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Chapter 3 MULTI-VIEW HUMAN ACTIVITY 

RECOGNITION SYSTEM USING MULTIPLE FEATURES FOR 

VIDEO SURVEILLANCE SYSTEM 

3.1. Introduction. 

The recognition of human activities is a popular field of computer vision in the field of 

research. It builds on many applications, such as security, surveillance, biomechanical 

clinical applications, human interaction between manipulators, entertainment, education, 

training, digital libraries, video or image annotation, video conferencing, and Model 

coding. Awareness activities provide important clues to human behavioural analysis 

techniques. Although there is a lot of work that has been carried out in the recognition of 

activities in the past few years, it is still an open and challenging issue. The various issues 

and challenges involved in automatic human recognition from video sequences are as 

follows: 

• Trajectory activity is different from different viewing directions, some body 

parts (partial hand, lower leg, body part, etc.), block due to changes made in the 

view. 

• Other common problems include fixed or moving cameras, lenses with changes 

in moving or clutter backgrounds, changes in light point of view, size, starting and 

ending states, changes in appearance on the human rights of individuals and 

wipes, etc. Problems and circumstances make the recognition of human activities 

a challenging task. 

• Real 3D environments where human activities are performed and cameras 

capture only real scenes of 2D projections. Therefore, the activities carried out by 

the visual analysis have only one projected actual activity on the image plane. This 
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predicted activity depends on the point of view, does not include all the 

information, the activities performed. 

To overcome these problems, the idea of using information through the cameras placed 

at different views has been used [293]. Use of information obtained from multiple 

cameras at multiple views provides efficient analysis of actual human activities. Few 

approaches have been developed by introducing view invariant representation for 

multiple views [293], [294]. Exploring the information from multiple views of a scene 

improves recognition accuracy of human activities by extracting features from different 

2D image views and achieves view invariance. The ultimate goal is to be able to perform 

human activity recognition applicable for video surveillance and designing an automatic 

HAR (Human activity recognition) system which is view-invariant robust and reliable. 

 We contribute to this field, by proposing an intelligent system for multi-view 

human activity recognition in videos, whose framework is given below: 

(i) Detecting and locating people by background subtraction approach. 

(ii) Extracting Contour based distance signal feature, optical flow-based motion 

feature, and uniform rotation local binary patterns. 

(iii) Modelling activities by using a set of hidden Markov models (HMMs). 

Most of the work on activity recognition are view dependent and deal with recognition 

from one fixed view. The task of recognizing people’s activities from different views is 

still unsolved.  

In this chapter, we have combined contour-based distance signal feature, optical 

feature and uniform rotation invariant local binary patterns (LBP) feature to model human 

activities to solve above mentioned problems. At first, statistical background model based 

approach is used for background subtraction. In the second step, contour based distance 

signal features, optical flow based motion features, and uniform rotation invariant local 
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binary patterns (LBP) are extracted. The contour based distance signal features find the 

different key poses for human activities such as bending, standing, sitting etc. Optical 

flow based motion features helps in representing the approximation of the moving 

direction of the human body and can be effectively characterized by motion rather than 

other cues, such as color, depth, and spatial features e.g. walking running, jogging, boxing 

etc. The uniform rotation invariant local binary patterns (LBP) feature provides view-

independent analysis of human activities and it possess good discriminating ability, 

therefore they are better suited for distinguishing different activities. Finally, in a third 

step, the activities are modelled by using a set of HMMs. The use of a set of HMMs for 

modelling the activities provides view-invariant operation, deal with time-sequential data 

and also provide time-scale invariability in activity recognition. This overall approach has 

never been used before in literature for human activity recognition. 

To demonstrate the effectiveness and robustness of the proposed method, we have 

conducted our experiments on our own viewpoint dataset and four representatives 

publicly available human activity recognition video datasets–KTH action recognition 

dataset [295], i3DPost multi-view dataset [296], MSR view-point action dataset [297] and 

WVU multi-view human action recognition dataset [298]. The proposed system has been 

compared with four existing human activity recognition methods proposed by Qian et al. 

[29], Sadeket al.[299], Ikizler-Cinbis & Sclaroff [300], and Ahmad et al. [301]. For 

comparison the proposed methods with other standard methods the confusion matrix and 

recognition accuracy (in percentage) evaluation parameters have been used. Experimental 

results on the above mentioned five datasets illustrate the efficiency and the effectiveness 

of the proposed method. 
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3.2. The Proposed Method 

The proposed system for recognition of human activity is shown in Fig. 3.1. The forepart 

from the frame is extracted by using the concept of statistical background modelling. 

From the foreground image, we estimated contour-based distance signal feature which is 

further processed on the basis of the centre of mass (CM) as per the same silhouette image. 

These features are used to find out the different human key poses (such as standing, 

bending, sitting etc.) for activity recognition. The velocity of a different activity (running, 

jogging, walking, etc.) is estimated by using optical flow which is used as motion features 

from the foreground image. We use uniform rotation invariant local binary patterns (LBP) 

for extracting the feature from the foreground image which provides view invariant 

recognition of multi-view human activities.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Block diagram of the proposed method 

             

The combined features (Contour based distance signal feature, optical feature based 

motion feature and uniform rotation invariant local binary patterns (LBP) feature are then 

feed to a hidden Markov model (HMM). In HMM based human activity modelling, 
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matching of an unknown sequence with a model is done through the calculation of the 

probability and maximum likelihood estimation that hidden Markov model (HMMs) 

could generate the particular unknown sequence. 

The block diagram of the proposed method is shown in Figure 3.1. 

Algorithm: Multi-View Recognition System for Human Activity Based on Multiple Features for Video 
Surveillance System 

Input: Video captured from multiple camera 

Output: Classification of input video sequence in recognised activity 

1. Accumulate all frames staring from sFrame to eFrame in an array ( , )i    

2. for each frame in the array ( , )i    

2.1.  Perform Steps 2.1.1 – 2.1.6 for pre-processing of the frames 

2.1.1. Calculate variance 2  using equation – 3.1 

2.1.2. Covariance between frames α and β can be calculated using equation – 3.2.       
2.1.3. The learning based on the variance and covariance to estimate absolute and relative 

changes in a pixel’s intensity is stored in a reference image ( , )R   . 

