
Chapter 3 

Damage Detection Techniques 

 

3.1. Introduction 

In this chapter, various conventional and unconventional techniques for SHM have 

been presented and discussed. The chapter starts with the introduction of the strain 

gauge method to obtain the strain values in the structure. Finite Element Method is also 

being widely used for SHM and strain measurement. This method is also discussed in 

brief. The use of a fiber optic sensor for strain measurement is also drawing the 

attention of the researchers, and the same is discussed in detail. Neural network 

technology integrated with the fiber optic sensor for the damage detection within the 

structure has also been presented. Fundamentals of wavelet and their application in 

damage analysis based on the diffused wave have also been discussed. 

 

3.2. Strain Gauge Method 

Strain gauges are the most commonly used strain measurement technique. Advantage 

of using strain gauges include good accuracy, low cost, and flexibility in use. Strain 

gauges are resistive sensors used for strain measurement of the structure at the point of 

contact. The strain gauge works on the principle that the change in physical parameters 

of a wire used in the strain gauge changes the resistance of the wire. By measuring this 

change in resistance, change in the physical variable can be predicted. The physical 

variable in the present work corresponds to strain(ε). 
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 𝜀 =  
∆𝐿

𝐿
 

 

 

The resistance of the wire is given by 
 

 𝑅 =  𝜌
𝐿

(𝐴𝑐)
 

 

 

Where 𝜌 the resistivity of the material, L is is the length of the wire, and (Ac) is the 

area of the cross-section of the wire. As the resistivity of the wire is constant, so the 

resistance of the wire is a function of length and cross-section area of the wire. Any 

change in the above parameters corresponds to the change in the resistance. On 

applying the load on the structure, the change in the above parameters occurs, which 

causes the change in the resistance of the strain gauge.  

Strain gauges are utilized in a Wheatstone bridge, which comprises four resistors in an 

electrical circuit. One of the resistors is supplanted with a strain gauge(quarter 

connect), and the subsequent circuit can be utilized to quantify the strain of the 

structure. Be that as it may, because of certain estimating vulnerabilities under the 

impact of electric and magnetic fields, it gives arbitrary fault measurements that 

influence its exactness. Similarly, legitimate working of the strain gauge relies upon 

the contact of strain gauge with the smple, and so the same should be done carefully. 

 

3.3. Finite Element Methodology 

With the urge of advancement, finite element analysis came into existence in the late 

1950s. It is a method to solve structural problems with complex geometry. The basic 

fundamental of this method is the discretization of large structures into sub-structures 

known as elements. Different finite element methods include Rayleigh, Ritz, and 

(3.1) 

(3.2) 
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Galerkin. Through different stages of development, finite element analysis has emerges 

as a popular tool in area of engineering and research. This technique is now considered 

as an integral part of structural analysis. The finite element has also been used in the 

present research, which will be discussed in detail in the later chapters. 

 

3.4. Fiber Optic Sensor technology 

Despite the fact that the advancement of fiber optic-based structural health monitoring 

is noteworthy, it is yet to arrive at its maximum capacity, particularly as far as market 

abuse. One of the energizing fields wherein FOS's and health monitoring are relied 

upon to assume a noteworthy job is smart structures and intelligent systems. Fig. 3.1 

summarizes different sensor technologies used in structural health monitoring. 

 

 

Fig. 3.1. Block diagram of different fiber optics sensor technologies 
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An interferometric optical-fiber strain sensor gauges the relative hindrance between the 

light going in its reference and detecting arms and afterward relates the retardation or 

phase shift to the strain. The applied strain field influences the refractive index, which 

thus changes the phase shift. The phase shift is likewise delivered along the check 

length of the fiber. There likewise exists an optical path length change brought about 

by the waveguide-mode scattering, yet it is insignificant in the surface-mounted optical 

fiber sensors. For the straight fibers, Butter and Hocker introduced a relation, as given 

in Eq. 3.3, between the changes in the phase to the axial fiber strain [81]. 

