
Chapter 6 

Diffuse Wave-Based Smart Damage Analysis 

 

6.1. Introduction 

This chapter aims to present a damage assessment methodology based on diffuse 

wave analysis. The chapter includes the sections on the diffuse zone selection process 

followed by damage analysis. Initially, damage analysis is carried out using two pre-

existing energy-based techniques. A new wavelet-based technique is proposed and 

compared with the existing energy-based technique. A comparative study is also 

carried using wavelet integrated neural network analysis and wavelet-based energy 

methods.  A cantilever beam structure is used for testing the diffuse wave technique. 

 

6.2. Diffuse zone selection using discrete wavelet transform 

Various researchers have used a diffuse zone for qualitative and quantitative analysis 

of damage assessment in structural problems. The identification of diffuse field zone 

is a difficult process. Generalizing the concept of diffuse zone generation by 

considering all boundaries of structures to be reflectors is not true. But the field thus 

generated may be considered partially diffuse. As described by Evans and Cawley, 

“A diffuse field cannot strictly be generated in an enclosure if all the boundaries are 

specular reflectors, but in certain cases, the fields generated are approximately 

diffuse. If the source is non-directional (small with respect to the wavelength) and 

excites waves over a finite bandwidth (rather than a single frequency), all normal 

modes (or structural modes) of the enclosure which have natural frequencies within 
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the excitation bandwidth can be excited simultaneously.” A single normal mode can 

not generate a diffuse field. The magnitude of mode distribution is not random 

because of the occurrence of nodes and anti-nodes. If more than one mode is excited 

over a finite frequency region, the movement of modes at any instance of time within 

the field gets superimpose. All motion patterns became uniform on increasing the 

modes. This stage can be approximated as a diffuse field [75].   

For the selection of the diffuse zone, testing of two samples is carried out for three 

different impulse excitations. Two samples used in studying the diffuse zone 

selection include a sample with free boundary condition (FBC) and another sample 

with a constrained boundary condition (CBC). The purpose of selecting these two 

samples is that the diffuse zone will exist only in open boundary as the reflection of 

the waves will be absorbed in case of the constrained boundary. Starting from 2 MHz 

with 0.5 MHz increment for two times, a signal of 0.5-millisecond duration is used as 

input in this experiment for excitation of waves. Longitudinal polarized PZT 

transducers were used for wave generation and signal receivers. The input signal is 

controlled by using a function generator. The output of the diffuse signal is stored in a 

digital oscilloscope. All waveforms are recorded for 1000 microseconds for a total of 

11000 data points. For applying dyadic scaling and shifting based on Nyquist criteria, 

10080 data points are considered under analysis. After the generation of the signal, a 

multilevel decomposition using a discrete wavelet transform is performed for both 

types of the sample at all three excitation levels. Wavelet transformation using db4 is 

performed for five decomposition levels. The reason for selecting five levels of 

decomposition is to obtain a data set to study the variation that occurs in the diffuse 
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zone. After the decomposition, 315 data of both approximate and detailed coefficients 

are obtained. Approximate coefficients are considered for the comparative study of 

samples with open and constrained boundary conditions. The results of the samples 

for the first excitation are shown in fig. 6.1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 6.1. Comparative plots of approximate coefficients of open and constrained 

boundary conditions at 2MHz (a) Sensor 1; (b) Sensor 2; (c) Sensor 3; (d) Sensor 4. 

 

The results of the second excitation for all four sensors are shown in fig. 6.2. In this 

figure, a spike is observed in the region between 160 and 200 microseconds. 
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(a) 

 

(b) 

 
 

 

 

 

(c) 

 

 

 

 

 

(d) 

 

Fig. 6.2 Comparative plots of approximate coefficients of open and constrained    

boundary conditions at 2.5MHz (a) Sensor 1; (b) Sensor 2; (c) Sensor 3; (d) Sensor 4. 

 

A similar signature of approximate coefficients is obtained at excitation three. Plots 

of four sensors are shown in fig. 6.3. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Fig. 6.3 Comparative plots of approximate coefficients of open and constrained 

boundary conditions at 3MHz (a) Sensor 1; (b) Sensor 2;(c) Sensor 3;(d) Sensor 4. 