2.1.4. Calculate difference between subsequent video frames and the reference image. 
2.1.5. Perform Binary thresholding on the image obtained from Step-5, to obtain the binary – 

segmented image 
2.1.6. Calculate updated background reference model new R ( , )   using equation – 3.3. 

2.2.  Perform Steps 2.2.1 – 2.2.5 for calculating Distance Signal Feature 
2.2.1. Calculate silhouette A={ a1, a2… an} of the binary image obtained in the previous step 
2.2.2. Now we calculate centre of mass Cm = ( x , y ) using equation – 3.4. 

2.2.3. Now we calculate distance signal D= {d1, d2, d3……dn} using equation 3.5.   
2.2.4. To obtain the scale invariance, Fix the distance signal D and sub-sample the feature size 

to a constant length L using equation –3.6 
2.2.5. Value obtained can be normalized using equation – 3.7 

2.3.  Perform Steps 2.3.1 – 2.3.2 for calculating Optical Flow Feature 

2.3.1. With the help of calculate normalized optical flow ( , )nxv x t  at any instance of time 

using equation – 8  and  equation – 3.9. 
2.3.2. Calculated absolute optical flow of the activity boundary at any time K using value 

obtained in step – 2.3.1, using equation – 3.10. 
2.4.  Perform Steps 2.4.1 – 2.4.2 for calculating LBP feature. 

2.4.1. Calculate overall feature vector 
,P RLBP  using equation – 3.11. 

2.4.2. Now Calculate Uniform LBP feature using equation 3.14. 
3. Let I={I1, I2,..., IT}, be the time sequential frames and ƒi  is the feature vector, generated using steps – 

2,  from each input frame Ii, where ƒi Є Rn,  (i = 1, 2,…,T  & n  is  the  dimension  of  the  feature  space 
Rn). 
3.1.  Generate a hidden Markov model(HMM) to transform ƒi  into  a symbol  Oi. 
3.2.  Generate Markov chain of symbol sequence O = {O1, O2,…,OT}  from the model. 

4. Now optimise the model parameter (A, B, π) to maximize the probability of observation sequence  
4.1.  Calculate maximum likelihood estimation P(O/  λ) using equation – 3.15 to obtain the 

recognition result. 
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 Preprocessing 

After receiving videos from multiple cameras from different views, In the pre-processing 

steps, we extract foreground from the background. We then define the boundary from the 

foreground image sequence. Briefly, these are explained in the next subsection: 

 Background Subtraction 

The Statistical model for the background is constructed by learning the variance and 

covariance of pixels in a video sequence. The variance is used to model the absolute 

variations in a pixel’s statistics while covariance is used to model the relative variations. 

Based on this model, a reference image for the background is created. Frame differencing 

and thresholding is performed to obtain the segmented video frames. The steps of the 

algorithm used are given as follows: 

Step 1: The frames, starting from index sFrame and ending at index eFrame, are 

accumulated in array ( , )i   . The method learns the variance and covariance of each pixel 

as its model of the background. If    is the mean of for all  i  samples where 0 i eFrame 

then variance 2 is given as follows:  

2-12

0

1
  ( )

eFrame

i ieFrame 


 
 
 

 
                              (3.1) 

The covariance between frames α and β is calculated to estimate the variation in a pixel’s 

intensity relative to the other pixels.       

1 1 1

0 0 0

1 1 1
cov( , )

  

  

          
    


eFrame eFrame eFrame

i ii j
i i jeFrame eFrame eFrame

   
  (3.2)       

Step 2: The learning based on the variance and covariance to estimate absolute and 

relative changes in a pixel’s intensity is stored in a reference image ( , )R   . 
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Step 3: For object segmentation, the subsequent video frames are differenced with the 

reference image and binary thresholding is performed for obtaining grayscale segmented 

frame.     

Step 4: A temporal updation of the background model is needed in order to adapt the 

changes in background and in lighting conditions. A counter  can be used to track when 

to update background model. When the value of counter exceeds a threshold number , 

the background model ( , )R   is updated. The background model is updated using the 

following equation: 

new R ( , ) R( , )  (1 ) ( , )   frame       * *
                              (3.3) 

Where  is the updating speed, ( , )frame    is the current video frame and new R ( , )  is the 

updated background reference model. Figure 3.2 shows the threshold segmented image 

obtained after background substraction for some activities of our test dataset. 

      
Running Walking Sitting 

Figure 3.2: Threshold segmented image obtained after background sabstraction for running, walking, and sitting activities 
of KTH, i3DPost and own dataset. 

 Feature Extraction 

We use the distance signal feature, local binary pattern (LBP) and optical flow based 

motion feature for activities representation and classification. The foreground image 

sequence (which is obtained in section 3.2.1) is used to extract the distance signal feature, 

local binary pattern (LBP) and motion flow features. 
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i. Distance Signal Feature 

In this section, we find out the distance signal feature using contour points of the 

silhouette for different key poses (sitting, standing, sleeping, etc.). We obtained a binary 

silhouette in section 3.2.2 by human silhouette extraction techniques, e.g. background 

subtraction. We have chosen Dedeog˘lu et al. [302] approach for contour-based distance 

signal feature extraction (see Fig. 3.2) for different key poses (sitting, sleeping etc.), 

which is described briefly in the following. 

 

Figure 3.3 Sequence of key poses of several activities (walking, jogging, running) to obtain contour based distance 
feature in some selected frames (KTHDB). [285] 

At first, the contour points A= {a1,a2… an} of the silhouette need to be obtained. For this 

purpose, contour extraction is applied on the border using Suzuki et al. [303] approach. 