 

 
∆∅ =  

2𝜋𝑛0𝐿

𝜆
[1 −  

𝑛0
2

2
{𝑃12 −  𝜈𝑓(𝑝11 +  𝑝12)}] 𝜀𝑛 

 

 

The above equation is valid only when a straight fiber segment is exposed to a constant 

or a linear strain field case. However, the "𝜀𝑛" is the average axial strain over the active 

fiber length. Further, Butter and Hocker assume that only axial strain components in 

the fiber significantly affect phase change and dominate the phase shift in optical-fiber 

hydrophones. The excitation is applied to the detecting fiber, bringing about an optical 

path contrast between the reference and detecting fiber strands. The light intensity of 

the yield of the Mach-Zehnder interferometer can be communicated as,  

 

 𝐼 = 2𝐴2[1 + cos(∆∅)] (3.4) 

 
∆∅ =  

2𝜋𝑛0

𝜆
[1 −  

𝑛0
2

2
{𝑃12 −  𝜈𝑓(𝑃11 +  𝑃12)}] ∫ 𝜀𝑓𝑑𝑥

𝐿𝑓

 
 

 

(3.3) 

(3.5) 
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Expanding equation 3.3 for strain in active length of optical fiber we get equation 3.5. 

Since the terms outside the integration sign of equation 3.5 are constants for any given 

optical fiber system, the total optical phase shift is proportional to the optical fiber 

strain. By measuring the total optical phase shift, the optical fiber strain can be easily 

obtained as follows: 

 

 
∫ 𝜀𝑓𝑑𝑥

𝐿𝑓

=  
∆∅

2𝜋𝑛0

𝜆
[1 −  

𝑛0
2

2
{𝑃12 −  𝜈𝑓(𝑃11 +  𝑃12)}]

 
 

 

The strain obtained from equation 3.6 denotes the strain in the sensing length of the 

fiber, which is surface bonded onto the host structure. The average strain of the optical 

fiber for optical phase shift is:  

 

 

𝜀𝑎𝑣𝑔 =  
∫ 𝜀𝑓𝑑𝑥

𝐿𝑓

𝐿𝑓
=  

∆∅
2𝜋𝑛0

𝜆
[1 − 

𝑛0
2

2
{𝑃12 −  𝜈𝑓(𝑃11 + 𝑃12)}]

 

 

 

The relative retardation can be delivered in a Mach-Zehnder design. The Mach-

Zehnder position disentangles the sensor structure, yet it additionally seriously restricts 

the adaptability of the sensor. A strain-free reference fiber would be hard to keep up 

outside a research laboratory. In the applications considered here, the detecting fiber 

arms are presented to the strain field by bonding them to the outside of a stressed 

structure. 

Fabry-Perot interferometric sensors are particularly suited to measure very low strains 

in large scale infrastructures. Examples of such applications are the measurement of 

(3.6) 

(3.7) 
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small strains or vibrations in large structures like rocket test stands, buildings, oil rigs, 

bridges, dams, etc. Fabry – Perot is referred to as a spectrum analyzer where the transmission 

occurs according to eq. 3.8 [90]. As intensity is proportional to the square of the modulus of 

the electric field amplitude, so transmitted intensity IT in terms of incident wave intensity 𝐼0 

can be related as given in equation 3.8. 

  

 
𝐼𝑇 =

𝐼0(1 − 𝑟)2

(1 + 𝑟2 − 2𝑟 cos 2𝛿)
=  

𝐼0(1 − 𝑟)2

(1 − 𝑟)2 − 4𝑟𝑠𝑖𝑛2𝛿
 

 

 

Where r is the ratio of the intensity of refracted and incident ray, and 𝛿 is the phase 

parameter of the incident light. The strain is then calculated by using equations 3.4 

through 3.8.   

A Doppler impact based fiber-optic (FOD) sensor depends on the Doppler impact of 

lightwave transmission in optical fiber, and it works as a vibration/acoustic sensor. The 

Doppler shift in the frequency can be gotten from the accompanying condition [91].  

