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Chapter 4 HUMAN ACTIVITY RECOGNITION USING 

ENLARGED TEMPORAL DIMENSION OF DEPTH MAP 

SEQUENCES 

4.1. Introduction 

An activity takes many seconds to complete, which makes it a spatiotemporal structure. 

Many contemporary techniques tried to learn activity representation using the 

convolutional neural network from such structures to recognize activities from videos. 

Nevertheless, these representations failed to learn complete activity because they utilized 

very few video frames for learning. In this work, we use raw depth sequences considering 

its capabilities to record geometric information of objects and apply proposed enlarged 

time dimension convolution to learn features. Due to these properties, depth sequences 

are more discriminatory and insensitive to lighting changes as compared to RGB video. 

As we use raw depth data, time to do pre-processing are also saved. The 3 dimensional 

space-time filters have been used over increased time dimension for feature learning. 

Experimental results demonstrated that by lengthening the temporal resolution over raw 

depth data, the accuracy of activity recognition has been improved significantly. We also 

studied the impact of different spatial resolution and concluded that accuracy stabilizes at 

larger spatial sizes. Many applications, in particular, intelligent surveillance, human robot 

interaction, video or image annotations, education, security, clinical applications, digital 

libraries, and video conferencing, are mainly based on human activity recognition. 

Human activities can be seen as a sequence of basic motions. For example, activities like 

brushing hair or hand waving can be described as a sequence of consecutive raising and 

lowering of the hand. The research in this field is mainly focussed on RGB videos and 

handcrafted features only even though none of the handcrafted features is considered 

universally best for all datasets [311].  
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Many techniques to represent motion dynamics and classify activities in videos have been 

studied in recent years because of its large number of real world applications. However, 

to recognize human activities in unconstrained videos is a great challenge due to some 

real conditions such as occlusions, different viewpoints, different action speeds, light 

variances, etc. [312]–[314]. In comparison with traditional RGB cameras, depth cameras 

allow us to obtain the traditional two-dimensional color video sequences as well as the 

depth sequences which are more insensitive to illumination changes [315]and more 

discriminating than color and texture features in many computer vision problems like 

segmentation, object detection, and activity recognition [316]. Many studies have been 

conducted on activity recognition which employed deep convolutional networks based on 

either RGB images or depth sequences but in most of these methods networks are feed 

on handcrafted features calculated from depth maps instead of raw depth maps.  

Convolutional networks have been achieved remarkable results in action recognition and 

classification task from images. The capability of deep convolution network to learn 

complex representations from large visual data datasets makes them suitable for video 

based activity recognition. However, there are two significant factors that influence video 

based activity recognition with deep convolutional network. First, the length of time 

dimension which helps to understand the dynamics in activity videos [317]. Second, large 

volume of training data to obtain optimum accuracy. Recent CNN approaches for activity 

recognition frequently extend CNN architectures for fixed images [318] to learn activity 

representations for short video intervals varying from 1 to 16 frames [50], [85], [319]. 

Nevertheless, typical human activities like hand-shaking and eating, as well as series of 

repetitive actions such as running and swimming often last some seconds and extend over 

tens or hundreds of video frames, small number of frame may not be enough to learn 

temporal structure of activity.  
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Successful state-of-the-art approaches for activity recognition in practice are deep 

convolution neural networks based motion representation [85] and motion-based video 

descriptors such as HOG and MBH [150], [320]. Although with large scale training 

datasets [321], [322]. CNNs demonstrates the power of learning visual representations 

[320], the existing methods experience the inability to concisely encode long-term motion 

dependencies because they generally emphasis on appearance and short-term motion.  