Secondly, the centre of mass Cm = ( x , y ) of the silhouette’s contour points is calculated 

with respect to the n number of points: 

1

n

w
w

x
x

n



 ,  1 (4)

n

w
w

y
y

n



       (3.4) 

 

Figure 3.4 Activity boundary definitions [301] 

Thirdly, the distance signal D= {d1, d2, d3……dn} is generated by determining the 

Euclidean distance between each contour point and the centre of mass (see fig 3.3.). 
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Contour points should be considered always in the same order. For instance, the set of 

points can start at the most left point with equal y-axis value as the centre of mass, and 

follow a clockwise order. 

i m id C a  ,  [1..... ] (5)i n           (3.5) 

Finally, scale-invariance is obtained by fixing the size of the distance signal D, sub-

sampling the feature size to a constant length L and normalizing its values to unit sum. 

[ ] *
n

D i D i
L

    
,  [1..... ] (6)i L    (3.6) 
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

 ,  [1..... ] (7)i L          (3.7) 

ii. Optical Flow Features (Motion Features) 

In this chapter, we used optical flow to describe motion feature. From the results of the 

background subtraction, we obtain a region of interest (ROI) whose example is showed 

in Figure2 &3. Then, we compute the optical flow based motion feature using method 

proposed in [301], [304] which is described briefly as follows: 

 The following notations are used in to describe the concepts of optical flow: 

[ , ,1]T

x y
v v v at pixel ( , )x y  

Velocity gradient: 
22

x yv v v     ,  

intensity gradient : 3 ( , , )T
x y tI I I I  ,  

and motion tensor : 3 3 3( ) *( )T
I IJ p K I I     

where IK is smoothing kernel  

Then the optical flow function is given by 

2
3 3( ( ) ) (8)T

optical flow I

video

E v J v v dxdydt             (3.8) 
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Where   is the smoothing constant and
22 2

3 3 3x yv v v     . 
2

3v minimizes the 

optical flow field ( , ) ( ( , ), ( , ))x yv x t v x t v x t using Euler–Lagrange equations [305]. 

 

           (a)                                                                   (b) 

 

                                       (c)                                                                     (d) 

Figure 3.5 Optical flow velocity of several activities in some selected frames (KTHDB) [285]. (a) Boxing; (b) hand 
clapping; (c) hand waving; (d) jogging 

 

 
                    (a)                                                (b)                                               (c) 

Figure 3.6 Optical flow motion features extraction. (a) Optical flow show in the quadrant regions. (b) The small 
circle represents the Centre of Mass for (a). (c) Four quadrant blocks from the Centre of Mass 

 

Fig. 3.4 shows the optical flow velocity overlapping on the image of several activities. 

For example, when the person performs the “hand waving”, motion only involves the 

hand. Similarly, when the person conducts the “running”, then motion involves the whole 

body. For consistency of further analysis, the optical flow vector are normalized at any 

instant of time, by 

v(i+1 j) v(i+1, 

v(i, j) v(i, j+1) 

Image 
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where ( , )nxv x t  represents the normalized optical flow (the x -component or y -

component velocity)in the spatial activity boundary. Moreover, .maxxv and .minxv  represent 

the maximum and minimum motion of ( , )x av x t  where a  is the spatial boundary of 

an activity. Similarly, .maxyv and .minyv  represent the maximum and minimum motion of

( , )y av x t  . In order to extract the features from normalized flow, we partition the 

spatial activity boundary into four quad-rant blocks, ( )S k of equal size, as shown in Fig. 

3.5. The four quadrants are described by (i)  ( , ), ( , )w wx x y y x y   (ii) 

 ( , ), ( , )w wx y y x x y  (iii)  ( , ), ( , )w wx x y x y y  and (iv) (( , ) , ( , )w wx y x x y y 

(see figure 3). The point ( , )x y denotes the centre of mass, wx is the width, and wy  is the 

height of the block of the current silhouette image. Therefore, the optical flow feature 

vectors are extracted at each block with Sn number of pixels using 
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(3.10) 

Here, the vector ,kl tv represents absolute optical flow of the activity boundary at any time, 

k denotes the number of blocks, pix represents the nonzero pixel value in the spatial 

boundary, and Sn is the number of motion pixels at any block. 
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iii. Uniform Rotation Invariant Local Binary Patterns (LBP) Based Feature 

Extraction 

In this chapter, we extract the Uniform rotation invariant local binary patterns (LBP) 

features from the background-subtracted video, which is obtained in section 3.3.2. 

Uniform rotation invariant local binary patterns (LBP) provide view invariant recognition 

of multi-view human activities. Using uniform patterns instead of all the possible patterns 

has produced better recognition results for human activity. The basic description of local 

binary patterns (LBP) is given below. 

Local Binary Patterns (LBP) 

A local binary pattern (LBP) feature can be constructed for a specific circular pixel 

neighbourhood of radius R. The intensities of the P sample pixel points are compared in 

the circular neighbourhood with the centre pixel in clockwise or anticlockwise direction 

(see Fig. 3.6).  

 

(P=4, R=1)                         (P=8, R=1) 

 

(P=12, R=2)                       (P=16, R=2) 

Figure 3.7 Circularly symmetric neighbour sets for different (P, R) (here anti-clockwise) . 
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After extracting LBP of each sample point in the image, value of each pixel in the image 

is replaced by a binary pattern. With the help of these considerations, the overall feature 

vector of the whole image, denoted by ,P RLBP , is given as below: 

                                 
1

,
0

( , ) ( )2
P

P
P R P c

P

LBP x y s g g




      (3.11) 

Where (x,y) is the location of the centre pixel, gc represent intensity of centre pixel, gp 

represent intensity of neighbourhood pixel and ( )s u is defined as 

                                   
1,  0

( )
0,  0

u
s u

u

 
   

                 (3.12) 

Now, the feature vector ,P RLBP  of the image is a histogram of the LBP of different 

pixels in the image. The starting size of the histogram is 2P because each possible LBP 

has been assigned a separate bin. Suppose, there are M regions in an image, then all 

histograms can be merged into one histogram of size Mꞏ 2P . 