 

 
𝑓𝐷 =  −

𝑛

𝜆0
 .

𝑑𝐿

𝑑𝑡
 

 

 

Where 𝜆0 is the light wavelength in the vacuum, and  λ0/n is the light wavelength in 

the optical fiber. Doppler frequency shift 𝑓𝐷 of a circular loop FOD can be used to 

obtain the axial strain in fiber using following equation [90]. 

 

 𝑓𝐷 =  −
𝜋𝑛𝑞

𝜆0
 . (𝜀𝑥̇ + 𝜀𝑦̇) 

 

 

(3.8) 

(3.9) 

(3.10) 
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Another detecting innovation utilized for FOS incorporates distributed sensors. On 

account of these sensors, the incident electromagnetic field will reorient the initially 

indistinguishable irregular fluctuating atomic mists. This inclination of re-direction has 

watched all things considered on a small spatial scale covering a small part of the 

frequency. Such an aggregate inclination to react to an EM field would bring about 

macroscopic polarization that corresponds to the external electric field. A portion of 

the dissipated Rayleigh light is re-captured by the waveguide and sent in a regressive 

path. On account of Rayleigh distributed sensors, the regressive spreading Rayleigh 

dispersed light has a period of delay that can be utilized for distributed detecting. The 

uses of Rayleigh dispersing to the fiber detecting are generally wide-coming; it tends 

to be utilized to detect local temperature or strain through identifying obstruction 

comparative with a reference length. It can likewise be utilized to detect impact 

vibrations.  

The Raman dispersing depends on inelastic interaction systems between the 

propagating light pulse and the optical fiber. Photons of a pulse laser are infused into 

an optical fiber and the exchange of energy with the molecules of the fiber material 

occurs. New photons with lower or higher energy are then delivered, and the 

backscattered spectrum is made out of two pinnacles or groups called Stokes and Anti-

Stokes parts. Utilizing the proportion of the intensities of Stokes and Anti-Stokes 

segments, the thermal strain can be found.  

Another distributed detecting innovation incorporates Brillouin scattering. In this 

sensor, excitation can be produced specifically at a particular segment along the fiber. 

The selected segment can be differed by adjusting the frequency modulation to 

accomplish dispersed estimation. In Brillouin Optical Correlation Domain Analysis 
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(BOCDA), the position to be estimated can be chosen arbitrarily along the fiber. 

Brillouin dynamic grating (BDG), an acoustic-wave created refractive-index grating 

caused in the simulated Brillouin dissipating process, produce Bragg reflection for the 

symmetrically polarized light wave in a polarization-maintaining fiber. Estimation of 

BDG, just as the Brillouin dispersing, synchronous appropriated estimation of strain, 

and temperature, have been acknowledged by the BOCDA. Fiber optic nerve 

frameworks, to be specific circulated and multiplexed optical fiber detecting 

innovations, are valuable to cause the structures and materials to anticipate the damage 

and defects. Brillouin and Rayleigh's scatterings are subtle to both temperature and 

strain, while Raman dispersing is just delicate to temperature.  

Another well-known optical detecting innovation incorporates grating sensors. Under 

phase coordinating conditions, a fiber Bragg grinding (FBG) couples the forward 

engendering core mode to the regressive proliferating core mode. A long fiber grating 

(LPG) can couple the forward proliferating core mode to one or a couple of the forward 

engendering cladding modes. A chirped fiber grating has a more extensive reflection 

range, and every frequency component is reflected at various positions, which brings 

about a defer time distinction for various reflected frequencies. A tilted fiber grinding 

can couple the forward spreading core mode to the retrogressive proliferating core 

mode and a regressive engendering cladding mode. An inspected fiber grating can 

mirror a few frequency components with equivalent frequency dividing. Every one of 

these kinds of gratings have been used in different sorts of fiber grinding sensors and 

frequency change cross interrogators. 

