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A Practical Synthesis of 3-Functionalized Coumarins from            

o-Cresols and Active Methylene Compounds under Metal and 

Catalyst-Free Conditions using tert-Butyl Hydrogen Peroxide 

 

3.1 Introduction 

Coumarin scaffold is a well-regarded parent compound found in several natural 

products (Murray et al. 1989, Brahmachari et al. 2010) and bioactive molecules (Hoult et 

al. 1996). Coumarin derivatives possess a wide range of biological activities including 

antibacterial (Creaven et al. 2010), antifungal (Kayser et al. 1997), anti HIV (Bhavsar et al. 

2011, Bedoya et al. 2005), antioxidant (Vazquez et al. 2013, Kontogiorgis et al. 2003), 

antimutagenic (Kontogiorgis et al. 2005), anticancer (Zhi et al. 2014, Wu et al. 2014),                 

anti-inflammatory (Timonen et al. 2011, Melagraki et al. 2009), analgesic (Khode et al. 

2009), antibiotic activities (Chimenti et al. 2006). Coumarin scaffold is also incorporated in 

insecticides (Moreira et al. 2007), fragrances & perfumes (Aslam et al. 2010), 

agrochemicals (Schonberg et al. 1954, Adronov et al. 2000) and additives in foods and 

cosmetics (Frosch et al. 2002, Brahmachari et al. 2015). Numerous carboxy coumarins are 

used as triplet oxygen sensitizers (Peroni et al. 2002) and fluorescent probes (Specht et al. 

1982). Hence, coumarin is a very imperative building block for combinatorial library 

synthesis. Figure 3.1 represents some biologically active compounds like Novobiocin, 

Hymechromone, Acenocoumaral, Ensaculin (KA 672), Batoprazine and Warfarin having 

coumarin moiety. 
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Figure 3.1: Biologically active molecules containing coumarin moiety.                   

                                                                                          

Synthesis of these oxygen containing heterocyclic compounds are usually executed 

by numerous methods such as von Pechmann (Pechmann et al. 1884), Perkin (Johnson et 

al. 2004), Wittig reaction (Yavari et al. 1998) and Baylis-Hilmann reaction (Kaye et al. 

2003). Knoevenagel condensation is not only an alternative method but also an efficient 

method for the synthesis of 3-substituted coumarins from salicylaldehyde with active 

methylene compounds like meldrum acid, malonate esters, ethyl cyanoacetate (Jones et al. 

2004) etc. Synthesis of 3-substituted coumarins via Knoevenagel condensation was 

achieved using different metal and metal-free catalyst like ZrCl4 (Valizadeh et al. 2011), 

Mg-Al hydrotalcite (Bandgar et al. 1999), mesoporous molecular sieve MCM-41(Heravi et 

al. 2010), p-toluenesulfonic acid (Kumar et al. 2014), natural clay (Bandgar et al. 1999),               
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L-proline (Karade et al. 2007), NaOH (Zhang et al. 2004), piperidine (Volmajer et al. 

2005), MgFe2O4 nanoparticles (Ghomi et al. 2018) (Scheme 3.1, A). However, most of 

these methods have their own merits and demerits.  

Recently, the oxidative functionalization of methyl arenes has emerged as an efficient 

and alternative approach to access a wide range of functional groups including amides, 

esters, ketones, nitriles etc. (Vanjari et al. 2015, Zhou et al. 2009). Ready availability, high 

stability and easy handling are the major advantages of methyl arenes when compared to its 

aldehydes analogues. Despite the potential, so far no method has been developed for the 

oxidative synthesis of coumarins from the stable ortho-hydroxy methylarenes (i.e. o-

cresols) via direct sp3 C-H bond functionalization reactions with active methylene 

compounds.  

As a well-known oxidant, tert-butyl hydrogen peroxide (TBHP) has found wide 

applications in several oxidation reactions to generate C_C, C_N, C_O, C_S and N_N bonds 

(Sun et al. 2018, Zheng et al. 2015, Guntreddi et al. 2014, Sun et al. 2016, Yuan et al. 2014, 

Jiang et al. 2019, Yu et al. 2016, Yang et al. 2017, Wu et al. 2017, Kumar et al. 2019, Li et 

al. 2017, Hill et al. 1983). TBHP has attracted much attention because of its easy 

availability, cost-effectiveness, easy handling, etc. In this context, we have recently 

explored the TBHP promoted transamidation reactions (Mishra et al. 2019). In 

continuation, here we report the synthesis of 3-functionalized coumarins from o-cresols and 
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active methylene compounds using tert-butyl hydrogen peroxide (TBHP) as an oxidant 

under solvent free condition (Scheme 3.1, B). 