Rotation Invariance 

 Several modified versions of LBP [306] have been proposed for achieving rotation 

invariance and reducing the histogram dimension of the LBP. When the image is rotated, 

the gray value gp will correspondingly move along the perimeter of the circle, so different 

,P RLBP may be computed. To remove the effect of rotation, the modified version with 

rotation invariance is defined as follows  

 , ,( , ) min ( , ) | 0,1,...., 1ri
P R P RLBP x y ROR LBP i i R      (3.13) 

Where ,( , )P RROR LBP i performs a circular bit-wise right shift on the R-bit number ,P RLBP  

for i times. ,
ri

P RLBP can have 36 different values when R=8, and the histogram dimension 

of ,
ri

P RLBP  over an image region is 36. 
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Uniform Patterns 

The uniform LBP are those LBP which have very few spatial transitions. Formally, 

uniform LBP have maximum two circular transitions between 0 and 1. For example, 

patterns 00000001 and 11111011 have only one and two transitions between 0 and 1 

respectively, therefore they are uniform patterns. 

Uniform Local Binary Patterns (LBP) for Feature Extraction 

The rotation invariant uniform local binary patterns (LBP) for feature extraction is 

defined as  

1

,2
0,

( ),   U(LBP ) 2

1,            

P

P C P Rriu
PP R

s g g if
LBP

P otherwise






 









 (3.14) 

Where 
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, 1 0 1
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U LBP s g g s g g s g g s g g
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 


         is a rotation 

invariant operator with uniform patterns having at most two transitions between 0-1 bits. 

In a circularly symmetric neighbourhood of P pixels, P+1 uniform pattern can be found. 

Each pattern assigns a unique label to each pixel.  

and 
1,   0

( )
0,   0

u
s u

u

 
   

(given in equation 3.12)      

cg = centre pixel of background subtraction image (which is obtained in section 3.2.2) 

and pg = neighbourhood pixel of background subtraction image (which is obtained in 

section 3.2.2). 

 Activity Modeling and Classification using Hidden Markov Model 
(HMM) 

Hidden Markov model (HMM) is a stochastic state-space transit model which is robust 

against temporal, spatial & view-point variations. Moreover, HMM can deal with time-

sequential data and also provide time-scale invariability in recognition. Hence HMM is 
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mostly used as classifier for activity recognition [307], [308]. In this chapter, we have 

used HMM for modeling and testing activities.  The detailed explanation of the HMM 

can be found in [309]. Before modeling human activity, we review the basic hidden 

Markov model (HMM) notations as follows: 

 T = length of the observation sequence. 

 Q = {q1, q2,…,qN} – set of N states of model. 

 N = number of states in the model. 

 V = {v1,v2,…..,vM} –  set of M output symbols. 

 A  =  {aij},  is  the  N×N  transition  matrix  whose elements  aij =  P(qt+1= Sj׀qt = 

Si)  are transition  probabilities. 

 B  =  {bj(Ok)}  is  the  N×M  emission  matrix  of  emitting symbol, where {bj(Ok)= 

P(Ok= vkqt = Sj)} is the probability of emitting vk at time t by state  Sj. 

 π = {πi׀πi= P (S1= qi}, Initial state probability. 

 λ = {A, B, π} complete parameter set of the model. 

Using this model, transitions are described as follows: 

 S = {St}, t = 1, 2,…, T: State St  is  the  tth  state (unobservable). 

 O= {O1, O2,…,OT }: Observed symbol sequence. 

The basic concept of hidden Markov model (HMMs) is shown in Fig.3.7.There is three 

states in this example.  Each state stochastically outputs a symbol vk with a probability 

ofbj(k). If there are M symbols, bj(k) becomes a matrix of N×M. The hidden Markov 

model (HMMs) outputs the symbol sequence O = {O1, O2,…….,OT }from time 1 to T.  

We can observe the symbol sequence but cannot the HMM states. The initial state of 

HMM is also determined stochastically by the initial state probability π. A complete 

HMM is defined by λ = {A, B, π}. 
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Figure 3.8 Left–right HMM structure for an activity 

There are two steps of activity recognition using HMM: Learning and Training. 

Step 1: Learning of HMM 

We learn the different features (which are obtained in section 3.2.3) using hidden Markov 

model (HMMs). The  input  to  the  feature  extraction  stage  are  the time-sequential 

video frames I = {I1, I2,..., IT}. The feature  extraction  stage  extract  feature  vector  ƒi 

from  each  input  frame  Ii  where  ƒi Є Rn,  (i = 1, 2,…,T  &n  is  the  dimension  of  the  

feature  space Rn).In  the  learning  phase,  hidden Markov model (HMMs)  is  generated 

which  transforms  each  feature  vector  ƒi  into  a symbol  Oi.  Thus a Markov chain of 

symbol sequence O = {O1, O2,…,OT} are generated from the model. 

Step 2: Training of HMM 

Once  the  hidden Markov model (HMMs)  learning  phase  is  completed  it  is trained  

to  recognize  the  human  activities into different classes.  In the training phase, the model 

parameters (A, B, π) are optimized to maximize the probability of observation sequence 

P (O/λ).The forward–backward algorithm or the Viterbi algorithm can be used to classify 

the activity and find the P(O/ λ). 
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    P O /    arg max P i / O  
i

              (for i = 1 to T)                  (15) 

Where P(O/  λ) is called the maximum likelihood estimation of the model parameters.  

This Maximum likelihood is selected as the recognition result. O represents the unknown 

feature vector sequence of an unknown activity and i  represents the set of all known 

activity. 

3.3. Experimental Results 

This section deals with the various concepts for recognition of human activities based 

on hidden Markov model (HMM), Moreover implementation is done on image sequences 

of different activities in different viewing directions. We have presented our own 

viewpoint dataset result and also for four publicly available video datasets–KTH action 

recognition dataset [285], i3DPost multi-view dataset[286], MSR view-point action 

dataset [310] and WVU multi-view human action recognition dataset[288] for the purpose 

of activity recognition. These datasets have the different rotation angle views of the 

images. The workstation Open CV 2.4.9 environment with Intel® Core™ i3 2.53 GHz 

having 4 GB RAM is used for experimentation purpose. 

