
Chapter 3

Beam Selection Algorithms for mmWave beamspace MU-MIMO

System

3.1 Introduction

One main issue with scaling up the number of beams in mmWave beamspace MU-

MIMO systems relates to the cost and complexity of RF components which are

deployed with antenna elements. To circumvent this problem, beam selection tech-

niques are used and the number of required RF chains are reduced while keeping

most of the advantages of mmWave beamspace MU-MIMO systems. The princi-

ple idea of beam selection scheme is to connect a limited number of RF chains to

a subset of beams optimally among all available beams in transmitter. However,

mmWave beamspace MU-MIMO systems with more beams lead to increase the

complexity of the system due to the high number of computations required during

optimal beam selection. Many beam selection algorithms have been introduced to

alleviate the computation process without considerable loss in the system perfor-

mance [108–110].

Recently, a lot of interest has emerged to analyze the performance of beams

selection algorithm for mmWave beamspace MU-MIMO systems. The problem of

the maximizing the magnitude (MM), maximizing the signal-to-interference-plus-

noise-ration (M-SINR), and maximizing the capacity (MC) with a few beams has

been considered and has been solved iteratively [108, 109]. These methods ex-

hibit a good system performance with few number of beams but it tends to be more

challenging when the number of beams increase. A suboptimal algorithm of beam

selection based on the “MM”, “M-SINR”, and “MC” is proposed in [108, 109].

Since optimum method of beam selection requires exhaustive search over all pos-

sible combinations of beam subsets, it is impractical to use when there are a large
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number of beams. Any beam selection algorithm should be designed to reduce the

complexity of beam selection selection process as well as achieve the required level

of spectral efficiency. Motivated by the idea of selecting beams depending on the

sum of logarithms of square of Eigenvalue of their effective channels, this chapter

propose a beam selection algorithm for mmWave beamspace MU-MIMO down-

link systems. At each iteration, the exclusive beam which maximizes the sum of

logarithms of square of Eigenvalue of their effective channels obtained by a set of

beams is selected and deactivated. The Eigenvalues of each user’s effective chan-

nel can be obtained from that of the QR decomposition of the beamspace channel

matrix. Hence, refer to it as “QR-based” beam selection. The selection process re-

peats until the algorithm reach the required subset of beams. The iterative precoding

method proposed in [53] is applied to cancel the MUI in the precoding stage of the

beam selection process. The precoding algorithm applies the QR decomposition to

reduce the computational burden through beam selection process.

At the same time, it should be noted that the transmitter can be equipped with

a very large number of antenna elements at mmWave frequencies, making N to be

very high. It means that the number of available beams will be large, and it has been

observed that the cell radius in mmWave cellular systems is small which is order of a

few meters, i.e., 50 to 100 meters. Hence, the number of active users per cell would

be relatively low, i.e., N � K. This entails that the mmWave cellular systems

are likely to encounter sparse systems more than dense systems. In this context, a

greedy and MWM-based beam selection algorithm are proposed for sparse system.

Greedy beam selection is a search based iterative procedure, which allocates the

strongest beam to the corresponding user. If a beam is the strongest for more than

one user then that beam will be allocated to the user having a higher channel gain.

For the remaining users, algorithm repeats the process after removing the allocated

beams from the set of available beams. This process is repeated until a beam is

selected for each user, whereas beam selection through MWM algorithm is to find

a matching beam that maximizes the sum of edge weights over the bipartite graph.

The edge weights are nothing but SINRs achieved by each user through each beam,

and well efficient Kuhn-Munkres algorithm [111, 112] solves the MWM problem

efficiently.
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3.2 mmWave Beamspace Downlink MU-MIMO Communication Sys-

tem Model

We are considering a downlink mmWave beamspace MU-MIMO communication

system having a transmitter equipped with N beams, and K users equipped with a

single receive antenna. Thus, the input-output relation for a mmWave beamspace

MU-MIMO system [113] can be expressed as

yb = HH
b Pbx + wb, (3.1)

where HH
b = HHU = [hHb,1, . . . ,h

H
b,K ]H ∈ CK×N is the beamspace channel matrix.

Each hHb,k = hHk U ∈ CN×1, k = 1, . . . , K, and HH is the spatial channel matrix.

