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Chapter 5 HUMAN ACTIVITY RECOGNITION MODELS 

USING DEEP RESIDUAL NETWORKS 

5.1. Introduction 

In this chapter, two approaches based on deep residual networks has been proposed. First 

model investigates and uses deep residual networks with fusion based dual stream pre-

trained models for activity recognition from video streams. The architecture is further 

trained and evaluated using standard video actions benchmarks of UCF-101, HMDB-51 

and NTU RGB. Performance of depth-based variants of residual networks is also 

analyzed.  The proposed approach not only provides competitive results but also better at 

exploiting pre-trained model and annotated image data. The second model is encoder-

decoder based model using CNN and RNN. Introduction of residual connections in 

traditional CNN model to design very deep architectures known as Residual Networks 

are very promising for computer vision tasks. To exploit capabilities of both CNN and 

RNN the proposed model is based on CRNN which is trained from scratch as well as 

using ResNet 152 which is pre trained on ImageNet dataset. The architecture is trained 

and validated on popular UCF-101 dataset on the basis of accuracy and average loss. 

From results, it can be observed that proposed approach provides better results than state 

of art methods. 

5.2. Dual Stream HAR Model Exploiting Residual-CNN 

A video consists of sequence of images or frames along the temporal dimension. 

Identification of activity can be simply accomplished by using 2D convolutions on 

images/frames separately to learn activity representation. This approach however does 

not take account of motion encoded in sequence of frames. Identification of some 

activities is possible from static appearance only; however, for other activities this may 
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not hold true. Hence, different approaches are adopted to take account of temporal 

information. Using some additional input modality like optical flow, motion history 

images, and binary motion images etc. is one way to do this. Contribution of additional 

input modality to learn activity class labels cannot be ignored, but at same time it needs 

additional pre-processing of video data to get desired input modality. Thus here, work 

idea is to get comparable results using only RGB frames and minimal training by using 

very deep residual models in contrast to shallow networks. 

 Proposed Method 

The proposed solution comprises of two network streams: “Spatial stream” and “Spatio-

temporal” stream as shown in Fig.5.1. Each network stream refers to CNN with RGB 

frames extracted from video dataset as input modality. “Spatial stream” learns activity 

representation from RGB frames using 2D convolutions, hence it ignores temporal 

dimension for activity class labeling. Whereas “Spatio-temporal stream” learns features 

along spatial as well as temporal dimension using 3D convolutions. Training network 

using RGB frames provide opportunity to exploit large image datasets such as ImageNet 

[321]. Class scores of both networks are then combined, and class with maximum scores 

is predicted as final activity class label for the video. Architecture of network streams is 

illustrated and described in Section-5.2.2 

5.2.1.1. Network Architecture 

In this section proposed network architecture is discussed. In contrast to shallow networks 

used in [84], [85], proposed model uses relatively deep residual networks [333]. 



119 
 

 

Figure 5.1 Proposed model using 2D and 3D CNN for activity recognition 

Residual network architecture is powerful network architecture which bagged all the 

ImageNet challenges, including classification, detection, and localization. The residual 

learning framework includes shortcut connections as shown in Fig. 5.2, that allow signal 

to bypass one layer and jump to the next layer in the sequence. 

 

Figure 5.2 Shortcut connection in residual learning [333] 

Such shortcut connections allow design of very deep networks with minimal parameters 

and improved performance. 
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5.2.1.2. Variants of Residual Network 

There are different residual networks depending on shortcut connections and depth that 

refers to the number of layers in the network. Firstly, Resnet-18, 50, 101 and ResNext101 

with both 2D and 3D convolutions are experimented separately. For spatial stream, above 

mentioned 2D residual networks are evaluated and for Spatio-temporal stream, similar 

3D variants are evaluated. Residual networks comprise of blocks, shown in Fig.5.3. Here 

CV marks convolution layers, X×X×X indicates size of convolution filters and NF 

represents number of feature maps. Convolution layers are followed by Batch 

Normalization (BN) and ReLU (Rectified Linear Unit) activation. 