 
 

Scheme 3.1: Previous & present method for the synthesis of coumarin. 

 

 

3.2 Results and Discussion  

In order to optimize reaction conditions, o-cresol 1a (1.0 mmol) and diethylmalonate 

2a (1.2 mmol) were chosen as the model substrates and subjected to the oxidative 

condensation reaction. The effect of different parameters including reaction medium, 

oxidant and its loading as well as temperature was examined on the model reaction. 

Initially, the condensation of o-cresol and diethylmalonate was performed using TBHP (5 
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equiv.) in different polar solvents like water, acetonitrile, 1,4-dioxane, dichloromethane, 

chloroform (Table 3.1, entries 1-5) and also in non-polar solvents like hexane, benzene 

(Table 3.1, entries 6,7) at its refluxed temperature. The reaction proceeded smoothly in all 

the solvents tested in this study and gave the desired product 3a in 40-75% yield. 

 

In order to improve the yield of the product in a greener way, we have switched to the 

solvent free condition. The model reaction was investigated under solvent free condition 

using TBHP (5 equiv.) as an oxidant at different temperatures. No product was obtained at 

room temperature (25 °C). Hence, the reaction was carried out at higher temperature 50-

100 °C (Table 3.1, entries 8-12). At 50 and 70 °C, the desired product 3a was obtained in 

45, 70% yield while at 80 °C the reaction provides 91% yield (Table 3.1, entry 11). Any 

further increase in reaction temperature did not show significant change on reaction time 

and yield of the product (Table 3.1, entry 12). It is important to mention that the reaction 

temperature affect the yield of the product which is possibly due to the different rate of 

radical generation via thermal breakdown. Further, we have investigated the reaction 

progress by varying amount of TBHP from 2-6 equiv. (Table 3.1, entries 11, 13-16). The 

best result was obtained with 4 equiv. of TBHP (Table 3.1, entry 14) which provides the 

desired product in 91% yield within 2.5 h.  
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Table 3.1: Optimization of solvents, oxidants and temperaturea 

 

 

 

Entry Solvent Oxidant 

(Equiv.) 

Temperature 

(°C) 

Time (h) Yieldb 

(%) 

1 Water  TBHP (5) Reflux 5 75 

2 Acetonitrile TBHP (5) Reflux 7 69 

3 1,4-dioxane TBHP (5) Reflux 6 65 

4 Dichloromethane TBHP (5) Reflux 5 40  

5 Chloroform TBHP (5) Reflux 6 67 

6 Hexane TBHP (5) Reflux 6 65 

7 Benzene TBHP (5) Reflux 7 66 

8 Solvent freec TBHP (5) rt 7 NR 

9 Solvent free TBHP (5) 50 6 45 

10 Solvent free TBHP (5) 70 4 70 

11 Solvent free TBHP(5) 80 2.5 91 

12 Solvent free TBHP (5) 100 2.5 91 

13 Solvent free TBHP (6) 80 2.5 91 

14 Solvent free TBHP (4) 80 2.5 91 

15 Solvent free TBHP (3) 80 2.5 50 

16 Solvent free TBHP (2) 80 2.5 20 

17 Solvent free CAN (4) 80 2.5 NR 

18 Solvent free Oxone (4) 80 2.5 NR 

19 Solvent free DDQ (4) 80 2.5 NR 

20 Solvent free Chloranil (4) 80 2.5 NR 
a Reaction Condition: o-cresol (1.0 mmol), diethylmalonate (1.2 mmol) and oxidizing agent. b Isolated yield. 
c No additional solvent.                                                                                                                                                   
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 The model reaction of o-cresol and diethylmalonate was also investigated with 

different organic/inorganic oxidizing agents such as ceric ammonium nitrate (CAN), oxone, 

DDQ and chloranil under solvent free condition at 80 °C (Table 3.1, entries 17-20), but not 

a trace of the product was obtained. Formation of model compound 3a is confirmed by the 

1H & 13C NMR spectroscopy (Figure 3.2 and 3.3). 