Pb ∈ CN×K is a digital precoder to remove MUI. x ∈ CK×1 is the transmitted

symbol vector while satisfying an average power constraint as E[‖ Pbx ‖2] ≤ ρ,

where ρ is the total transmitted power. yb ∈ CK×1 is the received information

vector, and wb ∈ CK×K denotes AWGN noise vector with wb ∼ CN (0, N0IK).

Further, the input-output relation for a mmWave beamspace MU-MIMO system,

after beam selection, can be expressed as

ỹb = H̃H
b P̃bx + w̃b, (3.2)

where H̃H
b = [h̃Hb,1, . . . , h̃

H
b,K ]H ∈ CK×K is the beamspace channel matrix, and

the columns are corresponding to the K selected beams. P̃b ∈ CK×K is a digital

precoding matrix. w̃b denotes AWGN noise vector with w̃b ∼ CN (0, N0IK).

3.3 Proposed Beam Selection Algorithm and Precoding Scheme

In the following section, a “QR-based” beam selection algorithm is proposed with

pre –cancelling the interference. Further, the proposed iterative precoding scheme

to pre –cancel interference while performing the “QR-based” beam selection is dis-

cussed. The details of this algorithms are given below.
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3.3.1 QR-based Beam Selection

“QR-based” beam selection algorithm works iteratively to select beams, and it se-

lects a beam that contributes least to the sum rate of users’ effective channels and

deactivates it. In other words, the algorithm maximizes the sum of logarithms of

square of Eigenvalue of their effective channels with deleting a beam, is selected

and deactivates in each iteration. In descending order, the algorithm repeats until

the required number of beams are obtained. Further, the proposed algorithm uses

the iterative precoding design to pre-cancel MUI. Let the QR decomposition of H̃b

is given by

H̃H
b = (Q̃bR̃b)

H , (3.3)

where Q̃b = [q̃1, . . . , q̃K ] ∈ CK×K is a unitary matrix and R̃b ∈ CK×K is an upper

triangular matrix [114]. The columns of Q̃b provide an orthonormal basis, obtained

through Gram-Schmidt procedure (for more details, refer to Appendix A), for the

vector space spanned by the K column vectors of H̃b. By choosing P̃b = Q̃b, (3.2)

becomes

ỹb = R̃H
b x + w̃b, (3.4)

where R̃H
b can be expressed as

R̃H
b =

∣∣∣∣∣∣∣∣∣∣∣∣

r̃b,11 0 . . . 0

r̃b,21 r̃b,22 . . . 0
...

...
...

...

r̃b,K1 r̃b,K2 . . . r̃b,KK

∣∣∣∣∣∣∣∣∣∣∣∣
(3.5)

Thus, when K data streams are multiplexed in the coordinate system specified by

Q̃b, the received signal at user k becomes

ỹb,k = r̃b,kkxk + Ib,k + w̃b,k, k ∈ {1, . . . , K}, (3.6)

where Ib,k =
∑

k>j r̃b,kjxj is the interference signal. Interference can be made equal

to zero for all the users by diagonalizing R̃H
b . We achieve this by having P̃b = Q̃bL

in (3.2), where one can obtain,
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ỹb = H̃H
b P̃bx + wb,

ỹb = R̃b
H

Lx + wb.
(3.7)

We compute (in the sub-section 3.3.3) L ∈ CK×K such that R̃H
b G is a diagonal

matrix, with its K th diagonal entry equal to r̃b,kk. With Ib,k = 0, Rk depends only

on r̃b,kk, the effective channel gain for user k, and the sum-rate is given by

Rs =
∑
k

Rk bits/s/Hz

Rs =
∑
k

log2

(
1 +

1

N0

ρ

K
r̃2
b,kk

)
bits/s/Hz

(3.8)

where N0 is the noise power of the AWGN at each user.