ResNet-18 uses ResNet basic blocks (a), ResNet 50 and ResNet 101 uses bottleneck 

blocks (b) and ResNext 101 uses ResNext block(c). Basic block comprises of two 

convolution layers indicated by CV(convolution layer) with filter size 3×3×3 for 3D 

ResNets (For 2D ResNets this is 3×3.) as shown in Fig. 5.3(a).  

 

                                         

       a. ResNet-basic                                          b. ResNet-bottleneck                            c. ResNext 

Figure 5.3 Block structure for different residual networks (CV= Convolution Layers, NF= Number of Feature Maps, 
BN= Batch Normalization, G=Group) 

 
Each CV layer is followed by batch normalization (BN) and Rectified Linear Unit 

(ReLU). There is shortcut pass from beginning to layer just before last ReLU. A ResNet 
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bottleneck block comprises of three convolution layers indicated by CV in Fig. 5.3 b. 

First and third convolution layers have filters of size 1×1×1 whereas second layer has 

filter of size 3×3×3 for 3D ResNets (for 2D ResNets these sizes are 1×1 and 3×3 

respectively. Each CV layer is followed by batch normalization (BN) and ReLU. There 

is shortcut pass from beginning to layer just before last ReLU. One complete network is 

then formed by organizing these blocks. Specifications of ResNet-18, 50, 101 and 

ResNext101 are mentioned in Table.5.1. Type of block used in each network is specified 

by row-3. In column-1, named layers represent layer structure of the complete network in 

order from top to bottom. First layer represented by CV1 with complete specification 

given by cell corresponding to each variant, ex. [7×7×7, NF=64, temporal stride=1, 

Spatial stride=2] for ResNet18. Here NF marks number of feature maps. 

5.2.1.3. Spatial Network Stream: 2D Variants of Residual CNN 

Spatial network is responsible for activity recognition using spatial information from 

video frames. Previous works by different authors have shown that deeper structures 

improve performance of computer vision tasks [334]. This is the reason to choose 

relatively deep 2D residual nets for proposed methodology in contrast to popular two-

stream model [85].  Network is initialized with ImageNet [321] weights, as it is rare to 

have dataset of enough size to train the network with random initialization of weights. 
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Table 5.1 Layer specification for different 3D residual networks (Similar for 2D ones except 2D convolution kernels) 
 

5.2.1.4. Spatio-Temporal Network Stream: 3D Variants of Residual 

CNN 

Convolution networks with 2D kernels do not preserve temporal information. Therefore, 

either input modalities like optical flow [84], [85], motion history images etc. or CNN 

with 3D convolutions which are able to learn spatio-temporal features [141] are applied. 

To gain from the temporal information, 3D residual networks are thus used in spatio-

temporal stream. 3D Residual networks use 3D convolutional kernels that provide 

temporal information without additional processing to get input modality like optical 

flow. Rather than training model from scratch, pre-trained model is fine-tuned for the 

problem at hand to reduce training needs of proposed network model. Spatio-Temporal 

network stream, pre-trained on Kinetics [110] dataset has been used for implementing 

transfer learning. Kinetics dataset contains 400 action classes, with around 400 video clips 

for each action, thus it has enough data for training CNN. Fine-tuning of last 

3D Residual networks 
 

Architecture 
 

ResNet-18 
 

ResNet-50 ResNet-101 ResNext-101 

        Block  
    
Layers 

Basic Bottleneck Bottleneck ResNext 

CV1 7×7×7, NF=64, 
temporal stride=1, 
Spatial stride=2 

7×7×7, NF=64, 
Temporal stride=1, 
Spatial stride=2 

7×7×7, NF=64, 
Temporal stride=1, 
Spatial stride=2 

7×7×7, NF=64, 
Temporal stride=1, 
Spatial stride=2 

CV2_x BN=2, NF=64 BN=3, NF=64 BN=3, NF=64 
 

BN=3, NF=128 

CV3_x BN=2, NF=128 BN=4, NF=128 BN=4, NF=128 BN=4, NF=256 
 

CV4_x BN=2, NF=256 
 

BN=6, NF=256 BN=23, NF=256 BN=23, NF=512 

CV5_x BN=2, NF=512 BN=3, NF=512 BN=3, NF=512 BN=3, NF=1024 

Fully 
connected 

FC(Fully Connected) 
layer 

FC(Fully Connected) 
layer 

FC(Fully 
Connected) layer 
 

FC layer 



123 
 

convolutional layer (CV5_x) and the fully connected layer of the network is done for 

datasets used in this work. 