As described in Section 3.2, first of all the training video is taken then background 

subtraction is applied. After that, the discussed approaches have been implemented for 

extracting features using contour-based distance signal feature, optical flow-based motion 

feature and uniform rotation invariant LBP. Lastly, hidden Markov model (HMMs) are 

used for classification of different activities in videos. At last we have discussed five case 

studies consisting of our own viewpoint dataset, KTH action recognition dataset [285], 

i3DPost multi-view dataset [286], MSR view-point action dataset [310] and WVU multi-

view human action recognition dataset [288]. In all case studies, we have compared and 

tested the proposed method with the other standard methods proposed by Sadek et al. 
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[299], Qianet al. [29], Ikizler-Cinbis &S claroff [300], and Ahmad et al. [301]. For the 

quantitative analysis of the proposed models, various performance measures as discussed 

in section 2.6 have been used. The proposed framework has been compared with different 

state of the arts frameworks in terms of accuracy, error, recall, specificity, precision and 

f-score. 

 Experiment 1 

Robustness of the proposed method is demonstrated in this very first experiment, we 

demonstrate the robustness of the proposed method for different rotational movement 

activities. Testing of the proposed method for activity recognition from a different 

perspective from our own activity database is done. 

Results for own database is shown in the fig. 3.8. This database contains the static human 

activities of the video i.e. seating and 6 dynamic activities namely walking, running, 

jogging, boxing, slap, jogging in different directions. These videos are taken in a 

substantial indoor environment. From the observation of this graph, it is clear that the 

proposed method is good and can recognize these static and dynamic activities. In 

addition, there are some small activities in each of the activities that constitute an 

infringement of the object still cannot be for all the time. Every human object in the 

direction also changes in different frames. Therefore, the proposed method is to constitute 

an incomprehensible chapter and a positive view is not necessary, for the object of 

identification and object of litigation recognition with positive and side views. The 

suggested method is to be able to recognize whether these activities are correct at different 

viewing angles, and the proposed method is different for the powerful rotational 

movement activities. 
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(a) Boxing 

     
(b) Clapping 

 

(c) Jogging 
 

     
(d) Running 

 

     
(e) Sitting 

 



82 
 

     
(f) Walking 

 

     
(g) Hand-waving 

 
Figure 3.9 Recognition of Activities in our own database (a) Boxing (b) Clapping (c) Jogging (d) Running(e) Sitting 

(f)Walking(g) Hand-waving in different views. 

 
We have shown qualitative results of the proposed method on different datasets. Now, we 

show quantitative results of the proposed method and compare them with other existing 

methods in terms of confusion matrix. The other methods are Qian et al. [29], Sadek et 

al. [299], Ikizler-Cinbis and Sclaroff [300], and Ahmad et al. [301]. 

 Table 3.1 Confusion matrices for the proposed and other methods over own dataset 

Recognized 
Instances 
 
Total 
Instances 

Boxing Clapping Jogging Running Sitting Walking Hand-

waving 

For the proposed method 
Boxing  .99 .01 0 0 0 0 0 
Clapping  0 1 0 0 0 0 0 
Jogging  0 0 .98 .02 0 0 0 
Running 0 0 .01 .99 0 0 0 
Sitting 0 0 0 0 1 0 0 
Walking 0 0 0 0 0 1 0 
Hand-
waving 

0 0 0 0 0 0 1 

Ikizler-Cinbis and Sclaroff [300] 
Boxing  0.71 0.10 0 0.10 0.05 0 0.04 
Clapping  0.15 0.68 0 0.12 0.03 0.02 0 
Jogging  0.12 0.10 0.73 0 0 0 0.05 
Running 0.05 0.08 0.15 0.70 0.01 0.01 0 
Sitting 0.12 0.15 0.05 0 0.65 0.02 0.01 
Walking 0 0.15 0.05 0.05 0 0.62 0.13 
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Hand-
waving 

0.10 0.14 0.08 0 0.01 0 0.67 

Qianet al. [29] 
     Boxing  0.39 0 0 0.39 0 0 0.22 
Clapping  0.15 0.56 0.26 0 0 0.03 0 
Jogging  0.02 0.15 0.55 0.1 0.18 0 0 
Running 0.03 0.33 0.03 0.58 0.03 0 0 
Sitting 0.05 0.15 0.18 0 0.47 0.15 0 
Walking 0 0 0 0 0.23 0.77 0 
Hand-
waving 

0.02 0.28 0.03 0 0 0 0.67 

Ahmad et al. [301] 

     Boxing  0.71 0.15 0.10 0.02 0 0 0.02 
Clapping  0.12 0.76 0 0.08 0.04 0 0 
Jogging  0.10 0.05 0.75 0 0.05 0.03 0.02 
Running 0.18 0.03 0 0.72 0.02 0.05 0 
Sitting 0.06 0.11 0 0 0.78 0 0.05 
Walking 0 0.11 0.03 0.03 0 0.73 0.10 
Hand-
waving 

0 0 0.15 0.03 0.03 0.05 0.74 

Sadek et al. [299] 
Boxing  0.52 0.18 0.06 0.01 0.20 0.03 0 
Clapping  0.22 0.50 0 0.25 0 0.01 0.02 
Jogging  0.01 0.19 0.45 0 0.20 0.05 0.10 
Running 0.25 0.18 0.02 0.41 0.05 0 0.09 
Sitting 0.30 0.10 0.10 0 0.44 0.03 0.03 
Walking 0 0.02 0.07 0.21 0.03 0.49 0.18 
Hand-
waving 

0.18 0 0.10 0.15 0.15 0 0.42 

 

Table 3.2 Recognition results over the Own dataset 

Method Accuracy 
(%) 

Error 
(%) 

Recall  
(%) 

Specificity 
(%) 

Precision 
(%) 

F-Score 
(%) 

Ikizler-Cinbis & 
Sclaroff[300] 

68.00 32.00 68.00 94.68 71.44 69.67 

Qian et al. [29] 57.43 42.57 57.43 92.83 58.81 58.11 
Ahmad et al. [301] 74.14 25.86 74.14 95.69 75.34 74.74 
Sadek et al. [299] 46.16 53.84 46.14 91.02 49.34 47.69 
Proposed 99.43 0.57 99.43 99.90 99.43 99.43 

 
Figure 3.10 Comparison chart over the Own dataset 
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Different methods of different activities of this confusion matrix are set out in table 3.1. 