 

With these optimized conditions, the substrate scope of this methodology was 

explored with diethylmalonate and different substituted o-cresol. o-Cresol with different 

electron donating viz. ethyl 8-methoxy-2-oxo-2H-chromene-3-carboxylate (3d),                      

ethyl 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylate (3e) (Table 3.2, entries 3d and 

3e) as well as electron withdrawing groups viz. ethyl 6-bromo-2-oxo-2H-chromene-3-

carboxylate (3b), ethyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (3c),                                  

(Table 3.2, entries 3b and 3c) undergo subsequent transformation smoothly in good yields 

(87-90%).We have also tested the other active methylene compounds like 

dimethylmalonate, ethyl acetoacetate, meldrum acid. To our delight, these substrates 

participated efficiently in the  oxidative coupling reaction and provided the desired products 

in good yields (Table 3.2, entries 3f-3s) viz. 3-acetyl-2H-chromen-2-one (3f), 3-acetyl-6-

bromo-2H-chromen-2-one (3g), 3-acetyl-6-chloro-2H-chromen-2-one (3h), 3-acetyl-8-

methoxy-2H-chromen-2-one (3i), 3-acetyl-7-(diethylamino)-2H-chromen-2-one (3j),                     

2-oxo-2H-chromene-3-carboxylic acid (3k),     
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   Table 3.2: TBHP mediated synthesis of coumarin under solvent free conditiona

   aReaction conditions: o-cresol derivatives (1.0 mmol), active methylene compounds (1.2 mmol), TBHP           

(4 equiv.) were heated at 80 °C. bIsolated yield 
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6-bromo-2-oxo-2H-chromene-3-carboxylic acid (3l), 6-chloro-2-oxo-2H-chromene-3-

carboxylic acid (3m), 8-methoxy-2-oxo-2H-chromene-3-carboxylic acid (3n),                                

7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (3o), methyl 2-oxo-2H-chromene-

3-carboxylate (3p), methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate (3q), methyl                    

6-chloro-2-oxo-2H-chromene-3-carboxylate (3r) and methyl 8-methoxy-2-oxo-2H-

chromene-3-carboxylate (3s). 

3.3 Mechanistic Study & Controlled Experiments  

In order to establish the reaction mechanism, a controlled experiment was performed 

with radical scavenger TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (Scheme 3.2) under 

the same optimized reaction conditions with 5 equiv. of TEMPO, less than 5% of the 

desired product (3a) was obtained. This observation shows that the reaction proceeds 

through radical pathway. 

 

 

 

 

Scheme 3.2: Control experiment with TEMPO. 

Next control reaction was performed between toluene (4a) and diethylmalonate (2a) 

in the presence of TBHP under optimized reaction conditions. The desired Knoevenagel 
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product 5a was obtained in 92% yield. In fact, not only toluene but also many other methyl 

arenes underwent oxidative coupling with diethylmalonate (2a) and provided Knoevenagel 

products (Table 3.3, entries 5b-5e) viz. diethyl 2-benzylidenemalonate (5a), diethyl 2-(4-

nitrobenzylidene)malonate (5b), diethyl 2-(4-bromobenzylidene)malonate (5c), diethyl 2-

(2-chlorobenzylidene)malonate (5d) and diethyl 2-(naphthalen-2-ylmethylene)malonate 

(5e) in good yields. It is clear from above observation that initially toluene oxidizes into 

benzaldehyde and then it reacts with diethylmalonate to give Knoevenagel product.                                                                                                                                  

Table 3.3: Conversion of toluene derivatives into corresponding Knoevenagel productsa 

 
           aReaction conditions: Toluene derivative (1.0 mmol) active methylene (1.2 mmol) TBHP (4 equiv.) 

        were  heated at 80 °C. b Isolated yield. 

 

 

To investigate the role of TBHP in Knoevenagel condensation of benzaldehyde (6) 

and diethylmalonate was performed in the absence of TBHP under solvent free condition at                
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80 °C (Scheme 3.2, A). This reaction did not provide the desired product even after 2 h. 

Further, the reaction was performed only in water in the absence of TBHP to make sure that 

the reaction is not promoted by water. No product was obtained while starting material was 

remained as such (Scheme 3.2, B) which indicates that water did not take part in 

Knoevenagel condensation. However, when the same reaction was carried out in the 

presence of TBHP desired product was obtained in good yield (Scheme 3.3, C). These 

results indicate that TBHP took part not only in the oxidation of methyl arene to aldehyde 

but also in Knoevenagel condensation reaction. 