5.2.1.5. Decision Fusion 

For final activity prediction, class scores of both streams are combined using different 

fusion techniques such as Sum fusion, Product fusion, Max fusion and Weighted Average 

fusion which generate final activity class scores, whereas class with maximum score is 

final activity class label for input video stream.  

 Experimental Setup 

Hardware and software setup used in experiments is given in section 5.2.2.1 Experiments 

are performed on widely used and challenging benchmarks for action recognition: UCF-

101 and HMDB-51 and NTU RGB described in section 5.2.2.2. Section 5.2.2.3, 5.2.2.4 

and 5.2.2.5 specifies training and testing setup for spatial and spatio-temporal streams. 

Section 5.2.3 presents experimental results and comparison of proposed work with state-

of-art methods. 

5.2.2.1. Hardware and Software Setup 

Fig.5.4 shows the hardware and software setup used for experiments. The network’s size 

is limited by resource constraints mainly the amount of GPU memory and training time 

that one is willing to tolerate. Hardware is composed of CPU and Nvidia Quad GPU 

having 8 gigabytes of memory. Linux OS Ubuntu 16.04 is used in conjunction with 

Python and CUDA toolkit. Python provides various deep learning libraries and CUDA 

toolkit supports GPU-accelerated computing. PyTorch deep learning development 

platform is used, that provide very simple API for implementation of neural nets. 
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Figure 5.4 Hardware and software setup 

5.2.2.2. Dataset and Performance Measure 

UCF101 [109] is a common video dataset that consists of total 13320 video. Different 

action videos are grouped into 25 groups, where each group contains 4-7 videos of an 

action. The action categories include five types: 1) Body-Motion Only 2) Human- Object 

Interaction 3) Human-Human Interaction 4) Playing Musical Instruments 5) Sports. 

Fig.5.5 (a) represents frames of some four different activity classes. The reason behind 

choosing this dataset is that it offers high diversity in camera motion, object appearance, 

pose and scale, illumination conditions etc. This allows testing and verifying the 

robustness and effectiveness of recognition model in the harsh real-world scenarios. 

Second dataset we considered for our experiments is HMDB-51 [111], the largest action 

video database that has 51 action categories. It consists of around 7,000 manually 

annotated clips. The actions can be grouped into five types: 1) General facial actions 2) 

Facial actions with object manipulation 3) General body movements 4) Body movements 

with object interaction 5) Body movements for human interaction. Sample activity frames 

are represented by Fig.5.5 (b).  NTU RGB [289] is public benchmarking action 

recognition. It includes 56,880 action samples each for RGB, depth, skeleton and infra-

red videos.  There are 40 human subjects performing 60 different actions including 50 

actions by single person and 10 two-person interactions. 
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a 

  

      Brushing teeth                        Knitting            Drumming          Horse riding 

 

b 

 

       Hand-waving                   Sword-fighting                 Running                            Diving 

Figure 5.5 RGB frames extracted from different activity classes of UCF101 [210]. 
 

5.2.2.3. Network Training and Testing 

The first step for network training consists of extraction of RGB frames for each dataset 

using ffmpeg. Mini batch training is used, that is combination of batch and stochastic 

training, as it uses specified number of items (batch size) to compute gradients. Batch 

size is adjusted to fit data in available GPU memory. Transformation functions are 

applied to video frames for data augmentation and generalization of trained model. 