 

 



41 | P a g e  
 

3.5. Analytical explanation of Fiber Optic Strain Sensors 

The basic working of the optical strain sensor is based on a strain-induced phase shift 

that occurs in the light signal being transmitted in an optical fiber. Sirkis and Haslach 

showed that only the axial component of strain in a surface-mounted optical fiber 

affects the index of refraction [82]. Elemental analysis is performed to obtain the 

relation between the change in phase with the variation in the index of refraction along 

the length of the fiber. For a small elemental segmental length (∆s), the index of 

refraction is approximated as a constant equal to n(s). Phase change relation exists, as 

shown in equation 3.11. 

 

 
∆∅ =  

2𝜋

𝜆
𝑛(𝑠)(1 + 𝜀𝑛)∆𝑠             

 

 

Limiting the value as ∆→0 we get  

 𝑑∅

𝑑𝑠
=    

2𝜋

𝜆
𝑛(𝑠)(1 + 𝜀𝑛) 

 

 

On integrating equation 3.12 along the length of the fiber 

  

 
∅ =  

2𝜋

𝜆
∫ 𝑛(𝑠)(1 + 𝜀𝑛)

𝐿

0

𝑑𝑠             
 

 

Equation 3.13 shows that phase is an increasing function with L. Index of refraction 

in a surface-mounted fiber is a function of  𝜀𝑛. Equation 3.14 shows the first-order 

terms 

(3.11) 

(3.12) 

(3.13) 
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 𝑛(𝑠) =  𝑛0 (1 − 𝑐𝜀𝑛)           (3.14) 

 

Where 𝑛0 index of refraction under the unstrained condition and c is defined as 

 

 
𝑐 =  

𝑛0
2

2
{𝑝12 −  𝜈𝑓(𝑝11 + 𝑝12)} 

 

 

Where pij is pockel’s constant and vf is the Poisson's ratio. Now assuming β= 2πn0/λ 

and ignoring higher-order terms we get   

 

 
∅ =  𝛽 ∫ (1 − 𝑐𝜖𝑛)(1 + 𝜖𝑛)

𝐿

0

𝑑𝑠 =  𝛽𝐿 + 𝛽(1 − 𝑐) ∫ 𝜖𝑛𝑑𝑠
𝐿

0

 
 

 

Butter and Hocker strain equation (eq. 3.17), is obtained by subtracting the phase 

values obtained from equation 3.19 for the strained and unstrained condition [81]. 

 

 
∆∅ =  𝛽(1 − 𝑐) ∫ 𝜀𝑛𝑑𝑠

𝐿

0

 = 𝛽(1 − 𝑐) 𝜀𝑎𝑣𝑔. 
 

  

Where 𝜀𝑎𝑣𝑔. is average strain developed in optical fiber. To develop a sensor design 

using this phase change property of optical fiber, the sensing and reference path have 

been expressed as a function of optical parameter ts. Sensing and reference path can 

be expressed in x-y co-ordinate system as shown in equation 3.18.    

 

(3.15) 

(3.16) 

(3.17) 
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                     fs(ts)=[x(ts), y(ts)],  fr(tr)=[x(tr), y(tr)]  (3.18) 

 

 

 

Fig. 3.2. Co-ordinate axis position for fiber curve 

 

Assuming a fiber position in x-y co-ordinate at angle θ tangent to the fiber curve as 

shown in the fig. 3.2.taking tangent of the axis as  

 

 tanθ = y’/x’ (3.19) 

 

Where y’= dy/dt and x’= dx/dt therefore 

 

 
𝑆𝑖𝑛 𝜃 = 𝑦′/√𝑥′2 + 𝑦′2       ,     𝐶𝑜𝑠 𝜃 = 𝑥′/√𝑥′2 + 𝑦′2 

(3.20) 

 

 

θ 

Y axis 
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Using strain transformation law  

 

 𝜀𝑛 =  𝜖𝑥𝑥𝐶𝑜𝑠2𝜃 +  𝜖𝑦𝑦𝑆𝑖𝑛2𝜃 + 𝛾𝑥𝑦 sin 𝜃 cos 𝜃 (3.21) 

