) Schematic of the contact area of friction pair, (b, c) cross-sectional TEM image of the tribo-film on the disc, (d, e, f) cross-sectional TEM image of the tribo-film on the ball lubricated with 0.1 wt. % graphene oxide (GO) in water after the friction test at a normal load of 5 N.	139

Fig. 5.22 Coefficient of friction as a function of the number of cycles for 141 different normal loads lubricated with 0.1 wt. % graphene oxide in water.

Fig. 5.23	Variation of the average coefficient of friction with different normal loads lubricated with 0.1 wt. % graphene oxide in water.	141
Fig. 5.24	Optical micrographs of wear scars (a, c, e) and corresponding wear tracks (b, d, f) on the ball and disc, respectively, lubricated with 0.1 wt. % graphene oxide in water under the normal load of 5 N (a, b), 10 N (c, d), and 20 N (e, f).	143
Fig. 5.25	HRSEM micrographs of wear track lubricated with 0.1 wt. % graphene oxide in water at a normal load of 10 N.	144
Fig. 5.26	HRSEM micrographs of wear track lubricated with 0.1 wt. % graphene oxide in water at a normal load of 15 N.	144
Fig. 5.27	HRSEM micrographs of wear track lubricated with 0.1 wt. % graphene oxide in water at a normal load of 20 N.	144
Fig. 5.28	Wear volume of counter-face steel ball as a function of normal load for 0.1 wt. % graphene oxide in water.	145
Fig. 5.29	Coefficient of friction as a function of cycles for different sliding speeds for 0.1 wt. % graphene oxide in water at a normal load of 5 N.	147
Fig. 5.30	Variation of the average coefficient of friction with sliding speed lubricated with 0.1 wt. % graphene oxide in water at a normal load of 5 N.	147
Fig. 5.31	Optical micrographs of wear scars (a, c, e) on the ball and corresponding wear tracks (b, d, f) on the disc, respectively, for a sliding speed of 0.005 m/s (a, b), 0.05 m/s (c, d), and 0.1 m/s (e, f) lubricated with 0.1 wt. % graphene oxide in water at a normal load of 5 N.	149
Fig. 5.32	HRSEM micrographs of wear track lubricated with 0.1 wt. % graphene oxide in water at a normal load of 5 N for a sliding speed of 0.005 m/s.	150

- Fig. 5.33 HRSEM micrographs of wear track lubricated with 0.1 wt. % 150 graphene oxide in water at a normal load of 5 N for a sliding speed of 0.05 m/s.
- Fig. 5.34 HRSEM micrographs of wear track lubricated with 0.1 wt. % 150 graphene oxide in water at a normal load of 5 N for a sliding speed of 0.1 m/s.
- Fig. 5.35 Wear volume of the counter-face steel ball as a function of sliding 151 speed lubricated with 0.1 wt. % graphene oxide in water at a normal load of 5 N.