3.3.2 Algorithms for Computing H̃b

The algorithm consists of (N −K) iterations. In each iteration, the algorithm elim-

inate a beam (i.e., a row of Hb) that contributes minimally towards Rs. To make a

decision on which row to be removed, the algorithm follow another iterative pro-

cess. Reduced-dimensional channel matrix at the end of (i− 1)th iteration, denoted

by H
(i)
b , can be expressed as

H
(i)
b =

[(
c

(i)
1

)T (
c

(i)
2

)T
. . .
(
c

(i)
N−i

)T]T
, (3.9)

where c
(i)
j ∈ C1×K is the j th row of H

(i)
b , for j = 1, . . . , N − i. From H

(i)
b , the

algorithm delete one row (out ofN−i rows), by following another iterative process,

which can be explained as follows.

Let T(i) = H
(i)
b . For j = 1, . . . , N − i, the algorithm remove c

(i)
j from T(i) to

obtain the matrix T
(i)
−j , and find its QR decomposition

T
(i)
−j = Q

(i)
−jR

(i)
−j. (3.10)
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Next, compute

γ
(i)
j =

∑
u∈{1,...,N−i}

log2

(
1 +

(
r

(i)
−juu

)2
)
, (3.11)

where r(i)
−juv denotes the (u, v)th element of R

(i)
−j . Please note that the interference

terms have been ignored while computing γ(i)
j . This will not be a problem as pre-

coder P̃b will completely cancel the MUI. The algorithm remove row j′ from H
(i)
b

to obtain H
(i+1)
b , where

j′ = arg max
j∈{1,...,N−i}

γ
(i)
j . (3.12)

Thus, the algorithm eliminate a beam whose effect on the sum-rate is the least.

Please refer to Algorithm 1 for more details.

Algorithm 1 Algorithm to compute H̃b

Initialize H
(0)
b = Hb

for i = 0→ N −K − 1 do

T(i) = H
(i)
b

for j = 1→ N − i do

Remove row j from T(i) to obtain T
(i)
−j

T
(i)
−j = Q

(i)
−jR

(i)
−j (QR-decomposition of T

(i)
−j )

γ
(i)
j =

∑N−i
u=1 log2

(
1 +

(
r

(i)
−juu

)2
)

end for

j′ = arg maxj∈{1,...,N−i} γ
(i)
j

Remove c
(i)
j′ from H

(i)
b to obtain H

(i+1)
b

end for

H̃b = H
(N−K)
b

3.3.3 Proposed Precoding Scheme

Now, using H̃b given by the Algorithm 1 and by choosing P̃b = Q̃b, (with Q̃b

obtained from the QR decomposition of H̃b = Q̃bR̃b), one can obtain the system
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described by (3.6). Interference Ib,k, k = 1, . . . , K, can be eliminated by diago-

nalizing R̃H
b . This section propose to accomplish it by having P̃b = Q̃bL and by

computing L ∈ CK×K such that R̃H
b L is a diagonal matrix, with its kth diagonal

entry is given by r̃b,kk.

An element r̃b,kj, k > j, in R̃H
b can be made equal to zero by post-multiplying

R̃H
b with a matrix. Suppose R′ = R̃H

b E(k,j), where E(k,j) is a K ×K lower trian-

gular matrix obtained as follows: for l = 1, . . . , K, m = 1, . . . , K,

e
(k,j)
lm =


1, if l = m,

− r̃b,kj
r̃b,kk

, if l = k,m = j,

0, otherwise.

(3.13)

L is computed as a product of elementary matrices defined in (3.13) taken in a

specific order. Algorithm 2 details how to compute L. We observe that the matrix

L is a lower triangular matrix. Please note that, if r̃b,kk 6= 0 for all k = 1, 2, . . . , K,

the matrix L computed using Algorithm 2 will diagonalize R̃H
b .

Algorithm 2 Algorithm to compute L

Initialize L = IK , where IK is identity matrix of order K

Initialize R′ = R̃H
b

for k = 1→ K do

if r′kk 6= 0 then

for j = 1→ k − 1 do

Define E(k,j) as in (3.13)

Compute R′ = R′E(i,j)

L = LE(k,j)

end for

end if

end for

R̃H
b is not diagonalizable, if r̃b,kk = 0 for some k ∈ {1, . . . , K}. In such a case,
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if r̃b,kk = 0 for some k ∈ {1, 2, . . . , K}, then ỹk does not contain the message xk

intended for user k and the particular user need not be served. By considering the

effective channel matrix for the remainingK−1 users, we can still use Algorithm 2

to compute L that avoids interference at all users with r̃b,kk 6= 0. In addition, when

the magnitude of any particular r̃b,kk is significantly low compared to other diagonal

values of R̃H
b , making R̃H

b ill-conditioned, and serve the other users. Hence, there

is no need to avoid interference at user k as it can not decode its message even in

the absence of interference. Thus, even if R̃H is not diagonalizable, Algorithm 2

can be used to compute L that avoids interference at all users with r̃kk 6= 0.