 

It is observed that samples with constrained boundaries show a comparatively smooth 

curve with respect to samples with open boundary conditions. In open boundary 

conditions, significant abrupt variation occurs in the range of time zone of 150 µs to 

250 µs. It can also be related to a period when no stationary wave exists. Basics of the 

above logic are that reflected waves will get absorbed in the case of samples with a 

constrained boundary, but the same will not be the case with open boundary samples. 
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The analysis is repeated for the other two excitations at four different locations are 

shown in fig. 6.2, and fig. 6.3. Similar observations prove that the discrete wavelet 

transform can be useful in the detection of the diffuse zone. 

 

6.3. Diffuse zone-based damage analysis integrated with neural 

network  

6.3.1. Neural Network Methodology  

The neural network (ANN) is a well-defined set of input, hidden, and output layers. 

The intelligence-based processing structure is based on the layers, which are the 

stimulation of neurons. Neuron transfers a weighted function from one layer to 

another, which gets updated based on the error value. Bias values are used with 

weight values for training and testing. 

6.3.2. Training and testing of the model  

Three phases are required for proposing an ANN architecture, which includes 

training, validation, and testing phases. Approximate and detail coefficients are taken 

as input parameters with 315 data per sample set for the ANN model. The holdout 

cross-validation method is used for validating the ANN data arrangement for test, 

train, and validation. A Tansig transfer function is used in hidden layers. Data set are 

created as 315 data for four different sample types. Out of the total of 1260 data, 5% 

data is used for validation, 10% data is used for testing, and the remaining 85% data 

is used for training. The bayesian regularization algorithm is used for the test, train, 

and validation. Network analysis is done for three different excitations. 
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The objective of mean square value (eq. 5.4, chapter 5) is to devise the criteria that 

estimate the number of hidden neurons as a function of input neurons to develop a 

model for damage prediction.  

The error values are obtained by varying the number of neurons in the hidden layers 

of the neural network model using Bayesian regularization algorithm. Regression 

value is used in this study to evaluate the performance of the artificial neural system. 

The regression value is estimated using equation 5.8. The objective of the above least 

square estimation and regression analysis is to develop a model for damage analysis 

using wavelet parameters of the diffuse wave. The schematic of the developed neural 

network model is shown in fig. 6.4. 

 

Fig. 6.4.Schematic of neural network architecture  

 

6.3.3. Results and Discussion   

Samples of different damage levels are tested for analyzing the severity of fault 

variations. In present work, the cantilever beam structure is used as a host material for 

damage analysis. A set of four sensors are mounted on the surface of each sample to 
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obtain the change in signals at different excitations.  The impulse signal is applied 

using a PZT transducer connected to a function generator with rectangular signal 

input. Signal variation is applied to obtain the different excitation levels, as defined in 

section 6.2 earlier. The output of the signal is stored in a digital oscilloscope for 

further analysis. Further discrete wavelet transform is applied on these output signals 

to obtain approximate and detail coefficients parameters, which are used as input data 

for the designed neural network. Damage volumetric ratio values obtained using 

equation 4.6 is set as target values in the neural network perceptron model. The hold 

out analysis provides a logical selection of test and train data set. Moreover, the hold 

out analysis also eliminates the possibility of overfitting and underfitting conditions. 

The Bayesian regularization back-propagation algorithm is used in this study for 

designing the neural network. Testing and training regression values are above the 

acceptable limit of 90%. Epoch is set to a maximum limit of 1000. 