 

 

 
Scheme 3.3: Controlled experiment with and without TBHP. 
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3.4 Plausible Reaction Mechanism 

Based on the controlled experiments, a plausible reaction mechanism is proposed in 

Scheme 3.4. In the presence of TBHP, o-cresol oxidizes to salicylaldehyde (A) (Rao et al. 

2009, Rout et al. 2014) which reacts with active methylene compound (2a) giving the 

Knoevenagel product (B) which rearranges to give final product 3a. 

 
Scheme 3.4: Plausible reaction mechanism. 

 

 3.5 Scalability of the Protocol     

                                                                     
  To validate the prospective synthetic application of this process the synthesis of 3a 

was carried out on gram scale o-cresol (1a) (1.8 g, 15.0 mmol), diethyl malonate (2a) (2.8 

g, 18.0 mmol) and TBHP (4 equiv.), which gave the desired Product in good yield of 2.8 g 

(90%) under the optimum condition (Scheme 3.5). 
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Scheme 3.5: Gram scale synthesis of coumarin. 

 

 

3.6 Experimental Section 

3.6.1 General procedure for the synthesis of coumarin derivatives (3a-s) 

o-Cresol (1.0 mmol), active methylene compound (1.2 mmol) and TBHP (70% aq.,             

4 equiv.) was stirred at 80 °C. The progress of the reaction was monitored by TLC. After 

completion, the reaction mixture was diluted with water and extracted with ethyl acetate. 

The organic layer was dried over anhydrous sodium sulphate (Na2SO4), concentrated and 

subjected for silica gel (60-120 mesh) column chromatography purification (SiO2: 

hexane/ethyl acetate) to obtain the  pure desired products. 

 

3.6.2 General procedure for the synthesis of 5a-e  

Toluene (1.0 mmol), active methylene compound (1.2 mmol) and TBHP (70% aq.,                  

4 equiv.) was stirred at 80 °C. The progress of the reaction was monitored by TLC. After 

completion, the reaction mixture was diluted with water and extracted with ethyl acetate. 

The organic layer was dried over anhydrous sodium sulphate (Na2SO4), concentrated and 
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subjected for silica gel (60-120 mesh) column chromatography purification (SiO2: 

hexane/ethyl acetate)  to obtain the desired products. 

3.6.3 Procedure for control experiment with TEMPO 

o-Cresol (1a) (1.0 mmol), active methylene compound (1.2 mmol) and TEMPO (5.0 

mmol) was stirred at 80 °C for 30 min to which 4 equiv. of tert-butyl hydrogen peroxide 

(TBHP) was added. The reaction was further stirred for 180 min and diluted with water and 

extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulphate 

(Na2SO4), concentrated and subjected for silica gel (60-120 mesh) column chromatography 

purification (SiO2: hexane:EtOAc) to obtain 3a. 

 

3.6.4 Gram-scale procedure for the synthesis of coumarin derivatives 

o-Cresol (1a) (1.8 g, 15.0 mmol), diethyl malonate (2a) (2.8 g. 18.0 mmol) and TBHP 

(70% aq., 4 equiv.) was stirred at 80 °C. The progress of the reaction was monitored by 

TLC. After completion of the reaction, it was diluted with water and extracted with ethyl 

acetate. The organic layer was dried over anhydrous sodium sulphate (Na2SO4), the solvent 

was evaporated under vacuum and the product was purified by column chromatography on 

silica gel (60-120 mesh, hexane/ethyl acetate) gave the desired products (3a) in 90% yield 

(2.85 g). 
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3.7 Analytical Data  

3.7.1 Ethyl 2-oxo-2H-chromene-3-carboxylate (3a): White crystalline solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10); 

yield 198 mg (91%); m.p. 90-91 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.46 (s, 1H), 

7.57 (dd, 2H), 7.27 (t, 2H), 4.34 (q, 2H), 1.34 (t, 3H); 13C NMR (126 MHz, CDCl3) δ 

(ppm): 163.1, 156.8, 155.2, 148.7, 134.4, 129.6, 124.9, 118.3, 117.9, 116.7, 62.0, 14.3; 

Anal. calcd for C12H10O4: C, 66.05; H, 4.62. Found: C, 66.00; H 4.59. 

