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CHAPTER 3 

3. Mathematical Modeling and PID 

controller design Techniques 
This chapter is divided into three sections. The first section deal with modeling of 

Continuous Stirred Tank Reactor (CSTR) and designing of PI controller based on FOPDT 

equivalent of CSTR using PI tuning techniques given by SIMC [46] and Astrom and 

Hagglund [20] to control the output concentration of CSTR. A PI controller based on 

second-order transfer function model was also designed by using a computational 

optimization method to control the outlet concentration of CSTR. The second section deals 

with the PID controller design using the Direct Synthesis (DS) method for stable second-

order time delay process models, and finally, the third part of this chapter discussed the 

IMC-PID controller design for unstable second-order time delay transfer functions. 

3.1 Mathematical Modeling  

Mathematical modeling is used to develop the transfer function of the processes and which 

is further used to design PI/PID controller for controlling the process variable viz. output 

concentration in CSTR and temperature of fermenter for production of ethanol. The 

mathematical models of the process can be developed using mass and energy balance 

approach. These models can be used as an alternative to the real processes for the controller 

tuning, performance evaluation, optimizing the plant operation, and handle the critical 

safety issue without disturbing the real process [25]. A new control scheme can be 
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developed with the help of the dynamics response of the process model and applied to the 

real processes without affecting the plant operation.  

3.1.1 Modeling of Continuous Stirred Tank Reactor (CSTR)  

Controlling the output parameter in CSTR is a challenging problem from a control point of 

view because of its nonlinear behavior and keeping this fact in mind one of the objectives 

of present work is to evaluate the performance of available PI/PID tuning techniques for 

control of output concentration of a CSTR which exhibit non-linear behavior. As 

conventional PID design and tuning techniques are mostly based on linear models. The 

nonlinear models are first linearized, and then tuning parameters are calculated. The PID 

controller designed using above approach work well in linear and slightly non-linear stable 

processes. The performance of a PID controller may not be up to the mark applied to a real 

process having significant nonlinearity and unstable characteristics. To overcome this 

problem in this study, the tuning approach was also tested on a mathematical model of the 

process as close as possible to the real process. The study will help us to evaluate the 

efficacy of linear model-based PID design on the nonlinear process. 

In order to control CSTR, the controller design methods developed by Astrom and 

Hagglund [20], SIMC [46], and computational optimization method [84] were used to 

design and tune the controller. The performance of the designed controller was tested on a 

linearized model as well as nonlinear models that are closer to a real system. The 

computational optimization method was used to design an optimal PI controller for a 

second-order transfer function using MATLAB program [84]. In this technique, different 

constraints such as maximum overshoot, settling time, and rise time may be imposed to 

achieve better control performance in the designing of PI/PID controller for a first or 
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second-order models. In the present case, a PI controller was designed with a constraint of 

overshoot less than 20 % of the ultimate value. Two other methods developed by SIMC 

[46] and Astrom and Hagglund [20] for PI tuning based on FOPDT model were also used 

to control the output concentration of CSTR.  

A CSTR in which a first-order chemical reaction of A → B is taking place was considered 

to develop its mathematical model, as shown in Fig. 3.1 [85]. The 𝐹௜ and 𝐹௢ are input and 

output flow rate respectively. The temperature inside the reactor is T and the inlet 

temperature denoted by 𝑇௜௡. The outlet concentration of the component is 𝐶஺.  

 

Fig. 3.1 CSTR with a first-order chemical reaction. 

The outlet concentration from the reactor is found by solving the different mathematical 

equations dealing with total mass, component, and energy balance of CSTR. The steady-

state condition was considered, therefore the inlet flow rate 𝐹௜ would be equal to the outlet 

flow rate, i.e., 𝐹௜ = 𝐹௢ = 𝐹, and thus the total mass balance equation is eliminated. For the 
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development of the mathematical model of the reactor, the various operating steady-state 

parameters are shown in Table 3.1.  

                 Table 3.1 Steady-state operating parameter of CSTR [85] 

Parameter Value 

Reactor volume, V 5 m3 

Outlet concentration of component A, CA 200.13 kg/m3 

Inlet concentration of component A, CAin 800 kg/m3 

Total volumetric flow, F 0.005 m3/s 

Pre-exponential constant, k  18.75 s-1 

Activation energy for the reaction, E  30 kJ/mol 

Reactor temperature, T 413 K 

Temperature of inlet flow, Tin 353 K 

Density, ρ 800 kg/m3 

Specific heat, cp 1.0 kJ/kg.K 

Heat of reaction (exothermic), ΔH 5.3 kJ/kg 

Heat supplied to the reactor, Q 224.1 kJ/sec 

Gas constant, R 0.0083 kJ/mol.k 

 

The mathematical equations for the component and energy balance of the reactor were 

taken from [85] and used in the present work for the control of the outlet concentration of 

component A. 

The mass balance for component A and the energy balance for the reactor can be written as 

𝑉
ௗ஼ಲ

ௗ௧
= 𝐹(𝐶஺௜௡ −  𝐶஺) −  𝑉𝑘𝑒

ିா
ோ்ൗ 𝐶஺    (3.1) 

𝜌𝑉𝑐௣ 
ௗ்

ௗ௧
= 𝐹𝜌𝑐௣ (𝑇௜௡  −  𝑇) +   𝑉𝑘𝑒

ିா
ோ்ൗ 𝐶஺ ∆𝐻 + 𝑄   (3.2) 
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The nonlinear equations (Eq. 3.1 and Eq. 3.2) for component and energy balance were 

linearized using Taylor’s approximation series around steady-state operating parameters as 

given in Table 3.1 and after that these equations were converted into a second-order 

transfer function (TF 1) using Laplace Transform as given by Eq. (3.3).  

𝑇𝐹 1 =  
େఽ(ୱ)

ி೔(ୱ)
= 6.69 × 10ସ ସହ଻.ହୱାଵ

ଶ.ହହ×ଵ଴ఱୱమାଵଶହହ.ହୱାଵ
  (3.3) 

The detailed procedure for obtaining the transfer function model has been provided in [85]. 

The second-order transfer function model of Eq. (3.3) was simplified to a first-order plus 

dead time (FOPDT) TF 2 model using its dynamic open-loop response for a step change of 

5% in the reactor input flow rate 𝐹௜.  

  

 

Fig. 3.2 Open-loop response curve using MATLAB/SIMULINK 
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The open-loop response curve was generated using MATLAB/SIMULINK by introducing 

a step change of 5 % of the flow rate into set-point, as shown in Fig. 3.2. The process 

parameters for FOPDT model were calculated using this response curve, and the reduced 

FOPDT model is given by Eq. (3.4).  

𝑇𝐹 2 =
஼ಲ(௦)

ி೔(௦)
=

଺଺଼଴଴

଺଻ଵ௦ା
𝑒ିଵ௦    (3.4) 

The time delay of 1 second was assumed in the process for the designing of a PI controller 

using various well-known tuning approaches.  

3.1.2 Modeling of a bioreactor in fermentation process 

A continuous operating bioreactor (fermentor) used for the production of alcohol, as shown 

in Fig. 3.3 was  taken from [69, 70] in the present study. The behavior of the bioreactor was 

assumed as a continuous stirred tank reactor (CSTR) in which biological reactions are 

occurring. The mathematical models of the fermentation process for the production of 

alcohol have been developed and used by various researchers to design the controller and 

the performance of control-loop was evaluated using different control strategies. Various 

works of literature are available on the development of mathematical models of the 

bioreactor and its implementation for temperature control [69, 70]. The biomass production 

in the reactor is the main factor for the ethanol production rate. The concentration and 

production of biomass were mainly affected by the dilution rate (Fe/V). Due to the 

availability of a large number of data for comparison, control of temperature in the 

bioreactor for ethanol production was taken to evaluate the controller performance.  
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Fig. 3.3 Bioreactor temperature control loop 

 

Figure 3.3 shows the temperature control loop of the continuous bioreactor in which the 

temperature of the reactor is controlled by manipulating the jacket feed flow rate. The 

fundamental mathematical model of the bioreactor was developed to study its dynamic 

behavior, and the model was used for designing of controller.  