 

By using equation 3.20, and rearranging we get  

 

 
𝜀𝑛 =  

(𝜀𝑥𝑥𝑥′2
+  𝜀𝑦𝑦𝑦′2

+ 𝛾𝑥𝑦𝑥′𝑦′)

(𝑥′2 + 𝑦′2)
 

 

 

Length of the arc s of fiber path is related to the co-ordinate parameters as  

 

 
𝑑𝑠 =  √𝑥′2 + 𝑦′2  𝑑𝑡 

(3.23) 

 

Substituting equation 3.16 and equation 3.17 in equation 3.11 we get 

 

 
∆∅ =  𝛽(1 − 𝑐) ∫ 𝜀𝑛𝑑𝑠

𝐿

0

 

= 𝛽(1 − 𝑐) ∫
(𝜀𝑥𝑥𝑥′2

+  𝜀𝑦𝑦𝑦′2
+ 𝛾𝑥𝑦𝑥′𝑦′)

(𝑥′2 + 𝑦′2)
. √𝑥′2 + 𝑦′2 𝑑𝑡

𝐿

0

 

 

 

For simplifying above integral we assume   

 

(3.22) 

(3.24) 
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𝑘1  = ∫

𝑥′2

√𝑥′2 + 𝑦′2

 𝑑𝑡
𝐿

0

       ,   𝑘2  = ∫
𝑦′2

√𝑥′2 + 𝑦′2

 𝑑𝑡
𝐿

0

   ,    

𝑘3  = ∫
𝑥′𝑦′

√𝑥′2 + 𝑦′2

 𝑑𝑡
𝐿

0

 

 

 

Now equation 3.24 simplifies as 

  

 ∆∅ =  𝛽(1 − 𝑐) [𝜖𝑥𝑥𝑘1 + 𝜖𝑦𝑦𝑘2 + 𝛾𝑥𝑦𝑘3]            (3.26) 

 

Applying co-ordinate conditions at y’=0, k2 =k3=0, thus above equation 3.26 became 

  

 ∆∅ =  𝛽(1 − 𝑐) [𝜖𝑥𝑥𝑘1]            (3.27) 

 

From equation 3.27 it is clear that change in phase is directly related to the change in 

the axial strain for a surface-mounted fiber optic sensor.   

The important characteristic to address in a transmission system is the noise 

performance of the system. There are different sources of noise in a communication 

system. The initial source of noise arises from the circuit itself, which is known as 

internal noise. The significant effect of noise has been observed at higher frequencies, 

and laser diodes operate at comparatively high frequencies; therefore, it becomes 

important to recognize noise in high-frequency transmission. Fluctuations in light 

intensity of laser output can be carried as noise in transmission signals. Reflection noise 

is a laser noise which occurs due to the Fresnel reflection phenomenon. The output 

(3.25) 
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signal from a laser carries a specific wavelength, satisfying both gain and phase 

condition between two reflecting laser regions. But due to finite spectral width in the 

output of a laser, noise is generated, which is known as mode partition noise. 

 Speckle patterns are characteristically defined as a redistribution of power over the 

cross-section of the optical fiber core. But due to different wavelength components in 

the optical signal, it undergoes different phase changes with respect to time. The 

speckle pattern also varies with respect to time. This variation with time and the non-

uniform power detection capability of the photo-detector over its entire cross-section 

create fluctuations in the output signal. This noise is called speckle noise. Relaxation 

oscillations produced at the receiver output also contribute to the increment in the noise 

of transmitting signals.    

From the above discussion, it can be concluded that the practical use of the analytical 

solution for strain calculation may lead to some errors due to noise in the signals. There 

exist various methods to remove noise data using filters and other software. These 

signals can be successfully used to determine strain values using neural network 

technology. Neural network technology is cheaper and practically applicable to 

different problems that require data mining [83].  