5.2.2.4. Train/Test Settings for Spatial Stream  

This section summarizes train/test setting used for 2D variants of residual networks. As 

spatial stream is concerned with activity recognition from still video frames using 2D 

kernels, three frames are selected from each video in mini-batch of size 10. From each 

selected frame, 224 ×224 sub-image is randomly cropped. Random flipping is also 

applied for generalization of trained model as shown in Fig 5.6. Other train/ test settings 

are mentioned in the Table.5.2. Learning rate is initially set to 5e-4. learning rate 

scheduler ( ReduceLROnPlateau with patience=2) available with PyTorch is used, that 
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reduce learning rate when metric stops improving. For calculating loss, video level 

prediction is obtained by consensus among 16 frames.  

                            

                             
Figure 5.6 Illustrates image transformations: a) Original frames of Apply Eye Make-Up activity b) Transformed 

frames: Randomly cropped to 224×224 and flipped with probability 0.5 

5.2.2.5. Train/Test Settings for Spatio-Temporal Stream 

This section summarizes train/test setting used for evaluating 3D variants of residual 

network in spatio-temporal stream. Test settings are mentioned in the Table.5.2, 16 

frames are selected randomly from each video in mini-batch of size 25. To acquire more 

temporal information more number of frames are also experimented, with reduction in 

the spatial extent of each frame to fit data into available memory. The size of each sample 

is thus 3 channels×16 frames×112 pixels×112 pixels.  

Table 5.2 Training / Testing details for 2D residual network 

 
      

Table 5.3 Training / Testing details for 3D residual networks 

Parameter Value 
 

Input of spatial stream: Size of single frame =  3*224*224 , Random  crop method 

No. of frames (Training) : 3  frames, selected randomly from  1/3 of total number of frames of each 
video 

Mini-batch training: Batch size=10 

No. of epochs 50 
Iterations 9537/10=953.7 =954 iterations 

Initial learning rate 5e-4 

No. of frames(Testing) 16 frames selected with equal temporal spacing 

Accuracy measure Video level accuracy: combined class scores each of 19 frame clips 

b. 

a 
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Parameter Value 

Input of spatio-temp stream: Size of single frame = 3*112*112, Random crop  

No. of frames (Training) : 16 frames selected randomly, Temporal random crop, Sample size= 
3*16*112*112 

Mini-batch training: Batch size=25 

No. of epochs 50 

Iterations 9537/25=381.48 =382  iterations 

Initial learning rate 0.001 

No. of frames (Testing) Multiple 16 frame clips from each video 

Accuracy measure 1.Clip accuracy  2.Video level accuracy: combined class scores of all clips  
 

 
 
With all variants of network Stochastic Gradient Descent (SGD) with momentum is used 

to train the network. Cross-entropy losses and back propagation of gradients is used. 

Weight decay and momentum are 0.001 and 0.9 respectively. 

 Results and Discussion 

Section 5.2.3.1 presents results for 3D Residual networks and 5.2.3.2 represent results of 

2D residual networks on split-1 of UCF101 video dataset. Based on accuracy attained, 

best model from 2D CNNs and 3D CNNs is selected to work as Spatial-stream and Spatio-

temporal stream respectively. Hence for HMDB-51 and NTU RGB experiments were 

performed with only those depth variants of 2D and 3D CNN that provided best results 

on UCF-101. Results on HMDB-51 and NTU RGB are presented by Table 5.5. 

5.2.3.1. Results: 3D Residual CNN 

 
Fig.5.7 to 5.10 shows accuracy and loss curves over 50 epochs during training and testing 
for UCF-101. 
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a. Loss and accuracy curve for training set 
 

       

b. Loss and accuracy curve for testing set 
 

 Figure 5.7 Performance of 3D Resnet-18; Best prediction: [Epoch=42, Accuracy=78.18] 

 

   

a. Loss and accuracy curve for training set 

 

 
b. Loss and accuracy curve for testing set 

 
Figure 5.8 Performance of 3D Resnet-50; Best prediction: [Epoch=43, Accuracy=85.18%] 
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a. Loss and accuracy curve for training set 
 

          
b. Loss and accuracy curve for testing set 

Figure 5.9 Performance of 3D Resnet-101; Best prediction: [Epoch=41, Accuracy=83.34%] 

