Nomenclature

Symbol Description C_{c} = contraction coefficient of the holes C_p = Specific heat of air, (J/kg K) d_{c} = cyclone central axis diameter, (m) d_h = diameter of substrate hole, (mm) = particle diameter, (m) d_p D = diameter of pipe, (mm) D_{c} = cyclone body diameter, (m) D_i = tangential inlet diameter, (m) D_{o} = gas outlet diameter, (m) = particles outlet diameter, (m) D_p = Euler number Eu F_b = Buoyant force, (N) = Centrifugal force, (N) F_{c} F_d = Drag force, (N) **FCR** = Fuel consumption rate, (kg/hr) ER = Equivalence ratio G = It is related to the cyclone configuration, (-) = height of the liquid in the main reservoir with internal diameter of 3.5 $h_{\rm f}$ $cm \times 2.54$ cm. Η = cyclone separation efficiency, (-) H_{t} = total height of cyclone separator, (m) H_b = barrel height, (m)

 H_c = cylinder height, (m)

K = Consistency constant or proportionality constant = μ/g .

L = vortex finder length, (m)

 L_c = length of the capillary tube = 1m

M = molecular weight.

 n_h = number of holes

N = number of filters

P = Pitch

 P_g = Gauge pressure, Nm^{-2}

Pr = Prandtl number

 R_e = Reynolds number

SR = means stoichiometric rate

SGR = specific gasification rate, $(kg/hr \times m^2)$

 t/d_h = thickness ratio

T = temperature, (K)

U = Average velocity of the fluid and d is the internal diameter of the

capillary tube (d = 2mm).

V = volume from where the vortex turns, (m³)

 V_i = inlet gas velocity, (m/s)

 V_0 = inlet volumetric flow rate, (m³/s)

 V_S = secondary volumetric flow rate, (m³/s)

 V_t = tangential inlet velocity, (m/s)

 ΔW = weight of the liquid collected in time t seconds, kg

 $x_1, x_2,$ = mole fraction of a components in a mixture.

 Z_C = natural length, (m)

Greek symbols

 β = porosity

 ε = equivalence ratio

 ρ_a = density of air, (kg/m³)

 ρ_g = gas density, (kg/m³)

 ρ_p = particle density, (kg/m³)

 ρ_r = density of the fuel, (kg/m³)

 σ_R = Uncertainty in R.

 λ = friction factor

 τ_{ω} = shear stress at wall, (Nm⁻²)

 Φ_{ij} = dimensionless constant.

 μ_m = viscosity of the mixture.

Abbreviations

BSFC = Brake specific fuel consumption

SBME = Soyabean methyl ester

UBHC = unburnt hydrocarbons