 

3.7.2 Ethyl 6-bromo-2-oxo-2H-chromene-3-carboxylate (3b): White crystalline solid; 

the residue was purified by column chromatography in silica gel eluting with 

hexane:EtOAc (90:10); yield 266 mg (90%); m.p. 162-163 C; 1H NMR (500 MHz, 

CDCl3) δ (ppm): 8.45 (s, 1H), 8.01 – 7.44 (m, 2H), 7.27 (d, 1H), 4.43 (q,  2H), 1.42 (t, , 

3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 162.7, 156.1, 154.0, 147.2, 137.0, 131.6, 

119.5, 119.4, 118.6, 117.4, 62.3, 14.3; Anal. calcd for C12H9BrO4: C, 48.51. H, 3.05; 

Found: C, 48.47; H, 3.03. 

 

3.7.3 Ethyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (3c): White crystalline solid; 

the residue was purified by column chromatography in silica gel eluting with 

hexane:EtOAc (90:10); yield 224 mg (89%); m.p. 174-176 C; 1H NMR (500 MHz, 

CDCl3) δ (ppm): 8.45 (s, 1H), 7.59 (d, 2H), 7.33 (t, 1H), 4.42 (q, 2H), 1.41 (t, 3H); 13C 
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NMR (126 MHz, CDCl3) δ (ppm): 162.7, 156.1, 153.5, 147.2, 134.2, 130.2, 128.5, 119.6, 

118.9, 118.3, 62.3, 14.3; Anal. calcd for C12H9ClO4: C, 57.05, H, 3.59; Found: C, 56.99, H, 

3.57. 

 

3.7.4 Ethyl 8-methoxy-2-oxo-2H-chromene-3-carboxylate (3d): Yellow crystalline solid; 

the residue was purified by column chromatography in silica gel eluting with 

hexane:EtOAc (90:10); yield 218 mg (88%); m.p. 89-90 C; 1H NMR (500 MHz, CDCl3) δ 

(ppm): 8.43 (s, 1H), 7.19 (d, 1H), 7.11 (d, 1H), 7.10 (s, 1H), 4.33 (q, 2H), 3.90 (s, 3H), 1.34 

(t, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 163.2, 156.2, 148.9, 147.1, 145.0, 124.8, 

120.7, 118.5, 115.9, 62.1, 56.4, 14.3; Anal. calcd for  C13H12O5: C, 62.90; H, 4.87. Found: 

C, 62.85; H, 4.85. 

 

3.7.5 Ethyl 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylate (3e): Yellowish solid; 

the residue was purified by column chromatography in silica gel eluting with 

hexane:EtOAc (60:40); yield 251 mg (87%); m.p. 76 C; 1H NMR (500 MHz, CDCl3) δ 

(ppm): 8.44 (s, 1H), 7.34 (d, 1H), 6.60 (dd, 1H), 6.43 (d, 1H), 3.89 (s, 2H), 3.43 (q, 4H), 

1.22 (t, 9H); 13C NMR (126 MHz, CDCl3) δ (ppm): 165.0, 158.5, 158.4, 153.0, 149.7, 

131.2, 109.6, 108.3, 107.7, 96.6, 52.3, 45.1, 12.4; Anal. calcd for  C16H19NO4: C, 66.42; H, 

6.62; N, 4.84. Found: C, 66.37; H, 6.60; N, 4.81. 
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3.7.6. 3-Acetyl-2H-chromen-2-one (3f): Yellowish solid; the residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc (90:10); yield 169 (90%); 

m.p. 120-122 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.45 (s, 1H), 7.90 – 7.42 (m, 2H), 

7.35 – 7.20 (m, 2H), 2.67 (s, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 195.6, 159.4, 

155.4, 147.6, 134.5, 130.3, 125.1, 124.6, 118.4, 116.8, 30.7; Anal. calcd for  C11H8O3: C, 

70.21; H, 4.29. Found: C, 70.16; H, 4.26. 

 

3.7.7. 3-Acetyl-6-bromo-2H-chromen-2-one (3g): White solid; the residue was purified 

by column chromatography in silica gel eluting with hexane:EtOAc (90:10); yield 239 mg 

(90 %); m.p. 231-232 C; 1H NMR (500 MHz, DMSO) δ (ppm): 8.60 (s, 1H), 8.21 (s, 1H), 

7.89 (d, 1H), 7.44 (d, 1H), 2.59 (s, 3H); 13C NMR (126 MHz, DMSO) δ (ppm): 195.4, 

158.4, 154.1, 146.1, 137.1, 133.1, 125.9, 120.5, 118.8, 116.8, 30.4.; Anal. calcd for   

C11H7BrO3: C, 49.47; H, 2.64. Found: C, 49.41; H, 2.62. 

