List of Figures

Fig, No.	Title	Page No.	
Fig. 1.1 Schematic presen	ntation of gasification as one of the there	mal conversion	
processes, BTG (2002) as pr	resented in Knoef (2005, p. 13)	2	
Fig. 1.2 Difference between 'syngas' and 'product gas' with applications, Boerrigter and			
Rauch (2005, p. 212)		4	
Fig. 1.3 Schematic Layout of	of Organic Rankine Cycle (ORC)	5	
Fig. 1.4 Schematic Layout of	of Combined Cooling, Heat and Power system	6	
Fig. 3.1 Schematic flow she	et for the proposed model used in aspen simula	ation 25	
Fig. 3.2 Plot of syngas (mol/h) vs. gasification temperature (K) for leather waste with			
constant total mass flow rate	e but with varying water to biomass ratio	31	
Fig. 3.3 Plot of hydrogen gas (mol/h) vs. gasification temperature (K) for with constant			
total mass flow rate but with	n varying water to biomass ratio	32	
Fig. 3.4 Plot of methane gas (mol/h) vs. gasification temperature (K) for with constant			
total mass flow rate but with	n varying water to biomass ratio	32	
Fig. 3.5 Plot of Total combustible gases (mol/h) vs. gasification temperature (K) for with			
constant total mass flow rate	e but with varying water to biomass ratio	33	
Fig. 3.6 Plot of Performance index vs. gasification temperature (K) for with constant total			
mass flow rate but with vary	ving water to biomass ratio	33	
Fig. 3.7 Plot of syngas (mol/h) vs. gasification temperature (K) for Leather waste with			
constant water to biomass ra	ntio (=0.4) but with varying total mass flow rat	ie 34	
Fig. 3.8 Plot of hydrogen ga	s (mol/h) vs. gasification temperature (K)		
for Leather waste with const	tant water to biomass ratio (=0.4)		
but with varying total mass	flow rate	34	
Fig. 3.9 Plot of methane gas (mol/h) vs. gasification temperature (K) for Leather waste			
with constant water to biom	ass ratio (=0.4) but with varying total mass flo	w rate 35	
Fig. 3.10 Plot of Total cor	nbustible gases (mol/h) vs. gasification temp	perature (K) for	
Leather waste with constant water to biomass ratio (=0.4) but with varying total mass			
flow rate		35	

Fig. 3.11 Plot of Performance index vs. gasification temperature (K) for Leather waste			
	with constant water to biomass ratio $(=0.4)$ but with varying total mass flow rate	36	
	Fig. 3.12 Performance Index of all biomasses with total mass flow rate constant and		
	varying water to biomass ratio	36	
	Fig. 3.13 Number of moles of syngas produced for all biomasses with constant total mass		
	flow rate and varying water to biomass ratio	37	
	Fig. 3.14 Number of moles of hydrogen produced for all biomasses with constant total		
	mass flow rate and varying water to biomass ratio	37	
	Fig. 3.15 Methane gas produced for all biomasses with constant total mass flow rate and		
	varying water to biomass ratio	38	
	Fig. 3.16 Total combustible gases produced for all biomasses with constant total mass		
	flow rate and varying water to biomass ratio	38	
	Fig. 4.1 Schematic Diagram for Cycle-1	46	
	Fig. 4.2 Aspen plus flowsheet of cycle-1	47	
	Fig. 4.3 Schematic Diagram for Cycle-2	50	
	Fig. 4.4 Aspen plus flowsheet of cycle-2	51	
	Fig. 4.3 Schematic Diagram of Cycle-3	54	
	Fig. 4.6 Aspen plus flowsheet of cycle-3	55	
Fig. 4.7 Variations of syngas and hydrogen gas yield with gasification temperature for			
	PMSC with constant TMF (160 kg/h) but with varying WBR	68	
Fig. 4.8 RE and COP vs. gasification temperature with varying water WBR at a fixed			
	boiler pressure (100 bar) and constant TMF (160 kg/h) for Cycle-1	69	
Fig. 4.9PI vs. gasification temperature with varying WBR at a fixed boiler pressure (100			
	bar) and constant TMF (160 kg/h) for Cycle-1	69	
Fig. 4.10 Plot of syngas (mol/h) and hydrogen (mol/h) vs. gasification temperature for			
	PMSC with varying TMF and constant WBR (0.4)	70	
Fig. 4.11 Plot of RE and COP vs. gasification temperature for PMSC with varying TMF			
	at a fixed boiler pressure (100 bar) and WBR (0.4) for Cycle-1	70	
	Fig. 4.12 Plot of PI vs. gasification temperature for PMSC with varying TMF at	a fixed	
	boiler pressure (100 bar) and constant WBR (0.4) for Cycle-1	71	