Note that L need not be unitary and to satisfy the transmit power constraint, one

needs to normalize L to have unit norm. Thus, P̃b in (3.2) is chosen as P̃b = Q̃bL̃,

where L̃ = L
‖L‖F

, Q̃b is obtained from the QR decomposition of H̃b = Q̃bR̃b.

3.3.4 Complexity Analysis

The main complexity of the above algorithm is due to the QR decomposition in

the inner loop. In ith iteration, i = 0, . . . , (N − K − 1), the algorithm computes

(N − i) QR decomposition and the complexity of each decomposition is O(2(N −

i)K2) [114]. Thus, the overall complexity is
N−K−1∑
i=0

(N − i)O(2(N − i)K2). Sim-

ilarly, complexity of the “IA” beam selection algorithm is
K−NIU−1∑

i=0

(N − NIU −

i)O(K3), where NIU is the number of non-interfering users, and complexity of

“MC” beam selection algorithm is
N−K−1∑
i=0

(N−i)O(2(N−i)K2+K3+(N−i)2K).

Eventually, this complexity is higher than that of the “IA” beam selection [110] and

lower than “MC” beam selection [109].

3.3.5 Numerical Results

In this section, we evaluate the performance of the proposed beam selection al-

gorithm through simulations, and compare it with the existing beam selection al-

gorithms. We focus on two performance metrics, namely, spectral efficiency and

power efficiency.
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Figure 3.1 Sum-rate Performance Comparison

We consider downlink mmWave beamspace MU-MIMO communication sys-

tem having a transmitter equipped with N = 256 beams and K = 16 users,

each user having a single receive antenna. Spatial channel between the AP and

user k, k ∈ {1, . . . , K}, is assumed to be having one LoS component with path

gain β(0)
k ∼ CN (0, 1) and two NLoS components, each having a path gain β(`)

k ∼

CN (0, 10−2), ` = 1, 2. The path gains β(`)
k are assumed to be independent of each

other. The spatial frequencies, θ(`)
k , k = 0, 1, 2, of user k, are uniformly distributed

in the interval
[
−1

2
, 1

2

]
and independent of each other. Fig. 3.1 plots the achievable

sum-rate of the proposed algorithm and the performance is compared with “MM”

beam selection with one beam per user [113], [109], “MC”, “M-SINR” [109], and

“IA” beam selection [110]. There are two types of “MC” algorithms – an “MC-

incremental” and an “MC”- decremental. Performance of both these algorithms is

almost the same, and we have compared the results with the “MC-decremental”

algorithm. It can be observed that the proposed algorithm outperforms the other

algorithms. In “MC” beam selection, the beams are selected by maximizing the

capacity and it is given by (24) in Section 3C in [109] as

R(Hb) = K log det

(
1 +

ρ

N0

HH
b Hb

)
bits/s/Hz.

It should be noted that (24) is the maximum achievable rate of a point-to-point

MIMO channel and maximizing (24) may not maximize the sum-rate of a mmWave
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Figure 3.2 Power Efficiency Comparison

beamspace MU-MIMO system that is under consideration.

“Full dimensional ZF” is the sum-rate achieved by full system ZF precoding that

uses all the N beams. Note that, full dimensional ZF is one of the upper bounds on

the achievable performance of a full dimensional system. Full dimensional Wiener

filtering, full dimensional matched filtering and the idealistic upper bound, pro-

posed in [113], provide us with other upper bounds on the full dimensional system

performance. The idealistic upper bound is given by (13) in [113] as

Rup = K log

(
1 + ρ

N

K

)
bits/s/Hz.

We note that the sum-rate achieved by the proposed beam selection algorithm is

considerably lower than the idealistic upper bound, but higher than the performance

of full dimensional ZF.