Fig. 6.5 show the performance plot of the multilayer perceptron model, based on the 

mean square error of the developed model. The graph proves the successful working 

of the developed model with high confidence and the least error values. Mean square 

error plots of different data set at various loading show that the model predicts very 

well the target values. Table 6.1 presents the obtained values of different ANN 

parameters used in the analysis. Regression values are analyzed for the acceptability 

of the developed ANN model. From the table, it is clear that all regression values are 

above the R = 0.90 value. Values of data comparison by regression analysis prove 

that the developed ANN model works well within the acceptable range of regression 

and standard error.  
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Table 6.1. Performance effectiveness of neural network model at different loads 

Level Load Training 

(R-value) 

Testing 

(R-value) 

All 

(R-value) 

Epoch Best 

training 

performance 

 

2MHz 

Sensor 1 0.99349 0.99166 0.99315 188 7.1442e-06 

Sensor 2 0.98436 0.96385 0.98176 45 5.8428e-06 

Sensor 3 0.99828 0.99548 0.99773 149 5.4669e-06 

Sensor 4 0.90612 0.97213 0.96071 11 5.7171e-06 

 

2.5MHz 

Sensor 1 0.93753 0.92414 0.92631 83 5.7345e-06 

Sensor 2 0.91834 0.93682 0.91704 166 5.3065e-06 

Sensor 3 0.93712 0.94723 0.94902 106 6.0059e-06 

Sensor 4 0.99835 0.99619 0.98031 34 6.1915e-06 

 

3MHz 

Sensor 1 0.94821 0.95023 0.93276 22 6.4511e-06 

Sensor 2 0.92784 0.93207 0.94026 107 4.1733e-06  

Sensor 3 0.98398 0.99662 0.99792 24 7.0578e-06 

Sensor 4 0.96241 0.95802 0.94803 149 7.1658e-06 

 

Mean square error for test and train data reduces and became constant after 40 epoch 

values, as shown in fig. 6.5. Fig. 6.5(a) shows that mean square error reduces initially 

for 2 MHz. But a steep reduction is observed near 50 epochs. A constant value is 

attained after 60 epoch value. In fig 6.5(b), the test and train curve separates near 35 

epochs but became constant after 40 epoch value. Fig. 6.5(c) shows a constant 

reduction in mean square error curve, which became constant at 80 epochs. Fig.  

6.5(d) shows a steep reduction in mean square error near four epochs, and the curve 

became constant after 11 epoch value where the maximum gradient is reached. 
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(a) (b) 

 
 

(c) (d) 

  
Fig. 6.5. Mean square error plots of different sensor @ 2MHz: (a) Sensor 1; (b) Sensor 2; (c) 

Sensor 3; (d) Sensor 4. 

 

For 2.5 MHz, mean square error reduces initially, as presented in fig 6.6(a). A 

considerable decline in error value is observed near 40 epochs and became constant 

after 50 epoch. Similarly, in fig 6.6(b), test and train curves are separated near 60 

epochs but became close after 120 epoch value. In sensor 3, a constant reduction in 

mean square error curve is obtained, which became constant at 50 epochs, as shown 

in fig. 6.6(c). Fig. 6.6(d) shows a steep reduction in mean square error near eight 

epochs, and the curve became constant after 10 epoch value. 
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(a) (b) 

  
(c) (d) 

  
Fig. 6.6. Mean square error plots of different sensor at 2MHz: (a) Sensor 1; (b) Sensor 2; (c) 

Sensor 3; (d) Sensor 4. 

 

As shown in fig 6.7(a), mean square error reduces initially for 3 MHz. Reduction in 

error value is observed near six epochs and became constant after eight epoch. 

Similarly, in fig 6.7(b), test and train curve are separated near 70 epochs but became 

close after 800 epoch value. In fig 6.7(c), random reduction in mean square error 

curve is obtained, which became constant at 20 epoch. Fig. 6.7(d) shows a steep 

reduction in mean square error until 50 epochs, and the curve became constant after 

100 epoch value. 



107 | P a g e  
 

(a) (b) 

  
 

 

 

 

 

(c) 

 

 

 

 

 

(d) 

  
Fig. 6.7. Mean square error plots of different sensor at 2MHz: (a) Sensor 1; (b) Sensor 2; (c) 

Sensor 3; (d) Sensor 4. 
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(a) 

 

(b) 

 
(c) 

 
Fig. 6.8. Comparison of ANN-based output to the target values at different excitation levels: 

(a) 2MHz, (b) 2.5MHz, (c) 3MHz 
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Fig. 6.8 shows a comparison of the volumetric damage ratio for various sensors at 

different excitation levels. Variations in damage prediction by developed neural 

network model with volumetric damage ratio for different sensors are shown. It is 

observed that in all three excitation levels, the trend of variation is similar and well 

within the acceptable range. The following conclusions can be drawn based on the 

damage prediction: 

1) Over and under prediction of target values are observed using the ANN 

approach. Random variation may be due to the presence of noise in the signal. 