After observing these values, we can see that the value of the diagonal is the highest for 

the proposed method, in each case. Several different methods for comparing the 

recognition result in terms of accuracy, error, recall, specificity, precision and f-score 

have been listed in Table 3.2; above parameters have been calculated using performance 

measures described in section 2.6. From the results of these confusion matrices, 

recognition results and bar chart in figure 3.10, it can be observed that the performance 

of the proposed method is better than the current other methods. The method of 

identifying the accuracy of the proposed method is better than other methods. 

 Experiment 2 

In this section, we will demonstrate the proposed method for identifying KTHDB actions 

in the database [285]. KTHDB is one of the largest databases with sequences of human 

actions taking a variety of different scenarios [285]. This data set contains 6 types of 

human behaviour’s (walking, jogging, running, boxing, hand waving, one-hand pat) that 

have been performed several times by 25 people in four different scenes. The database 

contains 2391 sequences. The image sequence has a spatial resolution of 160*120 pixels 

and has an average of 4 seconds in length. 

 

(a) Boxing 
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(b) Handclapping 

 

(c) Hand Waving 

 

(d) Jogging 

 

(e) Running 

Figure 3.11 Recognition of Activities in KTH database [285](a) Boxing (b) Handclapping (c) Hand Waving (d) 
Jogging (e) Running. 
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In Figure 3.9, we have shown activity recognition with the standard KTH database [285]. 

This database contains 6 activities (such as boxing, handclapping, hand waving, jogging, 

running and walking. The database also suggests that the proposed method performs well. 

In addition, the database contains not only activities involving leg movements (eg, 

jogging, running). And walking) but it also contains activities involving hand movements 

(such as boxing, handclapping and hand waving.) Jogging and running as well as jogging 

and walking occur between the most confusing, although it varies in different situations 

but it is proposed It is easy to handle these scenarios. Now, quantitative results have been 

shown for KTHDB dataset [285] in Tables 3. 

Table 3.3 Confusion matrix for the proposed method over the KTH action recognition dataset 

Recognized 
Instances 
 
Total Instances 

Boxing Hand-clapping Jogging Hand-waving Running 

For the proposed method 
Boxing  1 0 0 0 0 
Hand-clapping 0 1 0 0 0 
Jogging  0 0 1 0 0 
Hand-waving 0 0 0 1 0 
Running 0 0 0 0 1 

Ikizler-Cinbis & Sclaroff [300] 
Boxing  0.74 0.10 0.10 0.03 0.03 
Hand-clapping 0.10 0.76 0.05 0.05 0.04 
Jogging  0.05 0.06 0.81 0.05 0.03 
Hand-waving 0.10 0.04 0.03 0.83 0 
Running 0.05 0.05 0.12 0 0.78 

Qian et al. [29] 
Boxing  0.83 0.10 0.07 0 0 
Hand-clapping 0.07 0.81 0.02 0.10 0 
Jogging  0.10 0.10 0.79 0.01 0 
Hand-waving 0.02 0.05 0.05 0.78 0.10 
Running 0 0.10 0.06 0.04 0.80 

Ahmad et al. [301] 
Boxing  0.88 0.05 0.07 0 0 
Hand-clapping 0.04 0.92 0 0.03 0.01 
Jogging  0.10 0 0.87 0.03 0 
Hand-waving 0.05 0 0.06 0.86 0.03 
Running 0.03 0. 0.02 0.05 0.90 

Sadek et al. [299] 
Boxing  0.81 0.05 0.05 0.09 0 
Hand-clapping 0.10 0.79 0.05 0.05 0.01 
Jogging  0.12 0.10 0.74 0.04 0 
Hand-waving 0.14 0.13 0.01 0.71 0.01 
Running 0 0.10 0.10 0.03 0.77 
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Table 3.4 Recognition results over the KTH action recognition dataset [285] 

Method Accuracy 
(%) 

Error 
(%) 

Recall 
(%) 

Specificity 
(%) 

Precision 
(%) 

F-Score 
(%) 

Ikizler-Cinbis & Sclaroff 
[300] 

78.40 21.60 78.40 94.60 78.89 78.64 

Qian et al. [29] 80.20 19.80 80.20 95.05 80.75 80.47 
Ahmad et al. [301] 88.60 11.40 88.60 97.15 88.91 88.75 
Sadek et al. [299] 76.40 23.60 76.40 94.10 77.86 77.12 
Proposed 100 0 100 100 100 100 
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Figure 3.12 Comparison result over the KTH action recognition dataset 

From these confusion matrices and recognition results in Tables 3.3, one can find that the 

accuracy of the proposed method is better than other existing methods. Each confusion 

matrix shows the performance of a particular method for this dataset. Diagonal values 

indicate the correct recognition rate for this purpose which are far better in case of the 

proposed method in Table 3.3. Comparison of recognition result in terms of accuracy, 

error, recall, specificity, precision and f-score of different method with the proposed 

method has been shown in Table 3.4 and figure 3.12 (calculated using performance 

measures described in section 2.6). It shows that the performance of the proposed method 

is better than other methods. 

 Experiment 3 

Now, we have selected i3DPost dataset, which is a multi-view dataset [286] for view-

invariant human activity recognition. In this dataset, 8 people performing 13 actions 

(walking, running, jumping, bending, hand-waving, jumping in place, sitting-stand up, 

running-falling, walking-sitting, running-jumping-walking, handshaking, pulling, and 
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facial-expressions) each one. The actors have different body sizes, clothing and are of 

different sex, nationality, etc. According to the authors of this dataset [286], it was 

expected that full view invariant action recognition, robust to occlusion, would be much 

more feasible through algorithms based on multi-view videos or 3D posture model 

sequences. Qualitative recognition results are shown in Figure 10 which shows correct 

results. 
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(d) Standing 

 

 

(e) Walking 

 

 

(f) Sitting 
 

 

 

 

 

 

Figure 3.13 Recognition of Activities in i3DPost multi-view dataset (a) Jumping (b) Running (c) Bending (d) 