The following assumptions were taken to simply the behaviour of the bioreactor as CSTR. 

If the bioreactor follows the below assumptions, its behavior will be close to behavior of 

CSTR. 

 Perfect mixing in the reactor 

 Constant stirring speed in the reactor 

 pH of the bioreactor is constant 
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 The substrate feed flow and output flow from the reactor consists of the product are 

constant 

 The input concentrations of biomass and substrate are constant. 

The modified Monod equation according to the Michaelis-Menten rate kinetics equilibrium 

developed by Aiba [86] as given by Eq. (3.5) was used to represent biokinetics in the 

reactor. 

    𝜇 = 𝜇௢
஼ೞ

௄ೞା஼ೞ
𝑒ି௄భ஼೛    (3.5) 

The balance equations representing reactor are as follows: 

The total mass balance of the reactor is given by [rate of accumulation of total mass] = 

[input flow rate] – [output flow rate] and represented by Eq. (3.6) 

ௗ௩

ௗ௧
= 𝐹௜ − 𝐹௘                   (3.6) 

Mass balance of biomass is given by [rate of change of biomass (yeast) concentration] = 

[production of biomass in fermentation] – [biomass (yeast) leaving the reactor] and 

represented by Eq. (3.7). 

ௗ஼ೣ

ௗ௧
= 𝜇௫𝐶௫

஼ೞ

௄ೞା஼ೞ
𝑒ି௄೛஼೛ −

ி೐

௏
𝐶௫        (3.7) 

Mass balance for product ethanol is given by [rate of change of product (ethanol) 

concentration] = [production of ethanol in fermentation reaction]−[product (ethanol) 

leaving the reaction] and represented by Eq. (3.8). 

ௗ஼೛

ௗ௧
= 𝜇௣𝐶௫

஼ೞ

௄ೞభା஼ೞ
𝑒ି௄೛భ஼೛ −

ி೐

௏
𝐶௣          (3.8) 
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Mass balance for substrate (glucose) is given by [rate of change of substrate] = − [substrate 

consumed by biomass for growth] − [substrate consumed by biomass for ethanol 

production] + [glucose supplied by feed] − [glucose leaving the reaction] and represented 

by Eq. (3.9). 

ௗ஼ೞ

ௗ௧
= −

ଵ

ோೞೣ
𝜇௫𝐶௫

஼ೞ௘ష಼೛಴೛

௄ೞା஼ೞ
−

ଵ

ோೞ೛
𝜇௣𝐶௫

஼ೞ௘ష಼೛಴೛

௄ೞభା஼ೞ
+

ி೔೙

௏
𝐶௦,௜௡ −

ி೐

௏
𝐶௦  (3.9) 

Energy balance for reactor  

For the growth of cells or ethanol the production in the fermentation process, the 

temperature of the bioreactor, and jacket are essential parameters to consider since there is 

a certain temperature range for the growth of particular microorganisms [87]. Hence, the 

mathematical model of energy balance for jacket and reactor must be included to improve 

the real-time performance of the process. The balanced equation representing the energy 

balance for the jacket and the reactor is given as follows:  

The energy balance for a reaction is given by [Heat accumulated in reactor] = [Heat at inlet] 

– [Heat at outlet] + [Heat generated from reaction] – [Heat transferred to the jacketed] and 

represented by Eq. (3.10). 

ௗ ೝ்

ௗ௧
=

ி೔೙

௏
(𝑇௜௡ + 273) −

ி೐

௏
(𝑇௥ + 273) +

௥೚మ∆ுೝ

ଷଶఘೝ஼೓೐ೌ೟,ೝ
−

௄೅஺೅( ೝ்ି்೔೙,ೕ)

௏ఘೝ஼೓೐ೌ೟,ೝ
      (3.10) 

Energy balance for a jacket is given by [Heat accumulated in jacket] = [Heat at coolant 

inlet] + [Heat at coolant outlet] and represented by Eq. (3.11).  

ௗ்ೕ

ௗ௧
=

ிೕ

௏ೕ
൫𝑇௜௡,௝ − 𝑇௝൯ +

௄೅஺೅( ೝ்ି்ೕ)

௏ೕఘೕ஼೓೐ೌ೟,ೕ
        (3.11) 
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Mass balance for dissolved oxygen concentration (𝐶௢మ
) is given by [concentration of 

dissolved oxygen in the substrate during reaction] = [concentration of oxygen dissolved in 

inlet feed supplied to the reactor] – [consumption of oxygen in fermentation reactions] and 

represented by Eq. (3.12). 

ௗ஼೚మ

ௗ௧
= 𝐾௅𝑎൫𝐶௢మ

∗ − 𝐶௢మ
൯ − 𝑟௢మ

−
ி೐

௏
𝐶௢మ

       (3.12) 

The growth of cell is affected by the concentration of dissolved oxygen (𝐶௢మ
) in the 

bioreactor for the fermentation process. The dissolved oxygen helps to grow the cells at a 

faster rate and increases cell density and ultimately increases oxygen consumption. Thus, 

the dissolved oxygen level decreases and therefore required external oxygen supply to 

maintain the desired dissolved oxygen level [88]. The biomass overgrows in the presence of 

excess dissolved oxygen, and ultimately the ethanol production rate decreases. Therefore, 

the dissolved oxygen should maintain at some optimum level to achieve the maximum 

production rate of ethanol [89]. The pH of the reactor is another critical parameter that 

affects the operation of the bioprocess. The following models of the bioreactor are used for 

the control of dissolved oxygen concertation and pH. 

The liquid phase equilibrium concentration of oxygen is written as  

𝐶௢మ
∗ = (14.16 − 0.3943𝑇௥ + 0.007714𝑇௥

ଶ − 0.0000646𝑇௥
ଷ)10ି ∑ ு೔ூ೔  (3.13) 

The global effect of ionic strengths is given as follows 

∑ 𝐻௜𝐼௜ = 0.5𝐻ே௔
௠ಿೌ಴೗

ெಿೌ಴೗

ெಿೌ

௏
+ 2𝐻஼௔

௠಴ೌ಴ೀయ

ெ಴ೌ಴ೀయ

ெ಴ೌ

௏
+ 2𝐻ெ௚

௠ಾ೒಴೗మ

ெಾ೒಴೗మ

ெಾ೒

௏
+ 0.5𝐻஼௟ ൬

௠ಿೌ಴೗

ெಿೌ಴೗
+

2
௠ಾ೒಴೗మ

ெಾ೒಴೗మ

൰
ெ಴೗

௏
+ 2𝐻஼ைయ

௠಴ೌ಴ೀయ

ெ಴ೌ಴ೀయ

ெ಴ೀయ

௏
+ 0.5𝐻ு10ି௣ு + 0.5𝐻ைு10ି(ଵସି௣ )  (3.14) 
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𝐾௅𝑎 = 𝐾௅𝑎଴ ∙ 1.024( ೝ்ିଶ଴)    (3.15) 

𝑟ைమ
= 𝜇ைమ

ଵ

௒ೀమ

𝐶௫
஼ೀమ

௄ೀమା஼ೀమ

∙ 1000    (3.16) 

𝜇௫ = 𝐴ଵ𝑒
ቂି

ಶೌభ
ೃ(೅ೝశమళయ)

ቃ
− 𝐴ଶ𝑒

ቂି
ಶೌమ

ೃ(೅ೝశమళయ)
ቃ
   (3.17) 

The bioreactor model parameters and steady-state operating parameters are given in Table 

3.2 and Table 3.3 [70] which were used to obtain the open-loop response curves for various 

operating parameters. The open-loop response curves for different process parameters were 

obtained by simulating the mathematical models represented by Eq. 3.5 - Eq. 3.17 using the 

SIMULINK toolbox of MATLAB and shown in Fig. 3.4 to Fig. 3.9.  