Calculation of strain using surface-mounted optical sensor given in equation 3.30 

provides analysis only in static loading conditions. Under dynamic loading, the results 

of the analytical analysis may provide diverging results. Moreover, the noise in the 

signals also contributes to the variation of results, but the same signals can be 

successfully used to determine strain values using neural network technology.   
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3.6. Fundamentals of Neural Network Integrated FOS Based SHM 

for Damage Detection 

Damage assessment is one of the important applications of fiber optic sensors in the 

area of structural health monitoring. The operation and mechanical compatibility of a 

sensor is the pre-requirement in a smart monitoring system. The advance structural 

health monitoring system requires a multidisciplinary understanding of various areas, 

which include mechanical, system engineering, sensing, actuation, and signal 

processing. Ye Lu et al. proposed an inverse analysis for damage identification in metal 

plates. Parametric modeling is used for finite element analysis to create a damage 

scenario with selected parameters. Mapping technique is applied to constitute damage 

parameter data, which includes digital damage fingerprints [49]. D.N Thatoi et al. 

expanded his work by proposing an advance crack detection technique using cascade 

forward back propagation neural network methodology. A comparative analysis 

between analytical, FEA, and artificial intelligence-based damage assessment is 

performed. The proposed model successfully predicts the severity and location of 

damage [51]. M. Gordan et al. reviewed the data mining process applicable to structural 

health monitoring [53].  

L. Xie et al. studied the crack growth process in ductile alloys based on dynamic neural 

network modeling. The design of the network model was based on the learning of crack 

opening stress and crack length growth. It was shown that a well-developed dynamic 

neural network model has a capability of crack growth estimation [55]. Ahmed A. 

Elshafey et al. introduced the neural network concept for the analysis of crack spacing. 

Two kinds of neural network namely, radial base and feed-forward back-propagation, 
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are used for crack analysis [56]. M. Mehrjoo et al. tested a practical application of a 

neural network model for damage analysis of a truss bridge structure. Natural 

frequencies and mode shapes were used as input parameters for detecting damage 

percentage as output [86]. M. Rajendra et al. proposed a new neural network based on 

complex spaces. Complex valued radial basis functions are used for multiple crack 

analysis in beam structure. These advance network methodologies are initially applied 

for damage identification, followed by accurate crack location [87].  

Paulraj M.P. et al. discuss the damage detection in the metal plates using artificial 

neural networks. Impact testing is performed for generating the vibration patterns, and 

time-domain signals are proposed to extract the desired features. A comparison of 

healthy and faulty samples are performed based on the feature extraction algorithms 

[88]. S. Suresh et al. used model frequency parameters for the approximation of crack 

location and depth identification. Computed model frequencies are used in training the 

network for locating and sizing the crack model. In this study, a modular neural 

network comprising of a multilayer perceptron model and a radial basis model is 

applied for the health monitoring of structures [89]. D. Maity et al. introduced a damage 

assessment methodology using a neural network. Analysis of damage and healthy 

samples are used for training the network displacement. The strain values are taken as 

input values, and damage location parameters are approximated as output values [57].  

 

3.7. Fundamental of wavelet and multiscale analysis 

Wavelet mechanics emerges as a popular tool in fulfilling the requirement of 

continuous technological development and advancement demand. The use of wavelet 

transform with the development of partial differential equations made this technique 
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more effective for mathematicians and engineers. Wavelet mechanics can successfully 

be applied in the area of data compression, image processing, time series analysis, and 

signal conditioning. 

This chapter includes the basics and fundamental understanding of theory related to 

wavelet mechanics. The focus of the study is made on discrete wavelet analysis as per 

the requirement and scope of the study. Advancement is made with a logical 

explanation for diffuse zone selection using wavelet analysis. Moreover, wavelet 

mechanics can be applied for coefficient extraction at different levels which can be 

further used as input for neural network analysis for structural health monitoring. 

3.7.1. Wavelet – An Overview  

The credit of initial work on the orthogonal function system goes to Alfred Haar (1910). 