Unlike existing methods, in this work, we proposed enlarged temporal convolutions using 

3D filters to learn spatio-temporal feature from raw masked depth sequence. The 3D deep 

convolutional neural network based architecture [319] are considered and study 

framework for proposed method. The network framework works on raw depth sequences 

i.e no complex computations are required to be done to prepare input. The learned features 

encapsulate the complete temporal structure information at the cost of reduced spatial 

structure to manage the complexity of the model.  We investigate architecture with 

temporally extended convolutions. In other words, both spatial and time dimension 

convolution over the input video are taken by deep convolutional neural network with 

varied temporal resolution. Our method reports the state-of-the-art performance on NTU 

RGB-D[289], MSRAction3D[290] and MSRDailyActivity3D[126] dataset without using 

any handcrafted feature calculation and major preprocessing.   

This chapter evaluate the effect of different spatial and temporal resolution of input 

sequences to performance of feature learning with 3D based deep convolution neural 

network architecture.  In the remaining part of the chapter we described proposed method 

and network architectures in Section 4.2 and Section 4.3 presents experimental results 

and discussion  
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4.2. The Proposed Method 

In this section we present the proposed enlarged time dimension convolution over the 

network framework given in Fig. 4.1 to learn features from raw depth sequences. Next 

we specify the varied spatial and temporal input sizes that will be supplied to the network. 

Finally, we provide details on learning procedures. 

 Network Architecture 

The intuition behind the effectiveness of the network architecture is its simple and 

compact design which utilizes the ability of 3D convolutional filters to learn spatio-

temporal information more efficiently. Learning unique characteristic patterns with long-

term temporal structure for each activity with 3D filters from more accurate geometric 

information provided by depth sequences, makes the model represent high quality 

features and use them to perform activity recognition task.  A 3D deep architecture can 

be as deep as possible for large dataset provided the machine memory limit and 

computation affordability. In accordance with currently available computation power and 

memory, our network architecture contains 5 convolution layers, 5 pooling layers, two 

fully connected layers, and softmax classifier.  

 

 
Figure 4.1 3D Deep Convolutional Neural Network framework with 3D filters. (Input is normalized Depth sequences 
of fixed cuboid size. Convolution filters size is 3 x 3 x 3 in all the 5 layers and after every convolution max pooling is 

applied for downsampling)  
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The 3-dimensional deep network is responsible for spatiotemporal feature learning from 

masked depth maps. It consists of 5 three dimensional convolution layers with 64, 128, 

256, 256 and 256 filter response maps, each of which followed by a rectified linear unit 

(ReLU) activation and a max pooling layer. The rectified linear unit is a non-linear 

activation function which output 0 for negative input and raw output for positive input.  

This results in simple gradient computation and hence speed up the training. Max pooling 

layer helps to reduce the sample size which further reduce computation cost. The 

receptive fields of convolution kernel size 3 × 3 for deep network frameworks have been 

found best performer in 2D ConvNet [323]. Further, [319] empirically proves that for 3D 

ConvNets, 3 × 3 × 3 convolution kernel is the best choice. Hence, we fix the receptive 

field to 3 × 3 × 3 convolution kernel for our architecture. Size of max pooling filters are 

2 × 2 × 1 for first layer and 2 × 2 × 2 for rest of the layers. This means after every 

convolution layer all the three dimensions will be halved except the first where temporal 

size preserved. Finally, two fully connected linear transformation layers (FC) are applied 

and soft-max layer is used as the classifier. The vector dimensions of two fully connected 

linear transformation are 2048 and number of classes respectively. Padding of 1 pixel are 

used in all dimensions to keep the size of convolution outcome constant. Stride of filters 

for all three dimensions is 1 and 2 for convolution and pooling operations respectively. 

Dropout is used only for the first fully connected layer whereas ReLU layers are added 

after each fully connected layer. At the end of the network softmax layer is employed to 

produce class scores.  

 Network Input 

 
The network are feed with the cuboids of depth sequences which are first pre-processed 

and normalized to the same size for a particular dataset. The pre-processing of input 
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cuboid involves center crop, rescaling to normalize spatial and temporal dimension, and 

depth value normalization. In center crop each frame is cropped to center region. After 

that resize them to size 200 x 200 pixels. Next, randomly sample a cuboid of specific 

dimension from depth sequences in a dataset to normalize spatial and temporal dimension. 