 
Validation accuracies of 3D ResNet-18, 50, 101, ResNext101 are 78.8, 85.18, 83.34, 86.1 

percent respectively. 3D ResNext-101 gives maximum accuracy of 86.1% (Clip 

accuracy) on UCF101. It should be noted that ResNet-50 outperforms ResNet-101 by 

around 2%, hence it cannot be directly assumed that deeper net always gives higher 

accuracy than less deep one. Thus, depth of network that fits best depends on problem at 

hand.   

 
 

a. Loss and accuracy curve for training set 
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b. Loss and accuracy curve for testing set 

Figure 5.10 Performance of 3D Resnext-101; Best prediction: [Epoch=41, Accuracy=86.1%] 

5.2.3.2. Results: 2D Residual CNN 

Similarly, performance of 2D networks is evaluated. ResNet -101 provides best 

predictions with accuracy of 82.1 percent. Loss and accuracy curve for both training and 

testing are shown in Fig.5.11. 

      

a. Loss and accuracy curve for training set 

    
b. Loss and accuracy curve for testing set 

Figure 5.11 Performance of 2D Resnet-101; Best prediction: [Epoch=31, Accuracy=82.23%] 

Results shows that among 3D nets ResNext provides maximum accuracy of 86.1 and 

ResNet101 provide maximum accuracy of 82.1% among 2D nets. Hence these two 

networks are selected for final inclusion into proposed dual stream model. During testing 

of 3D ResNext clip accuracy is used as performance measure. Class scores of different 

clips corresponding to each video are combined. Combined score is used to predict final 
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activity class label. Video level accuracy of 3D ResNext-101 is 88.23%. Finally, class 

scores generated by 3D ResNext-101and 2D ResNet-101 are combined using different 

fusion techniques. Using weighted product fusion accuracy of 92.89% was obtained on 

UCF-101 dataset as shown in Table 5.4. Dual stream model is then trained and tested 

using 3D ResNext101 and 2D ResNet101 architectures on HMDB-51 and NTU RGB 

benchmarks, results for the same are represented by Table 5.5. 

Table 5.4 Results of Dual-stream model on UCF split-01 

Stream Model UCF101 split-01(Recognition 
accuracy) 

CNN spatial (2D-CNN) ResNet-101 82.23% 
 

CNN spatio-temp (3D-CNN) ResNext-101 88.23% 
 

CNN fusion Sum fusion 88.67% 
 

CNN fusion Max fusion 91.56% 
 

CNN fusion Weighted Average fusion 92.04% 
 

CNN fusion Weighted Product fusion 92.89% 
 

 
Table 5.5 Results of Dual-stream model on HMDB-51 and NTU RGB Datasets 

HMDB-51 
Stream Model  (Recognition accuracy) 

CNN spatial (2D-CNN) ResNet-101 57.20% 
 

CNN spatio-temp (3D-CNN) ResNext-101 61.89% 
 

CNN fusion Sum fusion 62.32%  
CNN fusion Max fusion 62.79% 
CNN fusion Weighted Average fusion 63.87% 
CNN fusion Weighted Product fusion 64.13%  

NTU RGB dataset 
 Cross Subject Cross View 

CNN spatial ResNet-101 58.52% 61.22% 
CNN spatio-temp ResNext-101 60.66% 

 
 62.36% 

CNN fusion Sum fusion 61.78% 63.63% 
CNN fusion Max fusion 62.12% 63.53% 
CNN fusion Weighted Average fusion 62.01% 64.22% 
CNN fusion Weighted Product fusion 62.69% 64.89% 
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5.2.3.3. Comparison with State-of-Arts 

Proposed approach uses only RGB frames for activity recognition in multi-stream model; 

hence some of RGB based and multi-streams methods on UCF101 are considered for 

comparison. Comparison is summarized in Table.5.6 and presented using bar chart in 

figure 5.12. CNN spatial (proposed) outperforms spatial stream (VGGM-2048) in [84], [85] 

by good margin. CNN spatio-temp outperforms by ~ 7% (81.2 versus 88.23) when 

compared with temporal stream of [85] and by ~ 2% (86.25 versus 88.23) for [84]. 

