LIST OF FIGURES

]	Page No.
Figure 2.1	SYNC 2000 protocol gateway	17
Figure 2.2	SYNC 5000 high end MDAS	18
Figure 2.3	Existing special energy meter	19
Figure 2.4	Smart energy meter installed at the site	20
Figure 2.5	AMR System Hierarchy	20
Figure 2.6	Architectural diagram of the AMR Project	21
Figure 2.7	Power factor monitoring curve of smart meter	25
Figure 2.8	Load monitoring curve of smart meter	25
Figure 3.1	The layout of the proposed smart distribution system	29
Figure 3.2	Flowchart for simultaneous control of events: load balancing,	
	overcurrent protection of feeder, and power theft detection and	
	elimination	37
Figure 3.3	Single line diagram of the smart distribution test system	39
Figure 3.4	Total available real power and the total connected load of phase A	
	in area1 (MATLAB/SIMULINK results)	43
Figure 3.5	Breaker status of load 7 having top priority (MATLAB/SIMULIN	K
	results)	43
Figure 3.6	Total available real power and the total connected load of phase A	
	in area1 (OPAL-RT real-time simulator results)	44
Figure 3.7	Breaker status of load 7 having top priority (OPAL-RT real-time	
	simulator results)	45
Figure 3.8	Phase currents (RMS value) of DT ₂ secondary winding in case	
	of load balancing process (MATLAB/ SIMULINK results)	47
Figure 3.9	Percentage phase unbalance factor (MATLAB/ SIMULINK result	s) 47
Figure 3.10	Phase voltages (RMS value) of DT ₂ secondary winding in case	
	of load balancing process (MATLAB/ SIMULINK results)	48
Figure 3.11	Phase currents (RMS value) of DT2 secondary winding in case	
	of load balancing process (OPAL-RT results)	50
Figure 3.12	Percentage phase unbalance factor (OPAL-RT results)	50
Figure 3.13	Phase currents (RMS value) of DT1 secondary winding in	
	case of overcurrent in the feeder (MATLAB/ SIMULINK results)	52

Figure 3.14	Phase voltages (RMS value) of DT ₁ secondary winding (in case	
	of overcurrent and power theft) in the feeder (MATLAB/	
	SIMULINK results)	53
Figure 3.15	Breaker status of load number 1 in case of overcurrent in the feeder	
	(MATLAB/ SIMULINK results)	53
Figure 3.16	Phase currents (RMS value) of DT ₁ secondary winding in case of	
	overcurrent in the feeder (OPAL-RT results)	56
Figure 3.17	Breaker status of load number 1 in case of overcurrent in the feeder	
	(OPAL-RT results)	56
Figure 3.18	MATLAB command window is showing notification of theft at time	
	t=0.21sec.	58
Figure 3.19	Simultaneous control of load balancing, overcurrent protection of	
	feeder, and theft detection (MATLAB /SIMULINK results)	61
Figure 3.20	Percentage phase unbalance factor (MATLAB /SIMULINK results)	61
Figure 3.21	Simultaneous control of load balancing, overcurrent protection of	
	feeder, and theft detection (OPAL-RT results)	64
Figure 3.22	Percentage phase unbalance factor (OPAL-RT results)	64
Figure 4.1	MATLAB/SIMULINK model of PMU	70
Figure 4.2	Butterworth Band Pass filter of order 2	70
Figure 4.3	ADC using Sample and Hold Circuit	71
Figure 4.4	The non-recursive LABVIEW model	73
Figure 4.5(a)	The recursive LABVIEW model- Stage I (False Condition)	74
Figure 4.5(b)	The recursive LABVIEW model- Stage II (True Condition)	75
Figure 4.6(a)	Non-Recursive Phasor Estimation for first data window (with fixed	
	magnitude and phase angle=45°)	79
Figure 4.6(b)	Non-Recursive Phasor Estimation for second data window (with fixed	
	magnitude and phase angle=75°)	79
Figure 4.6(c)	Recursive Phasor estimation for first data window (with fixed	
	magnitude and fixed phase angle=45°)	80
Figure 4.6(d)	Recursive Phasor Estimation for second data window (with fixed	
	magnitude and fixed phase angle=45°)	80
Figure 5.1	The layout of the proposed distribution system	84
Figure 5.2	Substation automation systems (SAS) through IEC-61850	
	communication protocol	86

Figure 5.3	Layout of the proposed distribution system with IEC-61850	
	communication protocol	89
Figure 5.4	Input voltage to PMU at the substation	91
Figure 5.5	Input current to PMU at the substation	92
Figure 5.6	Magnitude of the voltage at substation	92
Figure 5.7	Magnitude of current at the substation	93
Figure 5.8	The phase angle of the voltage at substation	94
Figure 5.9	The phase angle of current at the substation	95
Figure 5.10	The rate of change of frequency of the voltage at the substation	96
Figure 5.11	The rate of change of frequency of the current at the substation	97
Figure 5.12	Power factor at the substation	98
Figure 5.13	Available power at the substation	99
Figure 5.14	Input Voltage to PMU at DT ₁	100
Figure 5.15	Input current to PMU at DT ₁	101
Figure 5.16	Magnitude of the voltage at DT ₁	102
Figure 5.17	Magnitude of current at DT ₁	103
Figure 5.18	The phase angle of the voltage at DT_1	104
Figure 5.19	The phase angle of current at DT_1	105
Figure 5.20	The rate of change of frequency of the voltage at DT_1	106
Figure 5.21	The rate of change of frequency of the current at DT_1	107
Figure 5.22	Power factor at DT ₁	108
Figure 5.23	Available power at DT ₁	109