Finally depth values of all pixels are normalized to 0-1 range by applying min-max 

normalization. The raw depth sequences from NTU-RGB+D dataset for sitting activity is 

depicted in Fig. 4.2(a). Fig. 4.2(b) show the frame after cropping to center region of size 

200 × 200 pixels. Further, on rescaling of the raw depth sequence to 58 × 58 pixels, it will 

look as shown in Fig. 4.2(c).  

To evaluate the effect of enlarged temporal convolutions, the network inputs with varied 

time resolution. The study has been conducted using orderly increased temporal 

resolution T ∈ {20, 40, 60} frames and spatial resolution {58 x 58, 71 x 71} pixels. The 

spatial resolution is kept small to manage the network complexity. As illustrated in Table 

4.1, for each of the five convolutional layers in 60f network the temporal resolution 

corresponds to 60, 30, 15, 7 and 3 frames. 

 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 4.2 (a) Raw depth map of size 512 x 424 pixels of sitting activity from NTU-RGB+D dataset [289] (b) Crop 
depth sequence of sitting activity to center region of size 200 x 200 pixels (c) Resize center crop sequence to 58 x 58 

pixels. 

 
In contrast, the temporal dimension of the 20f network shrinks more drastically to 20, 10, 

5, 2 and 1 frame at every convolutional layer. We believe that more complicated temporal 

structures can be learned by retaining the temporal resolution at higher convolutional 

layers. The spatiotemporal resolution of the outcomes of the last convolutional layers in 

case of {58 x 58} pixels is 1 × 1 × 1, 1 × 1 × 2 and 1 × 1 × 3 for the 20f, 40f and 60f 

networks respectively and for {71 x 71} pixels is 2 × 2 × 1, 2 × 2 × 2 and 2 × 2 × 3 for 

the 20f, 40f and 60f networks respectively.  

Table 4.1 Max pool filter sizes and spatial (HxW) and temporal (T) size of output corresponding to each convolution 

layer 

 

Layer Max Pool Filter 

size 

Size of Output 

H x W 

(58 x 58) 

H x W 

 (71 x 71) 

T 

(20) 

T 

(40) 

T 

(60) 

1 2 x 2 x 1 29 x 29 35 x 35 20 40 60 

2 2 x 2 x 2 14 x 14  18 x 18 10 20 30 

3 2 x 2 x 2 7 x 7  9 x 9 5 10 15 

4 2 x 2 x 2 3 x 3  4 x 4 2 5  7 

5 2 x 2 x 2 1 x 1  2 x 2  1 2  3 
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 Learning 

The network is trained on the training set of 20 subjects of NTU RGB-D dataset, which 

contain 40,320 videos. The stochastic gradient descent optimizer is used on mini-batches 

with negative log likelihood criterion to optimize the parameters. The negative log 

likelihood criterion requires normalized log-probabilities model output which is achieved 

with a softmax function. The mini-batch of 30 videos is used in case of 20f networks. 

However, the batch size is reduced to 15 videos and 10 videos for 40f and 60f networks 

respectively because of limitations of computing power. The model is trained with initial 

learning rate of 5 × 10−4 for learning from scratch. The learning rate is divided by the 

factor of 10−1 when testing accuracy stops increasing. The experimental setup uses 0.5 

dropout ratio and initialize weight decay with 5 × 10−4. 

4.3. Experimental Results and Discussion 

In this section, we evaluate the impact of increased spatial and temporal resolution on the 

feature learning. Afterwards, the results will be compared to the-state-of-art on three 

depth datasets for activity recognition: NTU-RGB+D, MSRAction3D and 

MSRDailyActivity3D dataset.  

The network is trained and tested on NTU-RGB+D, MSRAction3D and 

MSRDailyActivity3D dataset for activity recognition. The NTU-RGB+D dataset [289] 

were captured using Microsoft Kinect v2 sensors and provide depth sequences of two 

dimensional depth values in millimetres. It contains 57K videos for 60 activities classes 

performed by 40 distinct subjects and 80 viewpoints. The resolution of each depth frame 

is 512 × 424 pixels and 30 fps frame rate. Each subject performed each activity twice. 