Combined result of both streams CNN fusion   also outperforms combined results of [85] 

by ~5%.It also improves from 90.62 obtained by late fusion (VGG-16) in [84] by ~2%. It 

also outperforms three stream architecture with dynamic flows and IDT features 

implemented in [335] by good margin 

Table 5.6 Comparison of proposed Deep-dual stream model with state-of-art methods on on UCF-101 
dataset [210]. (*mean accuracy over three UCF splits) 

Method Input modality 
Recognition Accuracy 

(%) 
[50]Slow fusion RGB 65.4* 
[85] Spatial stream RGB 72.7 
[85] Temporal stream Optical flow 81.2 
[85] Fusion by average RGB + Optical flow 86.2 
[85] Fusion by SVM RGB + Optical flow 87.0 
[84] Spatial stream RGB 74.2 (VGGM-2048) 

82.61 (VGG-16) 
[84] Temporal stream Optical flow 82.34(VGGM-2048) 

86.25(VGG-16) 
[84] Late fusion RGB + Optical flow 85.94 VGGM-2048), 

90.62(VGG-16) 

[335] Decision fusion 
 

Dynamic Flow + RGB  84.93% (AlexNet) 
87.63% ( VGG 16) 

[335] Fusion by SVM Dynamic Flow + RGB + 
Optical Flow  

88.63%  (AlexNet) 
90.30% (VGG 16) 

[335] Fusion by SVM Dynamic Flow + RGB + 
Optical Flow +IDT-FV 

89.20% (AlexNet) 
 

[335] Fusion by SVM Dynamic Flow + RGB +IDT-
FV 

91.10% ( AlexNet) 

CNN spatial (ours) RGB 82.23 
CNN spatio-temp (ours) RGB 88.23 
CNN sum fusion (ours) RGB 88.67% 
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Figure 5.12 Comparision chart of the porposed model with state-of-the-art methods on UCF-101 dataset 

5.3. Human Activity Recognition using Convolutional Recurrent Neural 

Network (CRNN)  

A video consists of sequences of images or frames along the temporal dimension. 

Identification of activity can be simply accomplished by using 2D convolutions on 

images/ frames separately to learn activity representation. This approach doesn’t take 

motion encoded in frames into account. Identification of some activities is possible by 

using static frames but doesn’t hold true for other activities. Hence different approaches 

are taken into account for temporal information. Using some additional input modality 

like optical flow, dynamic images and binary motion images etc. is one way to do this. 

0

10

20

30

40

50

60

70

80

90

100

CNN max fusion (ours) RGB 91.56% 
 

CNN weighted average fusion 

(ours) 

RGB 
92.04% 

CNN weighted product fusion 

(ours) 
RGB 92.89% 

 



134 
 

Contribution of additional input modality to learn activity class labels cannot be ignored, 

but at the same time it needs additional pre- processing of video data to get desired input 

modality. Thus here, work idea is to get comparable results using only RGB frames and 

minimal training by using very deep residual models in contrast to shallow networks. In 

the proposed CRNN model we have combined features of CNN as well of RNN. Two 

variants of the proposed model is presented, one with the training from scratch and other 

using pre-trained ResNet 152 architecture. 

 The Proposed Method 

A video consists of sequences of images or frames along the temporal dimension. 

Identification of activity can be simply accomplished by using 2D convolutions on 

images/ frames separately to learn activity representation. This approach doesn’t take 

motion encoded in frames into account. Identification of some activities is possible by 

using static frames but doesn’t hold true for other activities. Hence different approaches 

are taken into account for temporal information. Using some additional input modality 

like optical flow, dynamic images and binary motion images etc. is one way to do this. 

