LIST OF FIGURES

Figure 1.1 Applications of video surveillance system
Figure 2.1 RGB frame in row 1 and depth frame in row 210
Figure 2.2 Activity Recognition Approaches11
Figure 2.3 Conventional Human Activity Recognition Approaches13
Figure 2.4 Relationship among AI, ML and DL26
Figure 2.5 Convolutional neural network framework
Figure 2.6 Evolution of Datasets from Scripted (left) to Unscripted (right) as seen
through common activities: Running (Top Row), Walking (Bottom Row)41
Figure 2.7 The exponential growth in the number of classes in datasets43
Figure 2.8 Actions and their sub-categories by domain and focus45
Figure 2.9 Camera and Sensor Based Modality45
Figure 2.10 Data Source for dataset generation
Figure 2.11 Different types of annotations
Figure 3.1 Block diagram of the proposed method
Figure 3.2: Threshold segmented image obtained after background sabstraction
for running, walking, and sitting activities of KTH, i3DPost and own dataset69
Figure 3.3 Sequence of key poses of several activities (walking, jogging, running)
to obtain contour based distance feature in some selected frames (KTHDB)70
Figure 3.4 Activity boundary definitions70
Figure 3.5 Optical flow velocity of several activities in some selected frames
(KTHDB). (a) Boxing; (b) hand clapping; (c) hand waving; (d) jogging72
Figure 3.6 Optical flow motion features extraction. (a) Optical flow show in the
quadrant regions. (b) The small circle represents the Centre of Mass for (a). (c)
Four quadrant blocks from the Centre of Mass72

Figure 3.7 Circularly symmetric neighbour sets for different (P, R)7	4
Figure 3.8 Left–right HMM structure for an activity7	8
Figure 3.9 Recognition of Activities in our own database (a) Boxing (b) Clapping	,
(c) Jogging (d) Running(e) Sitting (f)Walking(g) Hand-waving in different views	•
	2
Figure 3.10 Comparison chart over the Own dataset	3
Figure 3.11 Recognition of Activities in KTH database [285](a) Boxing (b)	
Handclapping (c) Hand Waving (d) Jogging (e) Running	5
Figure 3.12 Comparison result over the KTH action recognition dataset	7
Figure 3.13 Recognition of Activities in i3DPost multi-view dataset (a) Jumping	
(b) Running (c) Bending (d) Standing (e) Walking (f) Sitting (g) Walking	9
Figure 3.14 Comparison chart over the i3DPost multi-view dataset9	1
Figure 3.15 Recognition of Activities with MSR action recognition database (a)	
Standing (b) Hand-waving (c) Jumping (d) Hand-clapping (e) Boxing9	2
Figure 3.16 Comparison chart over the MSR view-point action dataset9	4
Figure 3.17 Recognition of Activities in WVU multi-view human action	
recognition dataset (a) Hand waving (b) Hand Clapping (c) Walking9	5
Figure 3.18 Comparison chart over the WVU action recognition dataset9	6
Figure 4.1 3D Deep Convolutional Neural Network framework with 3D filters 10	2
Figure 4.2 (a) Raw depth map of size 512 x 424 pixels of sitting activity from	
NTU-RGB+D dataset. (b) Crop depth sequence of sitting activity to center region	l
of size 200 x 200 pixels (c) Resize center crop sequence to 58 x 58 pixels10	5
Figure 4.3 Results for NTU-RGB+D using network of varying temporal and	
spatial resolution	9

Figure 4.4 Visualization of 6 frames extracted at every 10 frames of activity Drink
(row 1), Drop (row 2) and Tear up paper (row 3)109
Figure 4.5 Result comparison chart of proposed method with other state-of-the-art
methods on NTU-RGB+D dataset111
Figure 4.6 Performace comparison chart of proposed method with other state-of-
the-art methods on MSRAction3D dataset113
Figure 4.7 Performace comparison chart of proposed method with other state-of-
the-art methods on MSRDailyActivity3D dataset114
Figure 5.1 Proposed model using 2D and 3D CNN for activity recognition119
Figure 5.2 Shortcut connection in residual learning119
Figure 5.3 Block structure for different residual networks
Figure 5.4 Hardware and software setup
Figure 5.5 RGB frames extracted from different activity classes of UCF101125
Figure 5.6 Illustrates image transformations: a) Original frames of Apply Eye
Make-Up activity b) Transformed frames: Randomly cropped to 224×224 and
flipped with probability 0.5
Figure 5.7 Performance of 3D Resnet-18
Figure 5.8 Performance of 3D Resnet-50
Figure 5.9 Performance of 3D Resnet-101
Figure 5.10 Performance of 3D Resnext-101
Figure 5.11 Performance of 2D Resnet-101
Figure 5.12 Comparision chart of the porposed model with state-of-the-art
methods on UCF-101 dataset
Figure 5.13 Proposed CRNN model
Figure 5.14 ResNet CRNN model

Figure 5.15 Overall loss of 2D CRNN during Training and Testing
Figure 5.16 Accuracy of 2D CRNN during Training and Testing
Figure 5.17 Overall loss of ResNet CRNN during Training and Testing139
Figure 5.18 Accuracy of ResNet CRNN during Training and Testing
Figure 5.19 Comparision chart of the porposed CRNN model with state-of-the-art
methods on UCF-101 dataset140
Figure 6.1 Four-Stream Proposed Model for Recognition of Actions148
Figure 6.2 Heatmap on MSR daily Activity Dataset
Figure 6.3 Heatmap on UTD MHAD Dataset
Figure 6.4 Heatmap on CAD 60 Dataset