 

3.7.8 3-Acetyl-6-chloro-2H-chromen-2-one (3h): Yellow solid; the residue was purified 

by column chromatography in silica gel eluting with hexane:EtOAc (90:10); yield 197 mg 

(89%); m.p. 210-211 C; 1H NMR (500 MHz, DMSO) δ (ppm): 8.59 (s, 1H), 8.06 (s, 1H), 

7.77 (s, 1H), 7.50 (s, 1H), 2.57  (s, 3H); 13C NMR (126 MHz, DMSO) δ (ppm): 195.1, 

158.1, 153.3, 145.8, 133.9, 129.6, 128.6, 125.5, 119.6, 118.2, 30.1; Anal. calcd for 

C11H7ClO3: C, 59.35; H, 3.17. Found: C, 59.30; H, 3.13. 



                                                                                             Chapter 3 

Department of Chemistry IIT (BHU), Varanasi   Page 108 

 

3.7.9 3-Acetyl-8-methoxy-2H-chromen-2-one (3i): Yellow solid; the residue was purified 

by column chromatography in silica gel eluting with hexane:EtOAc (90:10); yield 187 mg 

(86%); m.p. 162-163 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.41 (s, 1H), 7.33 – 6.72 

(m, 3H), 3.92 (s, 3H), 2.66 (s, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 195.7, 158.8, 

147.8, 147.1, 145.1, 124.9, 124.7, 121.4, 118.9, 115.9, 56.4, 30.7;  Anal. calcd for  

C12H10O4: C, 66.05; H, 4.62. Found: C, 66.0; H, 4.59. 

3.7.10 3-Acetyl-7-(diethylamino)-2H-chromen-2-one (3j): Yellow solid; the residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc (60:40); yield 

207 mg (80%); m.p. 151-153 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.41 (s, 1H), 7.37 

(d, 1H), 6.60 (d, 1H), 6.44 (s, 1H), 3.44 (dd, 4H), 2.65 (s, 3H), 1.22 (t, 6H); 13C NMR (126 

MHz, CDCl3) δ (ppm): 195.8, 161.0, 158.8, 153.1, 147.9, 132.0, 116.1, 109.9, 108.2, 96.6, 

45.2, 30.7, 12.5; Anal. calcd for C15H17NO3: C, 69.48;  H, 6.61; N, 5.40. Found: C, 69.42; 

H, 6.59; N, 5.35. 

 

3.7.11 2-Oxo-2H-chromene-3-carboxylic acid (3k): Yellow crystalline solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10); 

m.p. 189-190 C; yield 171 mg (90%); 1H NMR (500 MHz, CDCl3) δ (ppm): 11.40 (s, 1H), 

8.72 (s, 1H), 7.38 (dd, 2H), 7.06 – 6.95 (m, 2H); 13C NMR (126 MHz, CDCl3) δ (ppm):  

164.8, 159.9, 133.6, 132.7, 119.8, 117.4, 117.3; Anal. calcd for C10H6O4: C, 63.16; H, 3.18. 

Found: C, 63.09; H, 3.15. 
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3.7.12 6-Bromo-2-oxo-2H-chromene-3-carboxylic acid (3l): Yellow solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10);  

yield 241 mg (89%); m.p. 197-199 C; 1H NMR (500 MHz, DMSO) δ (ppm): 11.14 (s, 

1H), 8.94 (s, 1H), 7.90 (s, 1H), 7.54 (d, 1H), 6.95 (d, 1H); 13C NMR (126 MHz, DMSO)                 

δ (ppm): 160.7, 159.9, 157.6, 142.1, 135.5, 132.0, 131.5, 131.0, 120.6, 118.95, 110.6; Anal. 

calcd for C10H5BrO4: C, 44.64; H, 1.87. Found: C, 44.57; H, 1.84. 