Table 3.2 Bioreactor model parameters 

𝐴ଵ = 9.5 × 10଼ 𝐻ே௔ = −0.55 𝜌௥ = 1080 𝑔 𝐿ିଵ 

𝐴ଶ = 2.55 × 10ଷଷ 𝐾௅𝑎଴ = 38 ℎିଵ 𝑚ே௔஼௟ = 500 𝑔 

𝐴் = 1 𝑚ଶ 𝐾ைమ
= 8.886𝑚𝑔𝐿ିଵ 𝑚஼௔஼ைయ

= 100 𝑔 

𝐶௛௘௔௧,௔௚ = 4.18 𝐽𝑔ିଵ𝐾ିଵ 𝐾௣ = 0.139𝑔𝐿ିଵ 𝑚ெ௚஼௟మ
= 100 𝑔 

𝐶௛௘௔௧,௥ = 4.18 𝐽𝑔ିଵ𝐾ିଵ 𝐾௣ଵ = 0.07𝑔𝐿ିଵ 𝑅 = 8.31 𝐽𝑚𝑜𝑙ିଵ𝐾ିଵ 

𝐸௔ଵ = 55000 𝐽𝑚𝑜𝑙ିଵ 𝐾ௌ = 1.03 𝑔𝐿ିଵ 𝑀ே௔ = 23 𝑔 𝑚𝑜𝑙ିଵ 

𝐸௔ଶ = 22000 𝐽𝑚𝑜𝑙ିଵ 𝐾ௌଵ = 1.68 𝑔𝐿ିଵ 𝑀஼௔ = 40 𝑔 𝑚𝑜𝑙ିଵ 

𝐻ைு = 0.941 𝐾் = 3.6 × 10ହ𝐽 ℎିଵ𝑚ିଶ𝐾ିଵ 𝑀ெ௚ = 24 𝑔 𝑚𝑜𝑙ିଵ 

𝐻ு = −0.774 𝑅ௌ௉ = 0.435 𝑀஼௟ = 35.5 𝑔 𝑚𝑜𝑙ିଵ 

𝐻஼ைయ
= 0.485 𝑅ௌ௫ = 0.607 𝑀஼ைయ

= 60𝑔 𝑚𝑜𝑙ିଵ 

𝐻஼௟ = 0.844 𝑌ைమ
= 0.970 𝑚𝑔 𝑚𝑔ିଵ 𝜇௉ = 1.79 ℎିଵ 

𝐻ெ௚ = −0.314 ∆𝐻𝑟 = 518𝑘𝐽 𝑚𝑜𝑙ିଵ 𝑂ଶ 𝜌௨ = 1000𝑔𝐿ିଵ 

𝐻஼௔ = −0.303 𝜇ைమ
= 0.5 ℎିଵ  
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Table 3.3 Steady-state operating parameters [72] 

Parameter Description Values Nominal operating 
conditions 

𝐹௜ Input Flow 51 𝑙 ℎିଵ 𝐹௜ = 𝐹௘ = 51𝑙 ℎିଵ 
𝐹௝ = 18 𝐿ℎିଵ 
𝑇௜௡ = 25 oC         
𝑇௜௡,௝ = 15 oC,         
𝑇௥ = 29.5732 oC 
𝑇௝=27.0539 oC    
𝐶௦,௜௡ = 60 𝑔/𝑙 
𝐶௦ = 29.7389 𝑔/𝑙, 
𝐶௉ = 12.5152 𝑔/𝑙 
𝐶ைଶ = 3.107 𝑚𝑔/𝑙, 
𝐶௑ = 0.904677𝑔/𝑙  
𝑉 = 1000 𝑙 
 𝑝𝐻 = 6  

𝐹௘ Output Flow 51 𝑙 ℎିଵ 

𝑇௜௡ Inlet flow temperature 25 oC 

𝑇௜௡,௝ Temperature of input Cooling agent 15 oC 

𝐶௦,௜௡ Concentration of Glucose input Flow 60 𝑔/𝑙 

𝑉 Total volume of the reaction medium 1000 𝑙 

𝑉௝ Volume of the jacket 50 𝑙 

𝑝𝐻 Potential of hydrogen 6 

𝐹௝ Flow rate of cooling agent 18 𝑙 ℎିଵ 

𝐾௅𝑎 Mass Transfer Coefficient for oxygen 38(1024) ೝ்ିଶ଴ 

 

 

Fig. 3.4 Open-loop response for bioreactor temperature. 

Figure 3.4 and Fig. 3.5 show the open-loop response of reactor and jacket temperatures at 

nominal operating conditions which were taken from [72] and given in Table 3.3. The 

dynamics of the bioreactor was very slow and temperature of reactor increses slightly due 



Chapter 3     Mathematical modeling and PID controller design techniques 

Department of Chemical Engineering & Technology, IIT-BHU, Varanasi-221005                                                   Page 45 

to biochemical reaction  occurring. The corresponding jacket temperature Tj is shown in 

Fig. 3.5. The product concentration Cp of ethanol also increses and finally gets steady-state 

as increase in temperature of the reactor as shown in Fig. 3.6.  

Fig. 3.5 Open-loop response for jacket temperature. 

Fig. 3.6 Open-loop response for Ethanol concentration. 
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Fig. 3.7 Open-loop response for substrate concentration. 

Fig. 3.8 Open-loop response for dissolved oxygen concentration. 

The substrate concentration Cs and dissolved concentration CO2 are decreases as 

temperature of the reactor increses as shown in Fig. 3.7 and 3.8 respectively. As the 

temperature of reactor is incresed, more substrate was converted to product Cp. Therefore, 
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the substrate concentration Cs decreses.  As the biochemical reaction proceeds the biomass 

concentration Cx also increses as shown in Fig. 3.9. The biomass concentration Cx increses 

more biochemical reaction takes and consequently temperature of the reactor increses.   

Fig. 3.9 Open-loop response for biomass concentration 

 

 

Fig. 3.10 Measured and simulated model output of the nonlinear process model 
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Figure 3.10 shows the open-loop response of reactor temperature at nominal operating 

condition and a step change of -5% of input flow rate to the jacket at 200 h. The open-loop 

response shown in Fig. 3.10 was identified by the Identification tool of MATLAB as shown 

in Fig. 3.10, and 99% best fit was obtained from simulated data using 4th order state-space 

model. 

𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵 𝑢(𝑡) + 𝐾 𝑒(𝑡)   (3.18) 

𝑌(𝑡) = 𝐶 𝑋(𝑡) + 𝐷 𝑢(𝑡) +  𝑒(𝑡)   (3.19) 

Where 𝑋 is the state variable, u denotes the input variable, Y is the output variable and 𝑒(𝑡) 

denote the disturbance. Matrix A, B, C, D, and K were obtained by identification and model 

validation of process are as follows:  

𝑤ℎ𝑒𝑟𝑒, 𝐴 =   ቎

−2.078 −0.02079 −0.02372     − 0.01896
0.3587 −0.04384 −0.008468         0.0007041
0.4237 −0.103 −0.0668      − 0.003852
0.1479   − 0.001805        0.001786        0.001182

቏ , 𝐵 = ൦

−11.54
−2.063
2.569

0.8251

൪ 

𝐶 = [1.572 − 6.726  1.196 35.06], 𝐷 = [0], 𝐾 = ൦

0
0
0
0

൪ 

The state-space model of Eq. (3.18) and Eq. (3.19) were converted into a 4th order transfer 

function using MATLAB command 𝐺௣ = 𝑡𝑓(𝑠𝑦𝑠), where sys is the state-space model and 

given by Eq. (3.20) 

𝐺௣ =
ି଴.଴ଶଷସ యି଴.଴ଶ଴ହହ௦మି଴.଴଴ଵଵ଺ଷ௦ାଵ.ସ଻ଵ×ଵ଴షల

௦రାଶ.ଵ଼଻௦యା଴.ଶସଽ଻௦మା଴.଴଴ସଶ଼ହ௦ାଵ.ଷହସ×ଵ଴షభబ
  (3.20) 
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Eq. (3.20) was simplified into pole-zero form using MATLAB command zpk(𝐺௣) and 

given by Eq. (3.21). 