Fig. 3.2 compares the power efficiency of different beam selection algorithms,

including the proposed one. Power efficiency is defined as [109, 110, 115],

ηp =
Rs

ρ+NRFPRF
, bits/s/Hz/Watt, (3.14)

where NRF is the number of RF chains and PRF is the power consumed by an RF

chain. As in [109, 110], we evaluated ηp at SNR = 20 dB, with PRF = 34.4 mW and
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ρ = 32 mW. As it is evident from the figure that the proposed method achieves con-

siderably higher power efficiency than the other beam selection algorithms. Note

that the full dimensional ZF has very high power consumption. It is worth noting

that different users see different effective channel gains and optimal power alloca-

tion across users might further improve the sum-rate with the proposed algorithm.

3.4 Proposed Low Complexity Beam Selection Algorithms

In this section, low complexity beam selection — greedy and MWM-based — al-

gorithm is proposed. The details of these two beam selection algorithms are given

below.

3.4.1 Greedy Beam Selection

This section now proposes a greedy algorithm that allocates a beam to each user.

Let G ∈ RK×N be the channel gain matrix, where its (k, n)th element gkn is

given by the squared absolute value of the (k, n)th element of HH
b . Beam n is

considered stronger to user k1 than user k2, if gk1n > gk2n. Greedy beam se-

lection, presented in Algorithm 3, is a search based iterative procedure. Let βk

be the index of the strongest beam for user k. In the first iteration, one can find

βk = arg maxn∈{1,...,N} gkn, k = 1, . . . , K. If βk 6= βk′ for k′ ∈ {1, . . . , K} \ {k},

i.e., if beam βk is the strongest beam only for user k, then βk is allocated to user

k. If a beam is the strongest beam for more than one user, then that beam will be

allocated to the user having higher channel gain. In other words, if βk = βk′ for

k 6= k′, then βk is allocated to k if gkn > gk′n; otherwise it is allocated to k′. For the

remaining users, the process is repeated after removing the allocated beams from

the set of available beams. This process is repeated until a beam is selected for each

user. Note that Algorithm 3 allocates a beam to each user provided N ≥ K.

Number of iterations in the greedy algorithm depends on the probability that a

given beam is the strongest to more than one user. Next, the probability of two or

more users sharing the strongest beam is computed and it is shown that Algorithm

3 performs beam selection in less number of iterations if K � N . Let the channel
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gains gkn be identical and independently distributed and let Fg(x) and fg(x) be the

cumulative distribution function and probability density function, respectively, of

gkn,∀k, n. Without loss of generality, it is considered that a user k′ and a beam n′

and compute the probability, pk′n′ , that n′ is the strongest beam for k′.

pk′n′ =Pr {gk′n′ > gk′n,∀n 6= n′}

=

∫ ∞
0

(Pr {gk′n < x, for some n})N−1 dFg(x),

=
1

N
. (3.15)

Thus, 1
N

is the probability that a given beam is the strongest to a given user.

The probability p that a given beam, out of N , is the strongest to two or more

users is given by

p =
K∑
i=2

(
K

i

)(
1

N

)i(
1− 1

N

)K−i
=1−

(
1− 1

N

)K
− K

N

(
1− 1

N

)K−1

. (3.16)

For a fixed value of K, p → 0 as N → ∞. Thus, if N is large compared to K,

the probability of two or more users having the same beam as their strongest beam

is small. One can call such a system, a sparse system. p → 1 if N → ∞ with
K
N
≈ 1; i.e., if the values of K and N are close to each other, with high probability,

there exists a beam that is stronger to more than one user. This is referred to such a

system as a dense system. The proposed greedy algorithm requires less number of

iterations in a sparse system as compared to the dense system.