 

3.7.13 6-Chloro-2-oxo-2H-chromene-3-carboxylic acid (3m): Yellow solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10);  

yield 197 mg (88%); m.p. 121-122 °C; 1H NMR (500 MHz, DMSO) δ (ppm): 11.14 (s, 

1H), 8.94 (s, 1H), 7.77 (s, 1H), 7.42 (d, 1H), 7.00 (d, 1H);  13C NMR (126 MHz, DMSO) δ 

(ppm): 164.1, 160.94, 157.3, 132.8, 128.7, 123.2, 120.0, 118.5; Anal. calcd for C10H5ClO4:  

C, 53.48; H, 2.24. Found: C, 53.41; H, 2.22. 

 

3.7.14 8-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3n): Yellow solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10);  

yield 191 mg (87%); m.p. 218-220 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 11.56 (s, 1H), 

8.69 (s, 1H), 7.00 (d, 2H), 6.92 (t, 1H), 3.93 (s, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 

164.9, 149.8, 148.4, 124.1, 119.5, 117.4, 115.2, 56.3; Anal. calcd for C11H8O5: C, 60.00;        

H, 3.66. Found: C, 59.52; H, 3.63. 
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3.7.15 7-(Diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (3o): Orange crystal; the 

residue was purified by column chromatography in silica gel eluting with hexane:EtOAc 

(60:40); yield 214 mg (82%); m.p. 220-222 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 

11.83 (s, 1H), 8.45 (s, 1H), 7.09 (d, 1H), 6.25 (d, 1H), 6.22 (s, 1H), 3.39 (q, 4H), 1.20 (t, 

6H); 13C NMR (126 MHz, CDCl3) δ (ppm): 161.5, 161.0, 151.3, 133.4, 107.0, 104.0, 97.9, 

44.6, 12.8; Anal. calcd for C14H15NO4: C, 64.36; H, 5.79; N, 5.36. Found: C, 64.30; H, 

5.76; N, 5.33. 

3.7.16 Methyl 2-oxo-2H-chromene-3-carboxylate (3p): White solid; the residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10); yield 

183 mg (90%); m.p. 116-117 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.53 (s, 1H), 7.63 – 

7.58 (m, 2H), 7.31 (dd, 2H), 3.91 (s, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 163.6, 

156.7, 155.2, 149.2, 134.5, 129.6, 124.9, 117.8, 117.8, 116.7, 52.9; Anal. calcd for 

C11H8O4: C, 64.71; H, 3.95. Found: C, 64.67; H, 3.93. 

 

3.7.17 Methyl 6-bromo-2-oxo-2H-chromene-3-carboxylate (3q): White solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10); 

yield 250 mg (89%); m.p. 183-184 C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.45 (s, 1H), 

7.73 (dd, 2H), 7.24 (d, 1H), 3.95 (s, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 163.3, 

156.0, 154.1, 147.6, 137.1, 131.7, 119.4, 119.2, 118.6, 117.5, 53.1; Anal. calcd for 

C11H7BrO4: C, 46.67; H, 2.49. Found: C, 46.60, H, 2.47. 



                                                                                             Chapter 3 

Department of Chemistry IIT (BHU), Varanasi   Page 111 

 

3.7.18 Methyl 6-chloro-2-oxo-2H-chromene-3-carboxylate (3r): White solid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (90:10); 

yield 207 mg (87%); m.p. 197-198  C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.45 (s, 1H), 

7.75 – 7.70 (m, 2H), 7.24 (d, 1H), 3.95 (s, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm):  

163.3, 156.0, 154.1, 147.6, 137.1, 131.7, 119.4, 119.2, 118.6, 117.5, 53.1; Anal. calcd for 

C11H7ClO4: C, 55.37; H, 2.96. Found: C, 55.30; H, 2.94. 

 

3.7.19 Methyl 8-methoxy-2-oxo-2H-chromene-3-carboxylate (3s): Yellow solid; the 

residue was purified by column chromatography in silica gel eluting with hexane:EtOAc 

(90:10); yield 203 mg (87%); m.p. 123-124 °C; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.50 

(s, 1H), 7.26 – 7.21 (m, 1H), 7.17 (s, 1H), 7.15 (d, 1H), 3.94 (s, 3H), 3.91 (s, 3H);                        

13C NMR (126 MHz, CDCl3) δ (ppm): 163.6, 156.1, 149.3, 147.0, 144.8, 124.8, 120.6, 

118.3, 118.0, 115.9, 56.3, 52.8; Anal. calcd for C12H10O5: C, 61.54; H, 4.30. Found: C, 

61.47; H, 4.27. 