Standing (e) Walking (f) Sitting (g) Walking 

In fig.3.10, six different activities have been performed on multi- view. These activities 

have been performed with the help of 5 cameras placed at different viewing angles and 

activities have been captured simultaneously with these cameras. These visual results 

show that the obtained results are accurate, and the proposed method provides proper 

recognition results for this set of videos also. Now, we present quantitative results for 

i3DPost multi-view dataset [286]. 
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Table 3.5 Confusion matrix for the proposed method over the i3DPost multi-view dataset 

Recognized 
Instances 
 
Total 
Instances 

Jumping Running Bending Standing Walking Sitting 

For the proposed method 
Jumping 1 0 0 0 0 0 
Running 0 1 0 0 0 0 
Bending 0 0 1 0 0 0 
Standing 0 0 0 1 0 0 
Walking 0 0 0 0 1 0 
Sitting 0 0 0 0 0 1 

Ikizler-Cinbis & Sclaroff [300] 
Jumping 0.80 0.05 0.05 0.05 0.05 0 
Running 0 0.83 0.10 0.04 0.03 0 
Bending 0.06 0.05 0.86 0.03 0 0 
Standing 0.05 0.05 0.08 0.82 0 0 
Walking 0.01 0.08 0.08 0 0.81 0.02 
Sitting 0.05 0.07 0 0.03 0.05 0.80 

Qianet al. [29] 
Jumping 0.76 0.10 0.09 0.01 0.04 0 
Running 0.10 0.71 0.10 0.05 0 0.04 
Bending 0.10 0.05 0.80 0 0.05 0 
Standing 0.09 0.01 0.10 0.77 0 0.03 
Walking 0 0.05 0.05 0.10 0.74 0.06 
Sitting 0 0.10 0 0.10 0.02 0.78 

Ahmad et al. [301] 
Jumping 0.87 0.05 0.05 0.03 0 0 
Running 0.06 0.90 0 0.04 0 0 
Bending 0.10 0 0.86 0 0.02 0.02 
Standing 0.05 0.07 0 0.84 0.02 0.02 
Walking 0 0.05 0.05 0.01 0.88 0.01 
Sitting 0 0.05 0 0.06 0.02 0.87 

Sadek et al. [299] 
Jumping 0.78 0.10 0 0.10 0 0.02 
Running 0.07 0.82 0.08 0 0.03 0 
Bending 0 0.06 0.81 0.08 0.05 0 
Standing 0 0.10 0.07 0.78 0.05 0 
Walking 0.04 0.02 0.03 0.07 0.84 0 
Sitting 0 0.05 0 0.06 0.02 0.87 

 

Table 3.6 Recognition results over the i3DPost multi-view dataset [286]. 

Method Accuracy 
(%) 

Error 
(%) 

Recall 
(%) 

Specificity 
(%) 

Precision 
(%) 

F-Score 
(%) 

Ikizler-Cinbis & Sclaroff 
[300] 

82 18 82 96.4 82.95 82.47 

Qian et al. [29] 76 24 76 95.20 76.62 76.31 
Ahmad et al. [301] 87 13 87 97.40 87.40 87.20 
Sadek et al. [299] 81.67 18.33 81.67 96.33 82.49 82.08 
Proposed 100 0 100 100 100 100 
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Figure 3.14 Comparison chart over the i3DPost multi-view dataset 

These confusion matrices, recognition results and comparison chart in Tables 3.5, 3.6 and 

figure 3.14 indicate that the proposed method performs better than other methods. 

 Experiment 4 

In this section, we demonstrate results of the proposed method for MSR action 

recognition database [310]. MSR Action dataset contains 16 video sequences and has in 

total 63 actions: 14 hand clapping, 24 hand-waving and 25 boxing, performed by 10 

subjects. Each sequence contains multiple types of actions. Some sequences contain 

actions performed by different people. There are both indoor and outdoor scenes. All of 

the video sequences are captured with clutter and moving backgrounds. Each video is of 

low resolution 320 x 240 and frame rate 15 frames per second. Their lengths are between 

32 to 76 seconds. Qualitative recognition results are shown in Figure 3.11, which shows 

correct results. 

 

 

(a) Standing()  
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(b) Handwaving 

 

(c) Jumping 

 

 

 

(d)Hand-clapping 

 

(e)Boxing 

Figure 3.15 Recognition of Activities with MSR action recognition database [310] (a) Standing (b) Hand-waving (c) 
Jumping (d) Hand-clapping (e) Boxing 
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From Figure 11, it can be observed that the person is performing “standing” activity at 

different viewing angles. From Figure 3.11, it is also clear that the proposed method is 

well capable of recognizing static and dynamic activities. Moreover, there is some little 

movement in each activity, i.e. pose of human object does not remain still for all the time. 

Direction of each human object also changes in different frames. Therefore, the proposed 

method is pose invariant and frontal view is not necessary for recognition of objects and 

suits for recognition of objects with frontal as well as side view. Hence, one can get 

correct visual results by using the proposed method. It is capable of recognizing the 

activity at these different viewing angles correctly and the proposed method is robust 

towards different rotations of the activity. 

Table 3.7 Confusion matrix for the proposed method over the MSR view-point action dataset 

Recognized 
Instances 
 
Total Instances 

Standing Handwaving Jumping Handclapping Boxing 

For the proposed method 
Standing 0.96 0.02 0.02 0 0 
Handwaving 0 1 0 0 0 
Jumping 0 0 1 0 0 
Handclapping 0 0 0 1 0 
Boxing 0 0 0 0 1 

Qian et al. [29] 
Standing 0.70 0.10 0.10 0.10 0 
Handwaving 0.04 0.80 0.06 0.05 0.05 
Jumping 0.10 0.02 0.76 0.10 0.02 
Handclapping 0.10 0.08 0.01 0.81 0 
Boxing 0.05 0.12 0.07 0.02 0.74 

Ikizler-Cinbis & Sclaroff [300] 
Standing 0.81 0.06 0.08 0.05 0 
Handwaving 0.10 0.84 0.06 0 0 
Jumping 0.14 0.06 0.78 0.01 0.01 
Handclapping 0.10 0.10 0.04 0.76 0 
Boxing 0 0.11 0 0.08 0.81 