     𝐺௣ =
ି଴.଴ଶଷସ଺ଽ(௦ା଴.଼ଵସ଺)(௦ା଴.଴଺଴ଽସ)(௦ି଴.଴଴଴ଵଶ଺ଶ)

(௦ାଶ.଴଺଻)(௦ା଴.଴ଽ଼଻ଽ)(௦ା଴.଴ଶ଴ଽସ)(௦ାଷ.ଵ଺଺×ଵ଴షఱ)
                     (3.21) 

Since one pole and one zero of Eq. (3.21) is close to the origin, one can cancel out the pole 

and zero. Therefore, the process model is further simplified to the form of Eq. (3.22). 

𝐺௣ =
ି଴.଴ଶଷସ଺ଽ(௦ା଴.଼ଵସ଺)(௦ା଴.଴଺଴ଽସ)

(௦ାଶ.଴଺଻)(௦ା଴.଴ଽ଼଻ଽ)(௦ା଴.଴ଶ଴ଽସ)
           (3.22) 

The Eq. (3.22) was further simplified and given by Eq. 3.23.  

𝐺௣ =
ି଴.ଶ଻(ଵ.ଶଶ଻ହ௦ାଵ)(ଵ଺.ସଵ௦ାଵ)

(଴.ସ଼ଷ଻௦ )(ଵ଴.ଵଶଶସ௦ )(ସ଻.଻ହହ௦ାଵ)
            (3.23) 

The process model given by Eq. (3.23) is a 3rd order and it is challenging to design the PID 

for this model. Therefore, the process model is reduced to a second-order process by 

applying some reduction technique given by [46]. According to Rule T2 given by 

Skogestad [46], the numerator and denominator term given in Eq. (3.23) can be 

approximated as  

                 
(ଵ଺.ସଵ௦ାଵ)

 (ଵ଴.ଵଶଶସ௦ )
 ≈ 1.6                (3.24) 

Hence, using Eqs. (3.23) and Eq. (3.24), final approximated transfer function model of 

bioreactor for temperature control by manipulating the input jacket flow rate is given by 

Eq. (3.25) 

𝐺௣ =
்௥(௦)

ி௝(௦)
=

ି଴.ସଷହ଻(ଵ.ଶଶ଻ହ௦ )

(଴.ସ଼ଷ଻௦ )(ସ଻.଻ହହ௦ାଵ)
    (3.25) 
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Various studies are available in the literature in which different advanced control 

algorithms have been developed for the reactor temperature control. Since the bioreactor 

operates in a narrow range of temperature during the fermentation process, an effective 

control mechanism is required for the tight control of reactor temperature for the optimal 

growth of microorganisms. 

3.2 PID controller design Techniques 

3.2.1 PID controller for control of output concentration in CSTR 

The PI parameters 𝐾𝑐 𝑎𝑛𝑑 𝜏ூ were obtained for FOPDT of the TF 2 model given in Eq. 

(3.4) by applying tuning rules SIMC [46] and Astrom and Hagglund [20]. One more set of 

PI parameters were obtained using optimization technique with a constraint of 20 % 

maximum overshoot. Table 3.4 shows different tuning rules along with their corresponding 

controller parameters. The PI controller calculated using different tuning rules were applied 

to different forms of CSTR model of second-order linear model Eq. (3.3), nonlinear model, 

and FOPDT model Eq. (3.4) to control the outlet concentration CA.  

 

      Table 3.4 Different tuning rules for PI controller and their parameters 

Process Tuning Methods Kc 𝝉𝑰(s) 
𝑲𝑰 =

𝑲𝒄

𝝉𝑰
 

 
FOPDT 

𝑇𝐹 2 

 
[46] 

1

𝑘

𝜏

𝜏௖ + 𝜃
 

min (𝜏௣, 4(𝜏௖ + 𝜃))  

0.005 8 0.000628 

[20] 0.14

𝑘
+

0.28𝜏

𝜃𝑘
 0.33 +

6.8𝜃𝜏

10𝜃 + 𝜏
 

 

 0.00282 7.030 0.000401 
𝑇𝐹 1 Optimal control 0.0028  0.00050 
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3.2.2 PID controller design for stable SOPDT using direct synthesis (DS) method 

In the direct synthesis (DS) approach for controller design, a desired closed-loop response 

is assumed for set-point change and matched to the closed-loop response [25, 90, 91]. The 

resulting controller is obtained in terms of a desired closed-loop time constant and process 

parameters. The time constant of desired response is used as a controller tuning parameter. 

The main advantage of the direct synthesis approach is that the closed-loop performance 

requirements set by the control engineer, and it could be incorporated directly through the 

specification of the desired closed-loop transfer function. The desired closed-loop transfer 

function can be selected by specifying the closed-loop pole.  Therefore, the direct synthesis 

method is another form of pole placement technique [44, 90].  

The DS method does not always provide a controller having  PI/PID form. However, by 

appropriate selection of desired closed-loop transfer function and proper rearrangement of 

the terms in the resulting controller,  it can be converted into the form of PI or PID type 

controller in case of first and second-order time delay process models. Several process 

industries viz. chemical, biochemical, and pharmaceutical consist of different process units 

like distillation unit, heat exchangers, fermenter, and jacketed continuous stirred tank 

reactor (CSTR) shows second-order transfer function characteristics. Keeping this fact in 

mind, a second-order plus time delay (SOPDT) model was considered in the present work 

for the designing of PID controller based on the direct synthesis method. Instead of a 

double-feedback control structure (Vijayan and Panda [92] and Lee et al. [13]), a single 

feedback control loop was used in the present study for the synthesis of PID controller. The 

single feedback control loop is simpler and easy to design. The block diagram of the 
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proposed feedback loop is shown in Fig. 3.11 in which 𝐺௣(𝑠) denotes the plant and 𝐶(𝑠) 

represents the feedback controller PI/PID.  

 

 

Fig. 3.11 Simple unity feedback control loop 

 

The transfer function of 𝐺௣(𝑠) given by Eq. (3.26) 

   𝐺௣ =
௞೛(௙௦ା௚)௘షಐೞ

௔௦మା௕௦ା௖
                           (3.26) 

Where, the coefficients 𝑎, 𝑏, 𝑐, 𝑓 𝑎𝑛𝑑 𝑔 in Eq. (3.26) are constant. The closed-loop response 

for set-point tracking is given by Eq. (3.27). 

       
௒(ௌ)

ோ(ௌ)
=

ீು(ௌ)஼(ௌ)

ଵାீು(ௌ)஼(ௌ)
          (3.27) 

Chen and Seborg [12] considered a FOPDT model as the desired closed-loop transfer 

function. However, in the present study, a SOPDT model in Eq. (3.28) was selected as the 

desired closed-loop transfer function because most of the chemical process units exhibit a 

second-order plus time delay closed-loop characteristics.  