Fig. 4.13 Plot of RE vs. gasification temperature for PMSC with varying boiler pressureat constant TMF (160 kg/h) and WBR (0.4) for Cycle-171Fig. 4.14 Plot of PI vs. gasification temperature for PMSC with varying boiler pressure at72Constant TMF (160 kg/h) and WBR (0.4) for Cycle-172

Fig. 4.15 Refrigeration effect vs. gasification temperature for PMSC with varyingrefrigerant mass flow rate at fixed boiler pressure (100bar), TMF (160 kg/h) and WBR(0.4) for Cycle-172

Fig. 4.16 PI vs. gasification temperature for PMSC with varying refrigerant mass flow rate at a fixed boiler pressure (100 bar), TMF (160 kg/h)

73

and WBR (0.4) for Cycle-1

Fig. 4.17 Moles of syngas produced for selected biomass materials with constant total mass flow rate (160 kg/h) and refrigerant flow rate (150 kg/h) at optimum gasification temperature a for all three cycles 73

Fig. 4.18 Refrigerant effect for selected biomass materials at different WBR withconstant TMF (160 kg/h) and refrigerant flow rate (150 kg/h)at optimum gasificationtemperature and boiler pressure (100 bar) for all three cycles74

Fig. 4.19 COP for selected biomass materials with constant TMF (160 kg/h) and refrigerant flow rate (150 kg/h) at optimum gasification temperature and boiler pressure (100 bar) for all three cycles 75

Fig. 4.20 PI for selected biomass materials with constant TMF (160 kg/h) and refrigerantflow rate (150 kg/h) at optimumgasification temperature and boiler pressure (100bar) for all three cycles76

Fig. 5.1 Layout of Solar Assisted Gasification System78Fig. 5.2 A Solar ORC system integrated with SOEC (co-electrolysis) unit79Fig. 5.3 SOEC model layout in Aspen Plus81

Fig. 5.4 Variations of syngas with gasification temperature for PMSC at constant collectorarea (=10 m²) but with varying Sunlight hours85

Fig. 5.5 Variations of Hydrogen gas with gasification temperature for PMSC at constantcollector area (=10 m²) but with varying Sunlight hours86

Fig. 5.6 Variations of Air required in the gasifier with gasification temperature for PMSCat constant collector area (=10 m²) but with varying Sunlight hours87

Fig. 5.7 Variations of syngas with gasification temperature for PMSC at constant sunlight 87 hour (=12 pm) but with varying collector area Fig. 5.8 Variations of Carbon dioxide with gasification temperature for PMSC at constant sunlight hour (=12 pm) but with varying collector area 87 Fig. 5.9 Variations of Syngas with Sunlight hours for PMSC at constant collector area $(=30 \text{ m}^2)$ but with varying Gasification Temperature 88 Fig. 5.10 Variations of Hydrogen with Sunlight hours for PMSC at constant collector area $(=30 \text{ m}^2)$ but with varying Gasification Temperature 89 Fig. 5.11 Variations of Carbon Dioxide with Sunlight hours for PMSC at constant collector area $(=30 \text{ m}^2)$ but with varying Gasification Temperature 89 Fig. 5.12 Variations of Air required in the Gasifier with Sunlight hours for PMSC at constant collector area $(=30 \text{ m}^2)$ but with varying Gasification Temperature 90 **5.13** Plot of Air required in the Gasifier with and without solar collector (or Pre-heat) vs 90 **Gasification Temperature** Fig. 5.14 Variation of the product gases of the SOEC with sunlight hours at constant Collector area $(=30 \text{ m}^2)$ 91 Fig. 5.15 Variation of Mole Fraction of the product gases of the SOEC with sunlight hours at constant Collector area $(=30 \text{ m}^2)$ 91 Fig. 5.16 Variation of the Syngas produced from SOEC with sunlight hours at varying Collector area 92 Fig. 5.17 Variation of the Hydrogen produced from SOEC with sunlight hours at varying 92 Collector area Fig. 5.18 Variation of the Carbon Dioxide produced from SOEC with sunlight hours at varying Collector area 93 Fig. 5.19 Variation of the Performance Index with sunlight hours at constant Collector area $(=30 \text{ m}^2)$ and fixed optimum gasification temperature for Cycle-4 and Cycle-6a 94

Fig. 5.20 Variation of the Performance Index with sunlight hours at constant Collector area (=30 m²) and fixed optimum gasification temperature for Cycle-5 and Cycle-6b 84