3.4.2 MWM-based Beam Selection

This section model the beam selection problem, of selecting K beams out of N ,

as a MWM problem over a bipartite graph. Let B = {b1, . . . , bN} be the set of

beams and let U = {u1, . . . , uK} be the set of users. Consider a bipartite graph

Z = (V,E) where V = B ∪ U and (bn, uk) ∈ E for 1 ≤ n ≤ N , 1 ≤ k ≤ K. Let
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Algorithm 3 Greedy Algorithm for Beam Selection
1: Input: GK×N

2: Initialize: N = {1, . . . , N}, K = {1, . . . , K}

3: for k = 1→ K do

4: βk = arg maxn∈{1,...,N}{gkn}

5: end for

6: ITER:

7: for k = 1→ K do

8: if k ∈ K then

9: if βk 6= βk′ for k′ ∈ K \ {k} then

10: Allocate beam βk to user k

11: K ← K \ {k} and N ← N \ {βk}

12: else

13: Allocate βk to k where, k = arg maxi∈K{giβk}

14: K ← K \ {κ} and N ← N \ {βk}

15: end if

16: end if

17: end for

18: if K 6= ∅ then

19: βk = arg maxn∈N{gkn}, k ∈ K

20: Goto ITER

21: else

22: Stop

23: end if

wnk = log2(1 + SINRnk) be the weight assigned to the edge (bn, uk), where

SINRnk =
Snk

Ik + σ2
. (3.17)

Here, Snk is the signal power at user k due to beam n, Ik is the interference power

at user k from all the beams except beam n, and N0 is the noise power.

A matching over the bipartite graph Z is defined as a set M , where M ⊆ E,

which satisfies the following:
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1. for each k ∈ {1, . . . , K}, ∃n ∈ {1, . . . , N} such that (bn, uk) ∈M , i.e., each

user will get at least one beam,

2. for each n ∈ {1, . . . , N}, there exists at the most one k ∈ {1, . . . , K} such

that (bn, uk) ∈M , i.e., a beam is allocated to at the most one user.

The problem of MWM is to find a matchingM∗ that maximizes the sum of edge

weights in the matching, which can also be stated as the optimization problem as

given below

maximize
∑
k,n

wnklnk

subject to
∑
n

lnk = 1, k = 1, . . . , K,

∑
k

lnk ≤ 1, n = 1, . . . , N,

lnk ∈ {0, 1}.

MWM is a well studied problem in graph theory. Kuhn-Munkres algorithm [111,

112], solves the MWM problem in an efficient way for N = K. Here, the modified

Kuhn-Munkres algorithm is employed for the general case of N 6= K in [116]

to find MWM over the bipartite graph G, as shown in Fig. 3.3. Kuhn-Munkres

algorithm has a complexity of O(NK2) [116], whereas the greedy algorithm is

a much simpler solution having very low complexity. However, as discussed in

previous section, greedy algorithm requires more iterations when the values of N

and K becomes comparable to each other. As can be observed from the simulation

results presented in section 3.4.6, the MWM framework for beam selection does not

have any such limitations and achieves a better sum rate, even for dense systems.

While computing SINRs using (3.17), it is considered that all the N beams are

active. This results in over estimation of the interference as only K beams are

activated at any given time to serve K users. More importantly, interference seen

by a user is determined by the beams assigned to the remaining K1 users, which

implies that, when a user is assigned a beam (i.e., when an edge is selected), all the

remaining edge weights change. When the MWM finds a matching, the SINRs will

change and it is possible, with the modified edge weights, that a new set of edges

maximize the sum rate. This inter-dependency among the edge weights makes the
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Figure 3.3 Beam selection as MWM over a bipartite graph

MWM based beam selection, presented here, suboptimal. At the same time, this

method achieves comparable performance, at significantly low complexity, relative

to the existing beam selection algorithms, as discussed in the next section.

3.4.3 Precoding Scheme

While beam selection optimally choose beams for the users, precoding, based on

the effective channel matrix after beam selection, H̃b, is employed to eliminate the

interference among the users. ZF is a popular precoding technique. However, ZF

degrades the performance when H̃b is ill-conditioned and it can not be applied when

H̃b is rank deficient. A precoder that diagonalizes H̃b, based on QR decomposition

of H̃b, has been proposed in section 3.3.3, [53]. We refer to this precoder as “QR-

Pr” and employ the same for canceling the interference. After employing the QR-Pr

precoder, the received signal at the kth user is given by

ỹb,k = r̃b,kkxk + w̃b,k, k = 1, . . . , K, (3.18)

where r̃b,kk is the kth diagonal element of R̃b, where H̃b = Q̃bR̃b. w̃b,k is the AWGN

with ∼ CN (0, N0).