His dissertation titled "On the theory of the orthogonal function systems" is based on 

the orthogonal system of functions, which further expands as the development of a set 

of rectangular basis functions. During the investigation of Brownian motion, Paul Levy 

discovered that scale varying (or Haar basis) function could be preferred over the 

Fourier basis function for detailing of subtle variations. Haar basis function gives a 

high degree of precision in modeling a function as it can be scaled into different 

intervals. Various researchers contributed to the advancement of function modeling. In 

1982, Jean Morlet developed the technique of scaling and shifting of analysis window 

functions in analyzing acoustic echoes and termed it as wavelet. Morlet and Grossmann 

have developed wavelet transform by providing proper mathematical formulation for 

continuous wavelet. Various mathematicians like I.Daubechies, A. Grossmann, S. 

Mallat, Y. Meyer, R.A. DeVore, R. Coifman, V. Wickerhauser, and many more gave 

their remarkable contribution to the advancement of wavelet analysis. 
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The invention of a multiresolution analysis by Mayer (1987) and Mallat (1989) 

expanded the application of wavelet methodology. Multiresolution analysis based 

designing the scaling function of wavelet allows constructing mathematical grounded 

new functions. Variation of scaling and transformation of wavelet generates a family 

of the wavelet function. According to Daubechies (1988), the wavelet transform can 

be defined as, "A wavelet transform is a tool that cuts up data, functions or operators 

into different frequency components, and then studies each component with a 

resolution matched to its scale." 

3.7.2. Wavelet Transform 

The concept of wavelet transform includes two basic parameters, namely scaling and 

shifting. Scaling of a function 𝜓(𝑡) is referred as a process of stretching or shrinking 

of signal in time, which can be expressed as 𝜓 (
𝑡

𝑠
)  𝑠 > 0 where 's' is a scaling factor 

which is a positive value and it corresponds to the extent up to which given signal is 

scaled in time. The scaling factor is inversely proportional to the frequency with a 

constant of proportionality. This constant of proportionality is known as the center 

frequency of wavelet (𝐶𝑓). Mathematically, the equivalent frequency can be defined 

as the following equation 

 

𝐹𝑒𝑞 =  
𝐶𝑓

𝑠 𝛿𝑡
 

 

 

Where s is wavelet scale, and δt is the sampling interval. Stretched wavelet helps in 

identifying slow variations in a signal, whereas compressed wavelet helps in 

identifying abrupt change in the signal. Shifting is the phenomenon of delaying or 

(3.28) 
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advancing the onset of the wavelet signal length. A shift in the wavelet can be 

represented as ϕ(t-k). It shows that the wavelet got shifted and centered at k. Broadly, 

there exist two types of wavelet transform describes as follows: 

3.7.2.1.   Continuous Wavelet Transform (CWT) 

This wavelet is best suited for time-frequency analysis as these wavelets do not have 

negative frequency components. The output of continuous wavelet transform are 

coefficients, which are generally a function of scale-frequency or time. When a wavelet 

is scaled by a factor of 2 it reduces the equivalent frequency by an octave. The 

advantage of using continuous wavelet transform is that the results can be analyzed at 

intermediate scales within each octave, which helps in the fine-scale analysis. Each 

scaled wavelet is shifted in time along the entire length of the signal, and a comparison 

is performed with the original signal. The process is repeated for different scales 

resulting in the coefficients that are functions of the wavelet scale and shift parameter.   

The continuous wavelet transform furnishes the decomposition of the signal 𝑥(𝑡) onto 

a set of basis functions that are worked out by an inner product of 𝑥(𝑡) with a mother 

wavelet 𝜓(𝑡), expressed as 

𝑊 𝑥(𝑢, 𝑠) =  
1

√𝑠
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝑢

𝑠
) 𝑑𝑡 = < 𝑥(𝑡),  𝜓𝑢,𝑠(𝑡) >

∞

−∞

 
 

 

Where 𝜓∗denotes the complex conjugate of mother wavelet and symbol <,> denotes 

the inner product. The mother wavelet 𝜓(𝑡) can be real or complex. The time-domain 

signal is decomposed by time convolution with the scaled basis of function 𝜓(𝑡) called 

as simpler or daughter wavelets. Morlet wavelet provides the visualization of the 

(3.29) 
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possible discontinuities in the signal. Continuous wavelet transform can be utilized in 

the area of time-frequency analysis and filtering of time localized frequency 

components. 