      
௒(ௌ)

ோ(ௌ)
= 𝑄(𝑆) =

௘షಐೞ

(ఒ௦ାଵ)మ
         (3.28) 
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In the above model, 𝜆 denotes the tuning parameter for the controller and which was used 

to calculate the parameters 𝑘௖ , 𝜏ூ , 𝑎𝑛𝑑 𝜏஽. The controller C(s) can be obtained by using Eq. 

(3.27) and Eq. (3.28) moreover, given by Eq. (3.29). 

𝐶(𝑠) =
ଵ

ீ೛ 

ொ(ௌ)

ଵିொ(ௌ)
          (3.29) 

The ideal feedback controller C(s) is calculated by using the Eq. (3.26), Eq. (3.28), and Eq. 

(3.29), as given by Eq. (3.30). 

 𝐶(𝑠) =
௔௦మା௕௦ା

௞௣ (௙௦ା௚)௘షಐೞ
×

೐షಐೞ

(ഊೞశభ)మ

ଵି
೐షಐೞ

(ഊೞశభ)మ

=
௔௦మା௕௦ା

௞௣ (௙௦ା௚)
×

ଵ

(ఒ௦ାଵ)మି௘షಐೞ
       (3.30)  

The delay term 𝑒ି஘௦ in Eq. (3.30) was approximated using Taylor’s series expansion as 

given below: 

𝑒ି஘௦= 1 − θ𝑠 +
஘మ௦మ

ଶ!
−

஘య௦య

ଷ!
+ ⋯ 

The delay term up to the 2nd power of ‘s’ was substituted in Eq. (3.30). Furthermore, the 

resultant expression of the feedback controller C(s) was rearranged into the form of Eq. 

(3.31).  

 𝐶(𝑠) =
ଵ

௦
൭

൫௔௦మା௕௦ା௖൯

௞೛൜௙൬ఒమି
ಐ

మ

మ
൰௦మା൤௚൬ఒమି

ಐ

మ

మ
൰ା௙(ଶఒା஘)൨௦ା௚(ଶఒା஘)ൠ

൱      (3.31) 

The controller expression, as given in Eq. (3.31) is written in a functional form as given by 

Eq. (3.32) and expression 𝜑(𝑠) was obtained by rearranging the terms of Eq. (3.33)  

                                     𝐶(𝑠) =
ఝ(௦)

௦
      (3.32) 
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                               𝜑(𝑠) = ൭
൫௔௦మା௕௦ା௖൯

௞೛൤௙൬ఒమି
ಐ

మ

మ
൰௦మା൜௚൬ఒమି

ಐ

మ

మ
൰ା௙(ଶఒା஘)ൠ௦ା௚(ଶఒା஘)൨

൱      (3.33) 

The Maclaurin series expansion theorem was used to obtain an ideal form of the PID and 

controller 𝐶(𝑠) given in Eq. (3.34) [61, 92]. 

       𝐶(𝑠)= 
ଵ

௦
ቀ𝜑(0) + 𝜑ᇱ(0)𝑠 +

ఝ"(଴)௦మ

ଶ!
+ ⋯ ቁ      (3.34) 

Since the ideal form of PID controller discussed in many control theory books and written 

as 

       𝐶(𝑠)= 𝑘௖ ቀ1 +
ଵ

ఛ಺ ௦
+ 𝜏஽𝑠ቁ        (3.35) 

The controller parameters 𝑘௖ , 𝜏ூ 𝑎𝑛𝑑 𝜏஽ were estimated by corresponding coefficients of ‘s’ 

of Eq. (3.34) and Eq. (3.35). The following expressions for the controller parameters were 

obtained:  

                    𝑘௖ =  𝜑ᇱ(0)     𝜏ூ =  
௞೎

ఝ(଴)
     and       𝜏஽  = 

ఝ"(଴)

ଶ௞೎
              (3.36) 

Value of 𝜑(0) was calculated by substituting s = 0 in the Eq. (3.33), and first derivative of 

Eq. (3.33) and then substituting s = 0, one can find the value of 𝜑′(0). Similarly, 2nd 

derivative of Eq. (3.33) and substituting s = 0, 𝜑"(0) can be obtained. The values 𝜑(0), 

𝜑′(0) and 𝜑"(0) are calculated as follow: 

        𝜑(0) = 
ே

஽
                     (3.37) 

                                                                 𝜑′(0) = 
ேభ ∗஽ି஽భ ∗ே

஽మ
                                           (3.38) 

           𝜑"(0) = 
஽(ேమ ∗஽ି஽మ ∗ே)ିଶ஽భ(ேభ ∗஽ି஽భ ∗ே)

஽య
     (3.39) 
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Where, N = c;  𝐷 = 𝑘௣𝑔(2𝜆 + θ);  𝑁ଵ =  𝑏;  𝐷ଵ = 𝑘௣ ൤𝑔 ൬𝜆ଶ −
஘

ଶ

ଶ
൰  +  𝑓(2𝜆 +  θ)൨;  𝑁ଶ =

2𝑎;    𝐷ଶ  = 𝑘௣𝑓 ൬𝜆ଶ −
஘

ଶ

ଶ
൰ 

Eq. (3.36) to Eq. (3.39) were solved to calculate the PID parameters in terms of 𝜆. The 

tuning parameter 𝜆 was adjusted in such a way that the obtained PID controller provides 

robust and satisfactory closed-loop results for nominal as well as in case of model 

uncertainty. The PID controller designed by a direct synthesis approach was applied to 

several first and second-order time-delay models to evaluate the closed-loop performance. 

The performance of the PID controller obtained using the present method was compared to 

other similar tuning rules.  

3.2.2.1 Tuning parameter (λ) selection method 

The selection of a suitable tuning parameter λ is a challenging and tedious task. The tuning 

parameter is selected in such a way that the obtained controller should provide robust 

performance with a minimum integral error. A small value of λ gives a quick response and 

shows a better result in the case of load change for stable processes, whereas a high value 

of λ provides stability and robustness of the controller. To select the optimum value of λ, an 

approach based on Maximum sensitivity Ms was applied. In this approach, Ms was 

considered as performance index and defined as 𝑀𝑠 = 𝑚𝑎𝑥|
ଵ

ൣଵାீ೛ீ೎(௜ఠ)൧
|. Graphically Ms 

is the inverse of the smallest distance from the Nyquist curve to the critical point (−1, 0) in 

the Nyquist plot. Ms value can also be used to choose a range for the gain margin (GM) and 

phase margin (PM). Veldsink, et al. [93] and Skogestad and Postlethwaite [94] gave the 
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following relations to estimate the range of GM and PM in terms of Ms as given by Eq. 

(3.40).   

   GM ≥
ெೞ

ெೞିଵ
;  PM ≥  2𝑠𝑖𝑛ିଵ ቀ

ଵ

ଶெೞ
ቁ                  (3.40) 

The lower bound of GM and PM decreases as Ms increases. The minimum value of GM is 

1.7, and 35 degrees has been recommended for PM for typical stable processes. There are 

certain limitations of the controller for controlling process and to achieve the desired robust 

closed-loop response [22]. In the present study, the tuning parameter was selected to 

achieve maximum sensitivity (Ms) value in the range of 1.2-1.8 because the controller 

within this range of Ms value provides robust and better-closed loop performance.  

3.2.3 Internal Model Control (IMC) Technique 

A brief description of the internal model control (IMC) technique has already been 

discussed in literature review section of the thesis. The IMC design has an interesting 

application for designing Q-parameterized controllers, which provide satisfactory results 

for both fundamental and practical applications. The concept behind evolution of IMC is 

shown in Fig. 3.12 A and Fig. 3.12 B represents the IMC structure. 