Sadek et al. [299] 
Standing 0.75 0.10 0.05 0.05 0.05 
Handwaving 0.10 0.71 0.10 0.05 0.04 
Jumping 0.14 0.11 0.73 0.02 0 
Handclapping 0.10 0.10 0.05 0.70 0.05 
Boxing 0.06 0.04 0.12 0 0.78 

Ahmad et al. [301] 
Standing 0.88 0.06 0 0.04 0.02 
Handwaving 0.03 0.95 0.02 0 0 
Jumping 0.05 0.03 0.90 0.02 0 
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Handclapping 0.01 0.01 0.02 0.96 0 
Boxing 0.02 0.03 0 0.01 0.94 

 

Table 3.8 Recognition results over the MSR view-point action dataset [310] 

Method Accuracy 
(%) 

Error 
(%) 

Recall 
(%) 

Specificity 
(%) 

Precision 
(%) 

F-Score 
(%) 

Ikizler-Cinbis & Sclaroff 
[300] 

80 20 80 95 81.30 80.64 

Qian et al. [29] 76.20 23.80 76.20 94.05 76.90 76.55 
Ahmad et al. [301] 92.60 7.40 92.60 98.15 92.74 92.67 
Sadek et al. [299] 73.40 26.60 73.40 93.35 74.37 73.88 
Proposed 99.20 0.80 99.20 99.80 99.22 99.21 
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Figure 3.16 Comparison chart over the MSR view-point action dataset 

These confusion matrices, recognition results and comparison chart in Tables 3.7, 3.8 and 

Figure 3.16 indicate that the proposed method performs better than other methods.  

 Experiment 5 

WVU multi-view human action recognition dataset [288] has been sorted based on the 8 

views. This dataset includes different activities hand waving, clapping, jumping, jogging, 

bowling, throwing, pickup, and kicking. For each view, action sequences performed by 

different subjects are provided. In Fig. 3.12, we have shown activity recognition with 

WVU multi-view human action recognition dataset [288].   

 

(a) Hand Waving 
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(b) Hand Clapping 
 

 
(c) Walking 

Figure 3.17 Recognition of Activities in WVU multi-view human action recognition dataset [288] (a) Hand waving 
(b) Hand Clapping (c) Walking 

Now, quantitative results have been shown WVU multi-view human action recognition 

dataset [288]  in Tables 3.9 - 3.10. 

Table 3.9 Confusion matrix for the proposed method and other methods over the WVU action 
recognition dataset 

Recognized Instances 
 
Total Instances 

Hand Waving Hand-clapping Walking 

For the proposed method 
Hand Waving 1 0 0 
Hand-clapping 0 1 0 
Walking 0 0.02 0.98 

Qian et al. [29] 
Hand Waving 0.72 0.28 0 
Hand-clapping 0.30 0.70 0 
Walking 0.30 0.01 0.69 

Ikizler-Cinbis & Sclaroff [300]  
Hand Waving 0.79 0.21 0 
Hand-clapping 0 0.81 0.19 
Walking 0.18 0 0.82 

Sadek et al. [299] 
Hand Waving 0.88 0.02 0.10 
Hand-clapping 0.16 0.84 0 
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Table 3.10 Recognition results over the WVU action recognition dataset [288] 

Method Accuracy 
(%) 

Error 
(%) 

Recall 
(%) 

Specificity 
(%) 

Precision 
(%) 

F-Score 
(%) 

Ikizler-Cinbis & Sclaroff 
[300] 

80.67 19.33 80.67 90.33 80.68 80.67 

Qian et al. [29] 70.33 29.67 70.33 85.17 75.08 72.63 
Ahmad et al. [301] 94.00 6.00 94.00 97.00 94.06 94.03 
Sadek et al. [299] 85.67 14.33 85.67 92.83 85.75 85.71 
Proposed 99.33 0.67 99.33 99.67 99.35 99.34 

 

Figure 3.18 Comparison chart over the WVU action recognition dataset 

Each confusion matrix shows the performance of a particular method for the chosen 

dataset. Comparison of the recognition results in terms of accuracy, error, recall, 

specificity, precision and f-score of the different method with the proposed method has 

been shown in Table 3.10 and Figure 3.18.  

These confusion matrices and recognition results presented in Tables 3.9 and 3.10 show 

that the accuracy of the proposed method is better than the other existing methods.  

3.4. Conclusion 

In this chapter, a multi-view human activity recognition system by using combined 

Contour based distance signal feature, uniform rotation invariant LBP feature and motion 

flow based feature has been proposed. To represent each activity from multiple views or 

each scenario, we were used uniform rotation invariant LBP descriptor. Its rotation 

invariant nature provides view invariant recognition of multi-view human activities and 

Walking 0 0.15 0.85 
Ahmad et al. [301]  

Hand Waving 0.97 0 0.03 
Hand-clapping 0.07 0.93 0 
Walking 0 0.08 0.92 



97 
 

uniform patterns facilitate good discriminating capabilities. This system is based on three 

consecutive modules. These are (i) background subtraction (ii) feature extraction and (iii) 

classification. We also considered some sources of variability that affect human activity 

recognition. This variability includes the view-directional variation and phase change of 

different activities. The proposed approach is different from other shape-based, motion-

based or combined shape and motion approaches where analysis is done at a single level. 

We included the features of silhouettes and original images when a person performs 

activity in different speed variation, change of phase variation, i.e. the starting and ending 

phase variations of activity. This enforces the robustness of the activity recognition. 

Based on the combined features, a set of HMMs was built for the mentioned activities. 

This approach has been performed on five multi-view human activity video datasets: Our 

own view point dataset, KTH action recognition dataset [285], i3DPost multi-view dataset 

[286], MSR view-point action dataset [310] and WVU multi-view human action 

recognition dataset [288]. Qualitative and quantitative experimental results demonstrate 

the robustness of the proposed method against different viewpoints. The proposed method 

has been compared with methods proposed by Qian et al. [29], Sadek et al. [299], Ikizler-

Cinbis & Sclaroff [300], and Ahmad et al. [301], and found better than these. 
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