Cross subject evaluation metric as mentioned in [324] is used in which the 40 subjects 
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are split into training and testing groups. Each group consists of 20 subjects. For this 

evaluation, the training and testing sets have 40,320 and 16,560 samples, respectively.  

The MSRAction3D dataset was collected with depth sensor. It consists of 20 activity 

types performed by 10 subjects. Every activity is performed by every subject 2 or 3 times. 

There are 567 depth sequences of resolution 640 x 240 pixels in total. The cross subject 

setting is used to evaluate the network where five subjects 1,3,5,7,9 are used for training 

and rest of the five 2,4,6,8,10 for testing. 

The third dataset is MSRDailyActivity3D dataset which was also recorded with an MS 

Kinect-V1 sensor. It contain 16 activities: drink, eat, walking, read book, write on paper, 

use laptop, cheer up, use vacuum cleaner, sit still, toss paper, play guitar, play game, lay 

down on sofa, sit down, stand up, and call cell phone. In this dataset ten different subjects 

perform each activity two times, once in standing and the other in sitting position. There 

are a total of 320 depth sequences in the dataset. 

The pre-processing of each video sequence is done in order to make network less 

insensitive to different subjects. NTU-RGB+D dataset provide masked depth sequences 

which means foreground information is removed but in case of MSRAction3D and 

MSRDailyActivity3d dataset foreground extraction has been done as a part of 

preprocessing. 

  Performance of Varied Spatial and Temporal Sizes on NTU-
RGB+D Dataset 

We evaluate the efficiency of the network and compare the recognition results to the state-

of-the-art approaches on the NTU-RGB+D dataset in Table 4.2. We adopt cross-subject 

method to evaluate performance on all activities in which we train the network against 

training subjects 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38 and 
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remaining subjects are reserved for testing. In order to evaluate the performance on 

different spatiotemporal size to performance of 3D deep CNN, we normalized the depth 

sequences of each activity to different temporal dimension sizes. The input cuboid of size 

71 x 71 x 20, 58 x 58 x 20, 58 x 58 x 40, 71 x 71 x 40, 58 x 58 x 60 and 71 x 71 x 40 are 

evaluated.  

Table 4.2 Performance of proposed approach on  NTU-RGB+D dataset for different spatial and temporal dimensions 
 

NTU-RGB+D dataset 

 Accuracy 

{58 x 58} {71 x 71} 

T = 20 52.63 % 56.31 % 

T = 40 59.48 % 61.23 % 

T = 60 64.03 % 64.57 % 

 

Table 4.2 reports the performance comparison at varying spatial and temporal resolution 

for depth sequences. From this table, we observe that the classification accuracy is 

improved with increased temporal sizes and believed that it can be further improved with 

more increase in temporal resolution. However, the gain from increasing spatial 

resolution is noticeable at lower values of temporal resolution, but accuracy stabilizes 

with larger spatial sizes since high temporal and spatial sizes learn the structure 

information of sequences completely. In Fig. 4.3, we plot the accuracy corresponding to 

different temporal size T ∈ {20, 40, 60} frames and at different spatial resolution {58 x 

58, 71 x 71} pixels. The possible reason for the trend can be seen in Fig. 4.4 which clearly 

depicts that short frame interval are not sufficient to distinguish among activities because 

of similarities in motions before actual activity takes place.  

Comparison to state-of-the-art methods: In Table 4.3 and Figure 4.5, classification 

accuracy on NTU-RGB+D dataset is compared with other existing techniques. It includes 

methods based on handcrafted feature extraction from depth maps, skeleton features and 

deep convolution neural network.  
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Figure 4.3 Results for NTU-RGB+D using network of varying temporal and spatial resolution 

Depth-map based features (HOG [325], Super normal vector [316], and HON4D [313]) 

have been evaluated on NTU-RGB+D dataset in [289]. These techniques performed 

poorly due to their susceptibility towards learning low level appearances and view-

dependent motion patterns. The performance of Skeletal-based features (Lie group [326], 

Skeletal Quads [327], and FTP Dynamic Skeletons [328]) are better because of view-

independent nature of 3D skeletal representation, but they are vulnerable to faults of the 

body tracker. In comparison to our method which involved nearly zero pre-processing, 

all the above mentioned methods can model short range activity only and even after pre-

processing depth data using extensive calculations and computations they performed 

poorly. 