2) A good agreement in neural network prediction and target value occurs. The 

advantage of using this model is that it eliminates the effect of noise present in 

the signal. 

6.4. Wavelet-based residual energy method using a diffuse zone  

For the quantitative assessment of damage, three methods for three excitations are 

considered. Methods used in the research include time-domain differencing, 

Spectrogram differencing, and wavelet-based residual energy. The strategy applied in 

all three methods is computing residual energy parameters of the difference between 

two signals. These signals involve the parameters of healthy and damaged samples.   

6.4.1. Time domain differencing (Conventional concept)  

The simplest way for the comparison of signals is by subtracting one signal from 

another. Considering a reference signal 𝑆𝑟(𝑡) and measured signal  𝑆𝑚(𝑡) in time 

domain frame for a fixed time length T. Let sampling frequency be denoted as 𝑓𝑠 and 

sampled signal as  𝑆𝑟(𝑛) and  𝑆𝑚(𝑛) respectively. Here n corresponds to sample at 
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time 
𝑛

 𝑓𝑠
, having length𝑁 =  𝑓𝑠 ∗ 𝑇. The basic criteria of comparing two signals in the 

time domain frame are simple subtraction. 

 

 

∆(𝑛) =   𝑆𝑚(𝑛) −  𝑆𝑟(𝑛) 
 

(6.1) 

 

For ∆(𝑛) to be an independent parameter from the amplitude of the original signal 

scaling of measured and reference signal is performed as follows:   

 

 

𝑆𝑚̃(𝑛) =  
 𝑆𝑚(𝑛)

√∑ 𝑆𝑚
2𝑁−1

𝑛=0 (𝑛)
 

 

 

 

𝛽 =
∑ 𝑆𝑚̃(𝑛)𝑁−1

𝑛=0  𝑆𝑟(𝑛)

∑ 𝑆𝑟
2𝑁−1

𝑛=0 (𝑛)
 

 

 

 

∆̃(𝑛) =  𝑆𝑚̃(𝑛) − 𝛽 ∗  𝑆𝑟(𝑛) 

 

   (6.4) 

 

The measured signal is normalized with the help of weight function 𝛽. The function 

𝛽 of the reference signal is calculated, such that it minimizes the mean square error 

between 𝑆𝑚̃(𝑛)(unity energy measured signal) and scaled reference signal. Parameter 

∆(𝑛) is considered as an amplitude-dependent measurement of signal difference. The 

energy of  ∆̃(𝑛) within a specific time window is considered as temporal residual 

energy which is calculated as follows:  

(6.2) 

(6.3) 
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𝐸𝑡𝑑 =  ∑ ∆̃2

𝑛2

𝑛=𝑛1

(𝑛) 

 

 

Symbols 𝑛1 and 𝑛2 signify the initial and final indices related to the time window 

under consideration. 

6.4.2.   Spectrogram differencing (Conventional concept) 

Time-frequency analysis for non-stationary diffuse signals provides an acceptable 

process for comparison of two signals. Let short-time Fourier transform (STFT) for 

spectrogram computation of a signal 𝑆(𝑛) of length N is defined as: 

 

 

𝑍(𝑛, 𝑘) =  ∑ 𝑆(𝑚)ω(𝑚 − 𝑛)𝑒−𝑖2𝜋𝑘𝑚/𝑀

𝑁−1

𝑚=0

 

 

 

 

Where ω(𝑛) is window function of length M < 𝑁, and the frequency index 𝑘 (0 ≤

𝑘 < 𝑀) is related to frequency as follows:  

 

 

𝑓 =  
𝑘

𝑀
 𝑓

𝑠
 

 