Contribution of additional input modality to learn activity class labels cannot be ignored, 

but at the same time it needs additional pre- processing of video data to get desired input 

modality. Thus here, work idea is to get comparable results using only RGB frames and 

minimal training by using very deep residual models in contrast to shallow networks. In 

the proposed CRNN model we have combined features of CNN as well of RNN. Two 

variants of the proposed model is presented, one with the training from scratch and other 

using pre-trained ResNet 152 architecture. 
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5.3.1.1. Overview of CRNN Model 

In CRNN combination of 2D CNN with RNN or LSTM’s is used as shown in figure 5.12. 

First step involves to get frames from input. We have used UCF 101 dataset for training 

purposes. Generated frames over the time are feed to CNN. CNN encodes every 2D 

image X(t) into a 1D vector Z(t) by using equation 5.1. 

                                                                                                     (5.1) 

CNN acts as encoder which encodes all the information generated from input images into 

a single vector. CNN is trained from scratch having four convolutional layers with Relu 

as the activation function. Moreover, two pooling and two Fully Connected layers are 

also used. Then this generated vector is feed into RNN which acts as decoder. Which in 

return predicts the class of the action.  

 

Figure 5.13 Proposed CRNN model 

5.3.1.2. Overview of the ResNet CRNN Model 

In ResNet CRNN model there is combination of 2D CNN with RNN as shown in figure 

5.13. First step involves to get frames from input. We have used UCF 101 dataset for 

training purposes. Generated frames over the time are feed to CNN. CNN encodes every 

2D image X(t) into a 1D vector Z(t) by using equation 5.2. 

                                                                                                (5.2) 

CNN Encoder 
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CNN acts as encoder which encodes all the information generated from input images into 

a single vector. The training of the model takes place by using Resnet 152. ResNet is pre 

trained on large image datasets such as ImageNet [321]. The output from the trained 

model is used by RNN for decoding purpose. Which in return predicts the class of the 

action. The proposed model is shown below in figure 5.13. 

 

Figure 5.14 ResNet CRNN model 

ResNet 152 is having 152 layers in total and description of its layer is specified in Table 

5.7. Type of block used is specified by Column 2 of table 5.7. Column-1 named layers 

represent layer structure in order from top to bottom, first layer represented by CV1 with 

complete specification given by cell corresponding to each variant, ex. [7×7, NF=64, 

temporal stride=1, Spatial stride=2] and for other layers is specified in the other columns. 

Table 5.7 Layer specification for 2D ResNet 152. 

Residual Network ResNet 152 
Layer Name Configuration 
CV1 7x7, NF=64 Stride=2 
CV2_x NB=3, NF=64 
CV3_x NB=8, NF=128 
CV4_x NB=36, NF=256 
Cv5_x NB=3, NF=512 
Fully Connected FC Layer 

 

CNN Encoder 
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 Implementation and Experimental Results 

To demonstrate the proposed model we have conducted experimentation and training 

using UCF 101 [109] dataset. Section 5.3.2.1 consists of training and testing setting 

required for the proposed model. 

5.3.2.1. Network Training 

For training purposes, we have used all the three splits of UCF 101 dataset. For CRNN 

model we have selected 29 frames from each video in mini-batch of size 30. To acquire 

more temporal information, we used a greater number of frames; hence we reduced the 

spatial extent of each frame fit data into available memory. The size of each sample is 

thus 3 channels×256 frames×342. Total of 120 iterations are done with initial learning 

rate 1e-4. For validation purposes, we have selected 19 frames. For ResNet CRNN model 

we have selected 29 frames from each video in mini-batch of size 40. To acquire more 

temporal information, we used a greater number of frames, hence we reduced the spatial 

extent of each frame fit data into available memory. The size of each sample is thus 3 

channels×256 frames×342. Total of 120 iterations are done with initial learning rate 1e-

4.  

5.3.2.2. Results: CRNN 

Fig. 5.14 to Fig. 5.15 shows accuracy and loss curves over 120 epochs during training 

and testing. Validation accuracy of 2D CRNN is 68.32 percent with average validation 

loss as 3.26%. 
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Figure 5.15 Overall loss of 2D CRNN during Training and Testing 

 

Figure 5.16 Accuracy of 2D CRNN during Training and Testing. Best Epoch 107. 