 

Figure 4.4 Visualization of 6 frames extracted at every 10 frames of activity Drink (row 1), Drop (row 2) and Tear up 
paper (row 3). Our network can capture the long interval, whereas 20-frame networks fail to recognize such long-

term activities. 

20 frames  60 frames 
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In comparison to handcrafted features based methods deep learning method performs 

better. In paper [289], the inability of recurrent neural networks (RNN) model in finding 

long-term mutual dependencies of input makes it inefficient for long-range activities even 

after utilizing two layers of RNN and a lot of handcrafted engineering which is 

computationally expensive in comparison to our raw depth based enlarged temporal 

convolutions. Further, the long short term memory (LSTM) model has been employed in 

long-term context in [289]. The significant improvement in performance has been 

recorded but storage capacity is the major drawback. Another HBRNN-L [324] model 

had used five networks for the task of activity recognition whereas our method employed 

only one 3D network for the same task and outperforms. In other words, number of 

parameters are comparatively much less in number in our proposed model than HBRNN-

L. 

Table 4.3 Performance comparison of proposed method with other state-of-the-art methods on NTU-RGB+D dataset 
[289] 

Input Modality Method Accuracy  

Depth map based baseline 

method 

HOG [325] 32.24 % 

Super Normal Vector[316] 31.82 % 

HON4D [313] 30.56 % 

Skeleton-based baseline 

method 

Lie Group [326] 50.08 % 

Skeletal Quads [327] 38.62 % 

FTP Dynamic Skeletons [328] 60.23 % 

Skeleton-based deep 

learning method 

HBRNN-L [324] 59.07 % 

2 Layer RNN [289] 56.29 % 

2 Layer P-LSTM [289] 62.93 % 

Depth based deep learning 

method 

Ours (3D Deep CNN + 60f) 64.57 % 
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Figure 4.5 Result comparison chart of proposed method with other state-of-the-art methods on NTU-RGB+D dataset 

 

A 3D deep architecture can be as deep as possible for large dataset provided the machine 

memory limit and computation affordability. Our proposed network architecture has been 

designed in accordance with currently available computation power and memory. In the 

proposed enlarged time dimension 3D deep model, though we reduce the spatial 

resolution, we are able to achieve the-state-of-art results on NTU-RGB+D dataset by 

lengthening the network to 60 frames. Our results are obtained when input to 3D deep 

CNN are cuboid of size 71 x 71 x 60. The activity recognition accuracy is 64.57%.   

 Performance of Varied Spatial and Temporal Sizes on 
MSRAction3D Dataset. 

Here, again cross-subject evaluation metric is utilized to examine the performance of 

network on all activities. Subject 1, 3, 5, 7, 9 are taken as training subjects and remaining 

subjects are used for testing purpose. The length of all the videos in this dataset is not 

long enough to perform temporal convolution of 60f. Therefore, the input depth 
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sequences of sizes 58 x 58 x 20, 71 x 71 x 20, 58 x 58 x 40, and 71 x 71 x 40 are only 

analysed. The performance comparison at different spatial and temporal resolution is 

presented in Table 4.4 and observed improvement in classification accuracy with 

increased temporal sizes.  