The closed-loop response Y(s) for the IMC structure shown in Fig. (3.12 B) is given by Eq. 

(3.41). This equation can also be written in the form of sensitivity function S(s) and 

complementary sensitivity function T(s) as given by Eq. (3.42). 

𝑌(𝑠) =
ீ೛ொ

ଵାொ(ீ೛ିீ೘)
𝑅 +

ଵିீ೘ொ

ଵାொ(ீ೛ିீ೘)
𝐷       (3.41) 

Therefore,             𝑌(𝑠) = 𝑇(𝑠)𝑅(𝑠) + 𝑆(𝑠)𝐷(𝑠)        (3.42) 
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For the perfect model, i.e., there is no plant/model mismatch (𝐺௣ = 𝐺௠), these functions 

can be simplified to 

        𝑇(𝑠) = 𝐺௠𝑄;  𝑆(𝑠) = 1 − 𝑇(𝑠) = 1 −  𝐺௠𝑄; and 𝑄 = 𝐺௠
ିଵ𝑇(𝑠)              (3.43) 

 

 

 

Fig. 3.12 (A) Evolution of IMC Controller (B) IMC control structure  
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The feedback control loop shown in Fig. 3.12 (A) is obtained by simplification of IMC 

control loop shown in Fig. 3.12 (B) and rearranging the IMC controller Q(s) to the 

feedback controller C(s) as given by Eq. (3.44). Further, the resulting controller may not 

necessarily in a standard form of PID controller. However, it can be simplified to a PI/PID 

controller or PID with a lead-lag filter in series by some simplification and rearrangement. 

The designed PID should be stable, simple in structure, robust in nature, easy to understand, 

and implementable on the real system. The IMC structure provides a suitable framework 

for satisfying these objectives. 

𝐶(𝑠) =
ொ(௦)

ଵିீ೘(௦)ொ(௦)
     (3.44 a) 

 𝑄(𝑠) =
஼(௦)

ଵାீ೘஼(௦)
     (3.44 b)  

3.2.3.1 IMC filter selection 

The IMC controller is augmented with a filter 𝑓(𝑠) to make the controller proper, 

realizable, and internally stable. The filter structure and parameter both are selected in such 

a way that it provides an optimal compromise between performance and robustness of the 

controller. Morari and Zafiriou [24] suggested a detail selection procedure for the IMC 

filter. To simplify the design task, the filter structure is fixed, and then a search made over a 

small number of filter parameters to obtain desired robustness characteristics. It is logical to 

choose f such that the closed-loop system retains its asymptotic tracking properties (Type 

m). For the system of Type m, f  has to satisfy  

          lim
௦→଴

ௗೖ

ௗ௦ೖ
൫1 − 𝐺௠𝑄෨𝑓൯ = 0              0≤k<m                          (3.45) 
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If 𝐺௠ is designed to satisfy Eq. (3.45) for f =1 then the conditions on f for Eq. (3.45) to be 

satisfied as 

              lim
௦→଴

ௗೖ

ௗ௦ೖ
(1 − 𝑓) = 0                      0≤k<m                      (3.46) 

Thus  

Type 1:               f(0) = 1               (3.47) 

Type 2:   𝑓(0) = 1 𝑎𝑛𝑑 lim
௦→଴

ௗ௙

ௗ௦
= 0         (3.48) 

Typically, one can use one parameter filters with unity steady-state gain of the form 

       𝑓 = (𝛽௠ିଵ𝑠௠ିଵ + ⋯ 𝛽ଵ𝑠ଵ + 1)
ଵ

(ఒ௦ାଵ)೙
                              (3.49) 

Where 𝜆 is an adjustable filter parameter, and n is selected large enough to make Q proper 

and 𝛽௜ is chosen to satisfy Eq. (3.46). The simplest filters of the form Eq. (3.50) and Eq. 

(3.51) which satisfies Eq. (3.46) are 

Type 1     𝑓 =
ଵ

(ఒ௦ା )೙
            (3.50) 

Type 2        𝑓 =
(௡ఒ௦ାଵ)

(ఒ௦ାଵ)೙
          (3.51) 

3.2.3.2 PID controller design for USOPDT using IMC technique 

In present work, an IMC based PID controller design approach is discussed for unstable 

second-order time-delay (USOPDT) system with right hand of the complex plane (RHP) 

zero in numerator. Internal Model Control (IMC) system shown in Fig. 3.13 (A) and their 
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equivalent feedback control loop is shown in Fig. 3.13 (B) were considered for designing of 

IMC-PID controller for unstable second-order time-delay process.  

 

 

Fig. 3.13 (A) Internal Model Control (IMC) structure (B) Feedback control system 

In the figures 𝐺௣represents the process transfer function and 𝐺௠ depicted as the process 

model. The IMC controller is denoted by Q(s) and 𝐺௖represents its equivalent feedback 

controller.  

Design procedure of the IMC controller is a two-steps approach (i) Nominal Performance: 

IMC controller 𝑄෨  is selected to provide good system response in case of a perfect model or 

in the absence of model uncertainty and (ii) the IMC controller 𝑄෨  is augmented by a low 

pass filter f (Q=𝑄෨𝑓) to make the controller proper and realizable and which provides robust 

performance and robust stability. This method can specify the sensitivity S(s) and 

complementary sensitivity T(s) functions and specify the closed-loop response natures.  
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The IMC design includes mainly two steps. The first step ensures that Q is stable and 

causal; the second step requires Q to be proper. 

Step 1: The process model 𝐺௠ is factored into two part of 𝐺௠ା𝐺௠-. 

𝐺௠ା represents the nonminimum phase part of the process model, a  is all Right-Half-plane 

(RHP) zero and time delays. However, 𝐺௠ି denotes the minimum phase part of the process 

model and invertible; an IMC controller is defined as  

𝑄෨ = 𝐺௠ି
ିଵ  

is stable and causal. 

The factorization of 𝐺௠ା from 𝐺௠ is dependent upon the objective function chosen [24].  

Step 2:The IMC controller 𝑄෨  is augmented with a filter f(s) so that the controller becomes 

proper and causal and obtained final IMC controller in the form of 𝑄 = 𝑄෨𝑓(𝑠).  

As discussed earlier in the chemical, biochemical, pharmaceutical, etc. industries, several 

process units exhibit characteristics of unstable second-order plus time delay during their 

operation. Different forms of the second-order time-delay system derived from the process 

industries may be in the forms of transfer function model given in Eq. (3.52 a) - Eq. (3.52 

d).   

𝐺௣ =
௞೛௘షഇ

(ఛభ௦ାଵ)(ఛమ௦ିଵ)
    (3.52 a) 

𝐺௣ =
௞೛௘షഇೞ

(ఛభ௦ିଵ)(ఛమ௦ିଵ)
    (3.52 b) 
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     𝐺௣ =
௞೛௘షഇೞ

௦(ఛ௦ିଵ)
      (3.52 c) 

𝐺௣ =
௞೛(ଵ±௣௦)௘షഇೞ

(ఛభ௦±ଵ)(ఛమ௦ିଵ)
      (3.52 d) 

Due to the presence of RHP pole and zero, the model in Eq. (3.52 d) is more difficult to 

control. Therefore, a general transfer function model of Eq. (3.53) was taken as the process 

transfer function for the design of proposed IMC-PID controller.  