3.7.2.2.   Discrete Wavelet Transform  

Discrete wavelet transform (DWT) is ideal for denoising and image compression as it 

helps in representing naturally occurring signals and images with less number of 

coefficients. The base scale for discrete wavelet transform is two. Different scales can 

be obtained by raising the base scale value to 2j where j = 1, 2, 3..... Translation can be 

considered as the integer multiples of scaling parameter and can be represented as 2jm 

where m = 1, 2, 3..... 

Both these processes are termed as dyadic scaling and shifting. This type of sampling 

reduces redundancy in coefficients.  The output of discrete wavelet transform gives the 

same number of coefficients as in the input signal; therefore, the computation cost is 

reduced. 

 

 

Fig. 3.3. Schematic showing working of discrete wavelet transform 
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As shown in fig. 3.3, the input signal is first filtered with a special low pass filter (LPF) 

and high pass filter (HPF) to give low pass sub-bands and high pass sub-bands, 

respectively. Half of the samples (data) are rejected after filtering as per Nyquist 

criteria. These filters carries high performance of computation as a consequence of 

small number of coefficients. These filters can also reconstruct the sub-bands while 

canceling the errors due to down sampling. The length of coefficients in each sub-bands 

is half of the number of coefficients in the preceding stage. In this way, a discrete 

wavelet helps in analyzing the signals at progressively narrow or sub-bands at a 

different resolution. 

3.7.3.   Signal Processing Using Wavelet Transform 

Denoising a signal is the initial step in signal conditioning. In this section, the idea of 

denoising of the signal using wavelet is discussed. Further extension is given for the 

development of diffuse zone selection using wavelets. Basically, a discrete wavelet is 

applied in diffuse wave analysis. The decomposition of signal in detailed and 

approximated coefficients is carried out using multilevel wavelet decomposition. As 

DWT split signal into a low pass sub-band (approximation level) and high pass sub-

band (detailed level), approximate sub-bands can be further decomposed at multiple 

levels or scales for fine-scale analysis. The next step is to analyze the detail coefficients 

and select the proper thresholding technique. 

The first level detail coefficients capture the high frequency of the signal. Major 

components of the high frequency contain the noise of the signal, but a part of the high-

frequency component can be made up of abrupt changes in the signal. Sometimes these 

abrupt changes carry meaning-full information, which can be useful in analysis. 
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Noise in the signal can be removed by the detail coefficients of using the threshold 

method. There exist two basic methodologies, namely soft and hard thresholding. In 

both cases, the coefficients with a magnitude less than the threshold value are set to 

zero. First soft-thresholding detail coefficients greater than the magnitude of threshold 

level are shrunken towards zero by subtracting the threshold value from coefficient 

value. In the case of hard-thresholding, the coefficients greater in the magnitude of 

threshold value are left unchanged.      

 

3.8. Diffuse wave-based numerical analysis 

Diffuse field analysis emerges as an alternate approach in the area of non-destructive 

evaluation of structures. Though diffuse signals are considered sensitive to the variations in the 

structural parameters, the difficulty exists in correlating ultrasonic response to the change in 

structural parameters. Conventional analytical methods used for quantitative comparison of 

diffuse signals include time-domain differencing and spectrogram differencing. A sincere 

advancement is made in the sequence of the above methods is a wavelet-based differencing 

method. The basis of all mentioned methods is the analysis of the energy difference between 

two signals. These energy parameters can be used for the successful detection of damage 

severity in a structure. Detail discussion related to energy methods is given in chapter 6. 