Table 4.4 Performance of proposed method on MSRAction3D dataset for different spatial and temporal dimensions 

 
MSRAction 3D dataset 

 Accuracy 

{58 x 58} {71 x 71} 

T = 20 83.29 % 86.5 % 

T = 40 88.47 % 90 % 

 
Comparison to state-of-the-art methods: Existing methods [126], [313], [323], [329]–

[331] involved extensive hand engineered feature computation to fulfil the task of activity 

recognition. However, our method feed network with raw depth maps and as shown in 

Table 4.5 and Figure 4.6, the accuracy is comparable to the state-of-the-art methods 

without using any handcrafted feature. [94] performed inferior to our method may be due 

to few convolutions layers that too with convolution kernel size 6 x 6 x 7 and 5 x 5 x 5 

for layer 1 and layer 2 respectively which are inefficient than 3 x 3 x 3 filter size [319] 

Table 4.5 Performance comparison of proposed method with other state-of-the-art methods on MSRAction3D dataset 
[290] 

MSRAction3D 

Method Accuracy  

DCSF [325] 89.30 % 

Bag of 3D points [126] 74.70 % 

ROPs [323] 86.50 % 

HON4D [313] 85.85 % 

DMA+DMH+HOG [330] 90.45 % 

DMMs-based GLAC [331] 90.48 % 

3DDCNN [94] 88% 

Ours (3D deep CNN+40f) 90 % 
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Figure 4.6 Performace comparison chart of proposed method with other state-of-the-art methods on MSRAction3D 
dataset 

 Performance of Varied Spatial and Temporal Sizes on 
MSRDailyActivity3D Dataset 

Network as discussed in section 4.2.1 is evaluated for cross subject metric where subject 

1, 3, 5, 7, 9 are used for training and testing is done on subject 2, 4, 6, 8, 10. Again due to 

insufficient depth sequence length for some videos only 58 x 58 x 20, 71 x 71 x 20, 58 x 

58 x 40, and 71 x 71 x 40 input resolutions are used. Table 4.6 demonstrate the results 

and show significant increase in accuracy with increase in the spatial and temporal 

resolution. 

Table 4.6 Performance MSRDailyActivity3D dataset on different spatial and temporal dimensions 

 
MSRDailyActivity3D dataset 

 Accuracy 

{58 x 58} {71 x 71} 

T = 20 73.61 % 77.5 % 

T = 40 81.3 % 83.45 % 

 
Comparison to state-of-the-art methods: Again the [313], [327], [332], [91] perform 

poorly despite of sophisticated feature calculations may be due to incomplete feature 

learning from few video frames. Also, in comparison with three ConvNets of [31] very 
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few parameters are there in the proposed network, which makes it computationally 

efficient. Table 4.7 and Figure 4.7 shows that the proposed method outperforms state-of-

the-art methods. It has been seen that the proposed network has been trained on raw depth 

sequences instead of handcrafted features calculated from depth maps and still perform 

better than other methods. It was found that retaining high temporal and spatial resolution 

helped in learning the complex dynamics of the video more accurately. 

Table 4.7  Performance comparison of the proposed method with other state-of-the-art  methods on 
MSRDailyActivity3D dataset [126] 

MSRDailyActivity3D Dataset 

Method Accuracy  

LOP [327] 42.50 % 

Depth Motion Maps [332] 43.13 % 

Local HON4D [313] 80.75 % 

WHDMM + 3Convnet [91] 75.62 % 

Proposed (3D deep CNN+60f) 83.45 % 

 

 
Figure 4.7 Performace comparison chart of proposed method with other state-of-the-art methods on 

MSRDailyActivity3D dataset   

4.4. Conclusion 

In this chapter, we investigate the influence of enlarged time dimension convolution to 

the performance of feature learning with 3D deep convolution neural networkss from raw 
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depth sequences. The results show that it improves the performance significantly by 

learning complete activity representation from geometric information recorded in depth 

sequences. We also obtain state-of-the-art performance using space time filters over a 

large number of depth maps from a depth sequence on NTU-RGB+D, MSRAction3D and 

MSRDailyActivity3D activity recognition datasets. In future, we will further increase the 

temporal length to 100f for large dataset and fuse the results with the results obtained 

from different handcrafted feature which has been already shown best result for the 

corresponding dataset such as depth motion maps and skeleton features to further increase 

the performance. 
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