    𝐺௣ =
௄೛(ଵି௣௦)௘షഇೞ

௔భ௦మା௔మ௦ାଵ
                    (3.53) 

Where 𝑎ଵ > 0,  𝑎ଶ < 0 and RHP pole of 𝐺௣ may be real or complex. According to the IMC 

principle, the controlled variable in the IMC-structure given in Fig. (3.13A) is given as  

   𝑌 =
ீ೛ொ

ଵାொ(ீ೛ିீ೘)
𝑌௦௣ + ൤

ଵିொீ೘

ଵାொ(ீ೛ିீ೘)
൨ 𝑑       (3.54) 

For the nominal case i.e. 𝐺௣ = 𝐺௠, the set-point and disturbance response can be written as:   

             𝑌 =  𝐺௣𝑄𝑌௦௣ + (1 − 𝑄𝐺௠)𝑑        (3.55) 

The process model 𝐺௠ is factored into two parts as 𝐺௠ = 𝐺௠ା𝐺௠ି to design the IMC 

controller. 𝐺௠ା denotes noninvertible part which includes time delay and RHP zero of the 

process model and 𝐺௠ି describes the invertible parts of the model. Therefore, the model is 

decomposed as:  

                         𝐺௠ି =
௄೛

௔భ௦మା௔మ௦ାଵ
 and 𝐺௠ା = (1 − 𝑝𝑠)𝑒ିఏ       (3.56) 
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In the present work, a fourth-order filter 𝑓(𝑠) as given by Eq. (3.57) is selected as the IMC 

filter for the designing of IMC-PID controller for an unstable second-order time-delay 

process. The proposed filter was also used by several other researchers [19, 28, 47, 62, 64]. 

 𝑓(𝑠) =
ఉమ௦మାఉభ௦ାଵ

(ఒ௦ାଵ)ర
      (3.57) 

After solving Eq. 3.56 and Eq. 3.57, IMC controller 𝑄 was calculated and given by Eq. 

(3.58). 

𝑄 = 𝑄෨𝑓(𝑠) =
௔భ௦మା௔మ௦ାଵ

௄೛
×

ఉమ௦మାఉభ௦ାଵ

(ఒ௦ାଵ)ర
       (3.58) 

The equivalent feedback controller 𝐶(𝑠) of IMC controller given in Eq. (3.58) was 

estimated by Eq. (3.59). 

𝐺௖(𝑠) =
ொ

(ଵିொீ೛)
=

(௔భ௦మା௔మ௦ାଵ)(ఉమ௦మାఉభ௦ାଵ)

௄೛[(ఒ௦ାଵ)రି(ଵି௣௦)(ఉమ௦మାఉభ௦ାଵ)௘షഇೞ]
     (3.59) 

The feedback controller 𝐺௖(𝑠) mentioned in Eq. (3.59) is not in a standard form of PID, and 

therefore, this equation can be simplified and rearranged in the form of PID. The time delay 

term 𝑒ିఏ௦ in Eq. (3.59) can be approximated by Taylor series theorem as 𝑒ିఏ௦ = 1 − 𝜃𝑠 

and final form of the feedback controller given in Eq. (3.60).  

𝐺௖(𝑠) =
(௔భ௦మା௔మ௦ାଵ)(ఉమ௦మାఉభ௦ାଵ)

௄೛[(ఒ௦ାଵ)రି(ଵି௣௦)(ఉమ௦మାఉభ௦ାଵ)(ଵିఏ௦)]
  (3.60) 

Further, Eq. (3.60) was rearranged in the form of Eq. (3.61) and which can be further 

rearranged to PID form,  

𝐺௖(𝑠) =
(௔భ௦మା௔మ௦ାଵ)(ఉమ௦మାఉభ௦ାଵ)

௄೛(ସఒିఉభାఏା௣)௦[௫భ௦యା௫మ௦మା௫య௦ାଵ]
=

(௔భ௦మା௔మ௦ାଵ)(ఉమ௦మାఉభ௦ାଵ)

௄೛௛௦[௫భ௦యା௫మ௦మା௫య௦ାଵ]
             (3.61) 
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Where, 

ℎ = (4𝜆 − 𝛽ଵ + 𝜃 + 𝑝)    (3.62 a) 

𝑥ଵ = (𝜆ସ − 𝑝𝜃𝛽ଶ)/ℎ     (3.62 b) 

𝑥ଶ = (4𝜆ଷ − 𝑝𝜃𝛽ଵ + 𝜃𝛽ଶ + 𝑝𝛽ଶ)/ℎ   (3.62 c) 

𝑥ଷ = (6𝜆ଶ − 𝛽ଶ − 𝜃𝑝 + 𝑝𝛽ଵ + 𝜃𝛽ଵ)/ℎ  (3.62 d) 

The denominator term of Eq. (3.61) is factorized to obtain the coefficients 𝑥ଵ, 𝑥ଶ and 𝑥ଷ as 

given by Eq. (3.63). 

𝑥ଵ𝑠ଷ + 𝑥ଶ𝑠ଶ + 𝑥ଷ𝑠 + 1 = (𝛾𝑠 + 1)(𝑎ଵ𝑠ଶ + 𝑎ଶ𝑠 + 1) (3.63) 

The coefficients 𝑥ଵ, 𝑥ଶ and 𝑥ଷ were calculated by equating the corresponding coefficients 

of equal order of‘s’ in Eq. (3.63).  

     𝑥ଵ = 𝛾𝑎ଵ     (3.64 a) 

     𝑥ଶ = 𝛾𝑎ଶ + 𝑎ଵ     (3.64 b) 

     𝑥ଷ = 𝛾 + 𝑎ଶ         (3.64 c) 

The coefficients 𝛽ଵ, 𝛽ଶ and 𝛾 were calculated by solving Eq. (3.62) and Eq. (3.64), and 

given by Equations 3.65 a, 3.65 b, and 3.65 c. 

𝛽ଵ =
௬ర௭భି௬మ௭మ

௬భ௬రି௬మ௬య
     (3.65 a) 

𝛽ଶ =
ఉభ௬భି௭భ

௬మ
     (3.65 b) 
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        𝛾 =
௫భ

௔భ
       (3.65 c) 

where,  

      𝑦ଵ = 𝑎ଵ𝑝𝜃 − 𝑎ଵ
ଶ      (3.66 a) 

     𝑦ଶ = 𝑎ଶ𝑝𝜃 + 𝑎ଵ(𝑝 + 𝜃)     (3.66 b) 

     𝑦ଷ = 𝑎ଵ(𝑝 + 𝜃) + 𝑎ଵ𝑎ଶ     (3.66 c) 

𝑦ସ = 𝑎ଵ −  𝑝𝜃       (3.66 d) 

𝑧ଵ = 4𝑎ଵ𝜆ଷ − 𝑎ଶ𝜆ସ − 𝑎ଵ
ଶ(4𝜆 + 𝜃 + 𝑝)    (3.66 e) 

𝑧ଶ = 𝜆ସ + 𝑎ଵ𝑎ଶ(4𝜆 + 𝜃 + 𝑝) − 𝑎ଵ(6𝜆ଶ −  𝑝𝜃)   (3.66 f) 

Using the above steps the feedback controller 𝐺௖(𝑠) was simplified to a standard form of 

PID and given by Eq. (3.67) similar approach was given by [95] to simplify the controller 

into PID form.  

𝐺௖(𝑠) = 𝐾௖ ቀ1 +
ଵ

ఛ಺௦
+ 𝜏஽𝑠ቁ

ଵ

ఈ௦ାଵ
                 (3.67) 

Where,  𝐾௖= 
ఉభ

௄೛௛
 , 𝜏ூ= 𝛽ଵ, and 𝜏஽= 

ఉమ

ఉభ
  and 𝛼 = 𝛾 =

௫భ

௔భ
  and λ is the tuning parameter of the 

controller. The controller parameters depend on the tuning parameter of λ, and the desired 

closed-loop performance and robustness can be achieved by adjusting the value of λ.  

The proposed IMC-PID applied to different forms of unstable and integrating second-order 

time-delayed (SOPDT) with or without RHP zero in the numerator. This method also 

applied for temperature control of bioreactors in the fermentation process for ethanol 
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production. The performance of the controller was evaluated in terms of ITAE and TV 

value. Robustness of controller was calculated by introducing of 10-20 % perturbations into 

various process parameters. 