 

Initially, a signal 𝑍(𝑛, 𝑘) is not computed for the individual value of n, but a 

resampling factor 𝑋 is specified. Thus  𝑍(𝑛, 𝑘) is obtained for each 𝑛𝑋𝑡ℎ value 

of where 𝑛 = 0, 1, 2, … 

 

(6.5) 

(6.6) 

(6.7) 
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𝑍(𝑛, 𝑘) =  ∑ 𝑆(𝑚)ω(𝑚 − 𝑛𝑋)𝑒−𝑖2𝜋𝑘𝑚/𝑀

𝑁−1

𝑚=0

 

 

 

 

As 𝑛 is now related to continuous-time (t) by: 

 

𝑡 =  
𝑛𝑋

 𝑓
𝑠

 

 

 

 

Modulus value of complex STFT |𝑍(𝑛, 𝑘)|is considered as spectrogram. Spectrogram 

differencing, similar to time domain differencing, is carried out considering reference 

signal, 𝑍𝑟(𝑛, 𝑘), and measured signal 𝑍𝑚(𝑛, 𝑘). The normalization process is applied 

before subtracting the reference signal from the measured signal. In normalization, 

both spectrograms are normalized globally to unity energy. The process is carried out 

within the window of interest before differencing. The difference between two 

spectrogram 𝛿(𝑛, 𝑘) is formulated as follows:  

 

 

𝛿(𝑛, 𝑘) =
|𝑍𝑚(𝑛, 𝑘)|

√∑ ∑ 𝑍𝑚(𝑛̃, 𝑘̃)𝑍𝑚
∗ (𝑛̃, 𝑘̃)

𝑘2

𝑘̃=𝑘1

𝑛2
𝑛̃=𝑛1

−  
|𝑍𝑟(𝑛, 𝑘)|

√∑ ∑ 𝑍𝑟(𝑛̃, 𝑘̃)𝑍𝑟
∗(𝑛̃, 𝑘̃)

𝑘2

𝑘̃=𝑘1

𝑛2
𝑛̃=𝑛1

 

 

 

The difference in energy using the above methodology is considered as spectral 

residual energy, defined as follows: 

(6.8) 

(6.9) 

(6.10) 
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𝐸𝑆𝑝𝑔𝐷 =  ∑ ∑ 𝛿2(𝑛, 𝑘)

𝑘2

𝑘=𝑘1

𝑛2

𝑛=𝑛1

 

 

 

 

6.4.3.   Wavelet-based residual energy method (Developed concept) 

Signal processing is a crucial issue to extract information from the received signal to 

decide whether some damage has developed in the structure. As compared to guided 

wave-based methods, signal processing for diffuse ultrasonic waves for SHM is very 

difficult due to the complex nature of the energy distribution. While Fourier analysis 

does not provide information about what frequency appears at what instant of time, 

the wavelet-based analysis yields an image of time-frequency pattern so, it is 

preferred for non-stationary signals. Data cleansing is often required to remove the 

noise, which generally sensor receives from various sources. Discrete wavelet 

denoising using Daubechies wavelet is often used to remove local high-frequency 

noise. A wavelet transform can be expressed as 

 

 

𝑢 ≈ ∑ 𝑢𝑖
𝑗
𝜑𝑖

𝑗

𝑖

+ ∑ 𝑑𝑖
𝑗
𝜓𝑖

𝑗

𝑖

 

 

 

 

Where 𝜑𝑖
𝑗
 and 𝜓𝑖

𝑗
 are called as scaling function and wavelet, respectively. The 

process of wavelet transform simplifies when we use refinement relations. The basis 

function at a lower level 𝑗 can be expressed in terms of the basic functions of higher 

level 𝑗 + 1 as  

(6.11) 

(6.12) 
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𝜑𝑘
𝑗

= ∑ ℎ𝑖𝜑𝑖
𝑗+1

𝑖

 

 

 

 

and 

 

𝜓𝑘
𝑗

= ∑ 𝑔𝑖𝜑𝑖
𝑗+1

𝑖

 

 

 

 