 

3.7.20 Diethyl 2-benzylidenemalonate (5a): Yellow liquid; the residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc (95:5); yield 92%;                        

1H NMR (500 MHz, CDCl3) δ (ppm): 7.73 (s, 1H), 7.44 (s, 2H), 7.38 (s, 2H), 4.33 (q, 

2H), 4.29 (q, 2H), 1.33 (t, 3H), 1.28 (t, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 166.8, 

164.2, 142.2, 133.0, 130.6, 129.5, 128.9, 126.4, 61.8, 61.7, 14.2, 13.9; Anal. calcd for 

C14H16O4: C, 67.73; H, 6.50. Found: C, 67.68; H, 6.48. 
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3.7.21 Diethyl 2-(4-nitrobenzylidene)malonate (5b): Yellow solid; the residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc (95:5): yield 

91%; 1H NMR (500 MHz, CDCl3) δ (ppm): 7.64 (s, 1H), 7.50 (d, 2H), 7.31 (d, 2H), 4.31 

(dd, 4H), 1.30 (dd, 6H); 13C NMR (126 MHz, CDCl3) δ (ppm): 166.5, 164.0, 140.8, 132.1, 

131.9, 130.9, 127.0, 125.1, 61.9, 61.8, 14.2, 14.0; Anal. calcd for  C14H15NO6: C, 57.34;     

H, 5.16; N, 4.78. Found: C, 57.28; H, 5.13; N, 4.76. 

3.7.22 Diethyl 2-(4-bromobenzylidene)malonate (5c): Yellow liquid; the residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc (95:5); yield 

90%; 1H NMR (500 MHz, CDCl3) δ (ppm): 8.24 – 8.21 (m, 2H), 7.75 (s, 1H), 7.60                      

(d, 2H), 4.33 (q, 4H), 1.34 (t, 3H), 1.28 (t, 3H); 13C NMR (126 MHz, CDCl3) δ (ppm): 

165.7, 163.4, 148.5, 139.3, 139.2, 130.1, 130.1, 124.0, 62.3, 62.2, 14.2, 14.0; Anal. calcd 

for C14H15BrO4: C, 51.40; H, 4.62. Found: C, 51.32; H, 4.59. 

3.7.23 Diethyl 2-(2-chlorobenzylidene)malonate (5d): Yellow liquid; the residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc (95:5); yield 

89%; 1H  NMR (500 MHz, CDCl3) δ (ppm): 8.02 (s, 1H), 7.44 – 7.41 (m, 2H), 7.31 (t, 1H), 

7.23 (d, 1H), 4.24(q, 2H),  4.32 (q, 2H),  1.34 (t, 3H) ), 1.18 (t, 3H); 13C NMR (126 MHz, 

CDCl3)  δ (ppm): 165.9, 163.7, 139.3, 134.7, 132.1, 131.2, 129.9, 129.3, 128.9, 126.9, 61.9, 

61.7, 14.2, 13.9; Anal. calcd for C14H15ClO4: C, 59.48; H, 5.35. Found: C, 59.40; H, 5.31. 
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3.7.24 Diethyl 2-(naphthalen-2-ylmethylene)malonate (5e): Brown liquid; the residue 

was purified by column chromatography in silica gel eluting with hexane:EtOAc (95:5); 

yield 90%; 1H NMR (500 MHz, CDCl3) δ (ppm): 7.91 (s, 1H), 7.86 (s, 1H), 7.77 (t, 3H), 

7.48 (dd, 2H), 4.34 (q, 2H), 4.29 (q, 2H), 1.31 (t, 3H), 1.26 (t, 3H); 13C NMR (126 MHz, 

CDCl3) δ (ppm): 166.8, 164.2, 142.2, 134.1, 133.0, 130.9, 130.4, 128.7, 128.5, 127.7, 

127.7, 126.8, 126.3, 125.3, 61.8, 61.7, 14.2, 14.0; Anal. calcd for C18H18O4: C, 72.47; H, 

6.08. Found: C, 72.39; H, 6.05. 
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3.8 Spectral Data of Synthesized Products 

 

 

 

 

 

 

 

Figure 3.2: 1H NMR spectrum of coumarin (3a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: 13C NMR spectrum of coumarin (3a). 
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Figure 3.4: 1H NMR spectrum of 5a. 

 

 

 

 

 

 

 

Figure 3.5: 13C NMR spectrum of 5a. 
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