3.2.3.3 Selection guideline for 𝝀 

The controller tuning parameter λ is adjusted in such a manner that provides desired 

performance and robustness of the proposed controller. There is always a possibility of 

trade-off between performance and robustness of a controller. For a stable process, faster 

response in case of set-point tracking and disturbance rejection is obtained for a small value 

of λ. However, it is not always correct for unstable processes. The performance may be 

improved by taking optimum value of λ which provides more stable and robust 

performance for unstable process. The selection guidelines of the tuning parameter λ have 

been suggested by several researchers. A simple method of λ selection guideline based on 

peak of maximum sensitivity Ms is discussed in [61, 62, 96]. The present study also 

considered a similar approach to 𝜆 selection. In this approach a plot of Ms versus 𝜆 was 

drawn for a particular transfer function model. In the plot of Ms vs λ, a peak value of Ms 

was obtained some where of the plot at a particular value of 𝜆 and after that decreases 

quickly and finally becomes constant up to a specific range of 𝜆. Generally, λ is selected 

after the peak of Ms, and the corresponding controller parameters are evaluated to achieve 

the desired performance and robustness. A similar selection method was used in the various 

other recently published papers [19, 22, 61, 96]. 
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3.2.3.4 Robustness and Stability Analysis 

The stability and performance or guarantee for the robustness of the closed-loop system is 

an important aspect of the control system design. The possibility of plant/model mismatch, 

i.e. model uncertainty always exists in the process industries. The plant/model mismatch 

may occur in the industries due to linearization of nonlinear process, reduction of higher-

order model to lower-order approximated model, or the presence of uncertainty in process 

input/output parameters. In present work, only the parametric uncertainties are considered, 

and a particular value of perturbation was introduced into the process parameters such as in 

gain 𝐾௣, dead time θ and in time constants 𝜏ଵ and 𝜏ଶ. For a robust and stable feedback 

system, the following condition must be satisfied [24]. 

    ‖𝑙௠(𝑗𝜔)𝑇(𝑗𝜔)‖ < 1 ∀𝜔 ∈ (−∞, ∞)   (3.68) 

Where 𝑇(𝑠 = 𝑗𝜔) denotes the complementary sensitivity function and which is defined as 

𝑇(𝑠) = 𝐶(𝑠)𝐺௣(𝑠) (1 + 𝐶(𝑠)𝐺௣(𝑠)⁄ ) and 𝑙௠(𝑠 = 𝑗𝜔) is multiplicative uncertainty bound 

on the process model. The multiplicative uncertainty in the process model can be stated as 

𝑙௠(𝑗𝜔) = ቚ
ீ೛(௝ఠ)ିீ೘(௝ఠ)

ீ೘(௝ఠ)
ቚ    (3.69) 

If the uncertainty present in time delay of the process, λ should be selected so that the 

following condition is satisfied 

‖𝑇(𝑗𝜔)‖ஶ <
ଵ

ห௘ష∆ഇೞିଵห
    (3.70) 

If it appeared in the process gain, the parameter λ should fulfill the following condition. 



Chapter 3     Mathematical modeling and PID controller design techniques 

Department of Chemical Engineering & Technology, IIT-BHU, Varanasi-221005                                                   Page 68 

     ‖𝑇(𝑗𝜔)‖ஶ <
ଵ

ห∆௄ ೛ห
௄ ೛

൘
      (3.71) 

The sensitivity must fulfill the constraints, and complementary sensitivity functions are 

provided in the following Eq. (3.72) to obtain the desired robustness of the process [24].  

‖𝑙௠(𝑗𝜔)𝑇(𝑗𝜔) + 𝑤௠(𝑗𝜔)(1 − 𝑇(𝑗𝜔)‖ < 1   (3.72) 

where, 𝑤௠(𝑗𝜔) is Ms uncertainty bound which is (1 − 𝑇(𝑗𝜔)). Therefore, λ must be 

selected in such a way that the resulting controller satisfies the robust performance and 

stability limitations. 

3.2.3.5 Performance measurement  

The performance of the controller in case of each problem is calculated in terms of 

conventional parameters such as % overshoot, rise time, etc. More quantitative and reliable 

performance parameters such as integral of time-weighted absolute error (ITAE) and the 

control action, i.e., total variation (TV) are also calculated. The close-loop results of the 

proposed method were compared to different similar tuning rules based on designing of 

IMC-PID using Ms approach. A brief overview of performance parameters used in present 

study are as follows: 

Overshoot (%OS) 

Overshoot is a measure of how much the closed-loop response exceeds the ultimate value 

following a step change in setpoint or disturbance. Overshoot is calculated in terms of 

percentage and denoted by %OS.  
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Rise time (tr) 

It indicates the speed of the response, and it is the time needed to reach the first time to 

ultimate value or set point. 

Settling time (ts) 

It is the time required to reach the final steady-state value or ultimate value for set-point or 

disturbance change.  

Time integral error indices 

The performance of the controller indicated by the various time integral error indices like 

integral of the absolute error (IAE), integral of the square error (ISE) and integral of the 

time-weighted absolute error (ITAE). 

𝐼𝐴𝐸 = න |𝑒(𝑡)|𝑑𝑡
ஶ

଴

 

𝐼𝑆𝐸 = න 𝑒(𝑡)ଶ𝑑𝑡
ஶ

଴

 

𝐼𝑇𝐴𝐸 = න 𝑡|𝑒(𝑡)|𝑑𝑡
ஶ

଴

 

Where 𝑒(𝑡) represents the error between the set-point and the measurement. ITAE criterion 

penalizes the long-term errors whereas the ISE penalizes larger error. The IAE criterion 

provides controller settings that are between those for the ITAE and ISE criteria.  

Total variation 

Total variation (TV) measures the control efforts (manipulated input usage) or smoothness 

of the control signal. Therefore, the performance of the controller can also be given by 
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parameter TV [46]. If control signal 𝑢(𝑡)is discretized as [𝑢ଵ, 𝑢ଶ, 𝑢ଷ … 𝑢௜ … ], then 𝑇𝑉 =

∑ |𝑢௜ାଵ − 𝑢௜|
ஶ
௜ୀଵ  should be minimum. 

Set-point weighting 

The ideal form of PID discussed in the various control theory books can be written as: 

𝐶(𝑠) = 𝐾௖ ൬1 +
1

𝜏௜𝑠
+ 𝜏஽𝑠൰ 

An undesirable overshoot is observed in many cases of closed-loop response. Different 

researchers used various technique viz. a set-point filter or set-point weighting parameter to 

remove the undesirable overshoot. A set-point weighting method suggested by Åström and 

Hägglund [44] is the most widely accepted control structure given in Eq. (3.73) is used to 

deal with undesirable overshoot. 

𝑢(𝑡) = 𝐾௖ ቀ[𝑏𝑟(𝑡) − 𝑦(𝑡)] +
ଵ

ఛ಺
∫ [𝑟(𝑡) − 𝑦(𝑡)

௧

଴
]𝑑𝜏 + 𝜏஽

ௗ[௖௥(௧)ି௬(௧)]

ௗ௧
ቁ             (3.73) 

Where ‘b’ denotes the weighting parameter of set-point, and c denotes the weight for the 

derivative time constant of the controller. These parameters are chosen between 0 to 1.  The 

setpoint weighting parameter ‘b’ is applied to minimize undesirable overshoot by selecting 

it’s value between 0.2 to 0.5  as given by the researchers to minimize the overshoot. A 

similar range of setpoint weighting parameter ‘b’ was proposed for integrating or unstable 

processes[97]



 