The coefficients ℎ𝑖 and 𝑔𝑖 are known as low and high pass filter coefficients. These 

filter coefficients split a signal into high and low-frequency signals. It can be 

expressed as  

 

 

𝑢 ≈ ∑ 𝑢𝑖
0𝜑𝑖

0

𝑖

+    ∑ ∑ 𝑑𝑖
𝑗
𝜓𝑖

𝑗

𝑖

𝑛

𝑗=0

 

 

 

Wavelet transform is used for all signals (healthy and defective plates). Generally 

high-frequency signal contains noise, so we eliminated the highest level frequency 

part of the signal, and the signal is reconstructed, which is represented here as 𝑢𝑖
𝑗
. The 

remaining signal is normalized to unity energy as 

 

𝑥𝑖 =
𝑢𝑖

𝑗

√∑ (𝑢𝑖
𝑗
)

2

𝑖
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Similar to spectral residual energy mentioned in section 6.4.2, where a short-time 

Fourier transform is used, we used wavelet and calculated residual energy, which can 

be called wavelet-based residual energy (𝑊𝐵𝑅𝐸). It is calculated as:  
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𝐸𝐻𝑃 = ∑(𝑈𝑖
0)𝐻𝑃

2 + ∑ ∑(𝐷𝑖
𝑗
)
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𝑊𝑏𝑟𝑒 = 𝐸𝐻𝑃 − 𝐸𝐷𝑃 
 

  (6.17d) 

 

Where subscript 𝐻𝑃 and 𝐷𝑃 indicates healthy and defective plates. 

6.4.4. Results and Discussion 

Measurement for diffuse wave-based energy analysis is made on four different 

samples. Specimens with cantilever geometry are used for experimentation. As wave 

reflections from the boundary have a major role in obtaining diffuse wave signals, 

therefore samples with through notches are made as defined in chapter 5, section 

5.2.2. Data obtained using the storage oscilloscope is analyzed using three techniques 

described in section 6.4. In the present analysis signal of a healthy sample is 

(6.17a) 

(6.17b) 

(6.17c) 
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considered as a reference for every method. Energy-based on time-domain 

differencing is calculated for all the measures signals. A similar procedure is 

followed for the Spectrogram differencing technique and wavelet-based residual 

energy method. Fig. 6.9 shows the plots of residual energy using three defined 

techniques at the excitation frequency of 2 MHz. Signals are received at four different 

locations using sensors. It can be noted that residual energy in all four sensors 

correlates to the defect size. The time-domain differencing method shows less 

variation compared to the other two used methods. 

(a) (b) 

  
(c) (d) 

 
 

Fig. 6.9. Variation of residual energy @ 2MHz: (a) Sensor Location 1; (b) Sensor 

Location 2; (c) Sensor Location 3; (d) Sensor Location 4 
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Residual energy plots for the second level of excitation at 2.5MHz is shown in Fig. 

6.10. It is clear from the figure that a good linearly approximated correlation exists 

for all four sensor positions. 

 

(a) (b) 

  

(c) (d) 

  

Fig. 6.10. Variation of residual energy @ 2.5MHz:(a) Sensor Location 1; (b) Sensor 

Location 2; (c) Sensor Location 3; (d) Sensor Location 4 
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Fig. 6.11 shows residual energy plots of higher excitation level at 3 MHz. At this 

level, a good correlation is observed for all three methods relative to all four sensor 

locations. 

 

(a) (b) 

  

(c) (d) 

  

Fig. 6.11. Variation of residual energy @ 3MHz: (a) Sensor Location 1; (b) Sensor 

Location 2; (c) Sensor Location 3; (d) Sensor Location 4 
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method gave a positive response for estimating defect size, results show a low level 

of performance ability. Plots related to the Spectrogram differencing based residual 

energy method show a better capability for damage assessment compared to the time-

domain differencing method. Novel development of the wavelet-based residual 

energy method proves high-performance ability in the detection of damage present in 

the structure.  As compared to pre-existing techniques, the wavelet-based technique 

shows a strong correlation with a high degree of likelihood of damage assessment.         


