TABLE OF CONTENTS

Content	Page No.
Acknowledgement	i
List of Figures	vi
List of Tables	Х
List of Abbreviations and Symbols	xi
Abstract	xvii
Chapter 1: Introduction	1-15
1.1. Background (Structure damage and failures)	1
1.2. Requirement of SHM	2
1.3. Existing SHM techniques and limitations	7
1.4. Aim and scope	13
1.5. Organization of thesis	14
Chapter 2: Literature Review	16-32
2.1. Structural health monitoring	16
2.2. Fiber optic sensors	19
2.2.1. Local fiber optic sensor	22
2.2.2. Quasi-distributed sensors	22
2.2.3. Distributed fiber optic sensors	24
2.3. Neural network based structural health monitoring	25
2.4. Diffuse wave sensors	31
Chapter 3: Damage detection techniques	33-55
3.1. Introduction	33
3.2. Strain gauge method	33
3.3. Finite element methodology	34

3.4. Fiber optic sensor technology	35
3.5. Analytical explanation of fiber optic strain sensor	41
3.6. Fundamentals of neural network integrated FOS based SHM for damage detection	47
3.7. Fundamental of wavelet and multiscale analysis	48
3.7.1. Wavelet overview	49
3.7.2. Wavelet transform	50
3.7.2.1. Continuous wavelet transform	51
3.7.2.2. Discrete wavelet transform	52
3.7.3. Signal processing using wavelet transform	53
3.8. Diffuse wave based numerical analysis	54
Chapter 4: Experimental setup and sample preparation	56-68
4.1. Introduction	56
4.2. Sample preparation	56
4.2.1. Notch geometry	57
4.2.2. Sample preparation for FOS based SHM	58
4.2.3 Diffuse wave-based sample for SHM	62
4.3. Experimental equipment's	63
4.4. Setup development and data acquisition	66
Chapter 5: Structure health analysis using smart fiber optic sensor	69-95
5.1. Introduction	69
5.2. Strain approximation Using Conventional methods	69
5.2.1. Strain gauge method	69
5.2.2. Finite element method	70
5.3. Strain approximation using FOS under static loading	71
5.3.1. Neural network methodology	71
5.3.2. Training and testing of the model	73
5.3.3. Results and discussion	79
5.4. Strain approximation using FOS under dynamic loading	82
5.4.1. Neural network methodology	82

5.4.2. Training and testing of the model	83
5.4.3. Results and discussion	86
5.5. Damage location analysis	90
5.3.1. Neural network methodology	90
5.3.2. Training and testing of model	91
5.3.3. Results and discussion	93
Chapter 6: Diffuse wave-based smart damage analysis	96-119
6.1. Introduction	96
6.2. Diffuse zone selection using discrete wavelet transform	96
6.3. Diffuse zone-based damage analysis integrated with neural network	101
6.3.1. Neural network methodology	101
6.3.2. Training and testing of model	101
6.3.3. Results and discussion	102
6.4. Wavelet-based residual energy method using a diffuse zone	109
6.4.1. Time domain differencing	109
6.4.2. Spectrogram differencing	111
6.4.3. Wavelet-based residual energy method	113
6.4.4. Results and discussion	115
Chapter 7: Conclusion	120-122
7.1. Research Conclusions	121
7.2. Recommendations for Future Work	122
References	

List of Publications