Appendix B

B.1 Grid convergence index

For the evaluation of numerical uncertainty in the computational model grid convergence index is used to find out the % error in the discretised model, which is mentioned in the Table B.1.

Table B.1: Calculation of discretization error

Φ = Euler number			
N ₁ , N ₂ , N ₃	643873, 638873, 608873	$\Phi_{\mathrm{exit}}{}^{21}$	49.95
r_{21}	1.012	e_a^{21}	0.0303
r ₃₂	1.02	e_{exit}^{21}	0.009031
Φ_1	49.5	$\mathrm{GCI_{fine}}^{21}$	1.139%
Φ_2	48	$\Phi_{exit}{}^{32}$	48.69
Φ_3	46.8	e_a^{32}	0.025
p	124.5	e_{exit}^{32}	0.01416
		GCI_{fine}^{32}	1.796%

$$p = \frac{1}{\ln(r_{21})} \left| \ln \left| \frac{\varepsilon_{32}}{\varepsilon_{21}} \right| + q(p) \right|, \quad q(p) = \ln \left(\frac{r_{21} - s}{r_{32} - s} \right), \quad s = 1. \, sgn \left(\frac{\varepsilon_{32}}{\varepsilon_{21}} \right), \quad \phi_{exit}^{21} = \left| \frac{r_{21}^p \phi_1 - \phi_2}{r_{21}^p - 1} \right|, \quad e_{a}^{21} = \left| \frac{\phi_{exit}^{21} - \phi_1}{\phi_{exit}^{21}} \right|, \quad GCI_{fine}^{21} = \frac{1.25 \, e_a^{21}}{r_{21}^p - 1}$$

where, N represents the total number of cells for square honeycomb substrate of 5 mm thickness, r represents the refinement factor, p represents the apparent order, ϕ_{exit} shows the extrapolation value, e_a is for approximate relative error, e_{exit} shows the extrapolated relative error and GCI_{fine} is for fine grid convergence index. The numerical uncertainty of fine grid solution for average Euler number is calculated as GCI_{fine} ³² = 1.796% for

number of cells 638873. On further refining the grid, $GCI_{fine}^{21} = 1.139\%$ for number of cells 643873.