5.3.2.3. Results: ResNet CRNN 

Fig. 5.16 to 5.17 shows accuracy and loss curves over 120 epochs during training and 

testing. Validation accuracy of ResNet CRNN is 90.32 percent with average validation 

loss as 0.94%. Results indicate that there is increase of accuracy almost 23 percent from 

CRNN model. As we have used ResNet 152 pre trained model which increase the 

accuracy as shown in Fig 5.17 below. 
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Figure 5.17 Overall loss of ResNet CRNN during Training and Testing 

 

Figure 5.18 Accuracy of ResNet CRNN during Training and Testing. Best Epoch 97. 

Summary of results for the proposed two models named CRNN and ResNet CRNN is 

presented in Table 5.8 below. 

  Table 5.8 Results of the proposed model on UCF 101 Dataset 

Model  Accuracy 
(in %) 

Loss 
(in %) 

Best Epoch 

CRNN  68.32 3.26 
 
107 

ResNet CRNN  90.32 
 
0.94 

 
97 



140 
 

5.3.2.4. Comparison with State-of-the-Art Methods 

Here we compare performance of the proposed model with various state-of-the-art methods based 

on UCF101 dataset. As we have used only single modality i.e. RGB Frames so we considered 

some of RGB based and other modality-based methods on UCF101 for comparison. Comparison 

is summarized in Table.5.9 and Figure 5.19.  Proposed ResNet CRNN outperforms spatial stream 

(VGGM-2048) in [90], [336], [84] by good margin. CRNN outperforms by ~ 3% (68.32 versus 

65.4) when compared with slow fusion of [90] and by ~ 2% (86.25 versus 88.23) for [336].  

Table 5.9 Comparison of the proposed CRNN model with state-of-the-art methods on UCF101 dataset. 
 

     Method Input modality 
Video Accuracy 

          (%) 

[90]Slow fusion RGB 65.4 
[336]Spatial stream RGB 72.7 
[336]Temporal stream Optical flow 81.2 
[336]Fusion by average RGB + Optical flow 86.2 
[336]Fusion by SVM RGB + Optical flow 87.0 
[84]Spatial stream RGB 74.2 (VGGM-2048) 

82.61 (VGG-16) 
[335]Decision fusion 
 

Dynamic Flow + 
RGB 

84.93% (AlexNet) 
87.63% ( VGG 16) 

CRNN (proposed) RGB 68.32 
ResNet CRNN (Proposed) RGB 90.32 

 

 

 Figure 5.19 Comparision chart of the porposed CRNN model with state-of-the-art methods on UCF-101 dataset 
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5.4. Conclusion 

In this chapter two different models for human activity recognition using deep residual 

networks has been presented. First model is a two stream model for activity recognition 

using very deep CNN with residual connection. Firstly, performance of 2D and 3D 

residual networks is evaluated at different depths. For 3D network stream fine-tuning of 

Kinetics pre-trained model for UCF101 is examined, that provided very good results with 

minimal training and only RGB frames as input modality. Results of residual CNN with 

3D convolutions clearly emphasize that deeper nets with residual connections have the 

potential to contribute to significant progress in fields related to various video analysis 

tasks. Result obtained using decision fusion is also comparable to state-of-the-art models 

that have even used additional input modality. And second model uses ResNet CRNN for 

activity recognition using very deep CNN with residual connections. We first evaluated 

performance of CRNN trained from scratch. The proposed methodology provides very 

good results with minimal training and only RGB frames as input modality, hence it 

addresses stated problem very well. Results of ResNet CRNN clearly emphasize that 

deeper nets with residual connections have the potential to contribute to significant 

progress in fields related to various video analysis tasks. Both the model perform better 

with pre-trained very deep residual network. After evaluation of both models we can see 

that the deep learning framework with residual networks gives better results in 

comparison to various state of the arts model with minimum training, by using only RGB 

modality as input.   
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