3.4.4 Power Allocation Methodology

As discussed above, QR-Pr creates a set of K parallel channels, with r̃kk as the gain

of kth channel. Assuming Gaussian signalling, it is well known that water-filling

maximizes the sum rate across parallel channels [40]. Thus, instead of uniform

power allocation, we propose to employ water-filling power allocation which is
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given by

maximzes
∑K

k=1 log2

(
1 +

r̃2b,kkpk

N0

)
,

subject to
∑K

k=1 pk ≤ ρ,

pk ≥ 0,∀k. (3.19)

where pk is the power allocated to user k, and ρ is the total transmitted power. The

optimization problem (3.19) is a classical power allocation problem and its solution

is water-filling power allocation and is given by

pk =

{(
λ− N0

r̃2
b,kk

)}+

, k = 1, . . . , K,

pk = max

{
0,

(
λ− N0

r̃2
b,kk

)}
, k = 1, . . . , K,

(3.20)

where λ is a Lagrange multiplier, and chosen such that
∑

k pk ≤ ρ. Note that, with

ZF precoding all the users will have the same channel gain and there is no scope of

power allocation.

3.4.5 Complexity Analysis

In the sub-section 3.3.4, we have discussed complexity of the QR-base beam selec-

tion algorithm is
N−K−1∑
i=0

(N−i)O(2(N−i)K2). Similarly, complexity of the MWM-

based beam selection algorithm is O(NK2) [111, 112], whereas greedy beam se-

lection algorithm does not perform any mathematical operation. It is just a iteration

based search algorithm. Thus, greedy beam selection is an algorithm with a very

low computational complexity, i.e, O(K). It is worth noting that the complexity

of greedy and MWM-based beam selection algorithms are providing satisfactory

performance with low complexity than “QR-based” beam selection algorithm.

3.4.6 Numerical Results

We present the performance of the proposed algorithms through Monte Carlo sim-

ulations, by considering two different mmWave beamspace MU-MIMO downlink
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Figure 3.4 Sum rate performance of different beam selection algorithms for a sparse
system, with N = 256, and K = 32

systems: A sparse system, with N = 256 beams and K = 32 users, and a dense

system with N = 64 beams and K = 32 users. Each user has a single receive

antenna. We consider one LoS component with α(0)
k ∼ CN (0, 1) and two NLoS

components with α(1)
k ∼ CN (0, 10−2) and α(2)

k ∼ CN (0, 10−3), from the antenna

array at AP to kth user. Further, α(`)
k are mutually uncorrelated. The spatial an-

gles, θ(`)
k , ∀k,∀`, are chosen randomly with a uniform distribution over the interval[

−1
2
, 1

2

]
and independent of each other.

Fig. 3.4 depicts the sum rate achieved by beam selection algorithms in the sparse

system. “QR-based” beam selection refers to the algorithm proposed in [53] and

shown to outperform all the existing algorithms including the “IA” beam selec-

tion [110] and the full dimensional ZF [113]. It is observed that the performance of

MWM beam selection is very close to that of the “QR-based” beam selection. The

“QR-based” beam selection is an iterative algorithm that computes QR decomposi-

tion of an (N − i) × K matrix in ith iteration, i = 0, . . . , (N − K − 1), resulting

in an overall complexity of
∑N−K−1

i=0 (N − i)O(2(N − i)K2). With a complexity

of only O(NK2), the “MWM” beam selection becomes an attractive alternative:

without considerable loss in the sum rate performance, “MWM” saves significantly

in computational complexity. The greedy algorithm, which is a much simpler algo-

rithm compared to “MWM”, results in a comparable sum rate performance. Thus,
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Figure 3.5 Sum rate performance of different beam selection algorithms for a sparse
system, with N = 64, and K = 32

if we have stringent limitations on the affordable computational complexity, greedy

algorithm provides us with a better choice for beam selection.

Fig. 3.5 shows that in a dense system, the performance of the existing and the

proposed beam selection algorithms are compared. Similarly, it is observed as when

the system was sparse (i.e., Fig. 3.4). The performance gap between the “QR-based”

beam selection and the proposed algorithms is more noticeable. Thus, in a dense

system, to enjoy the benefits of low complexity of the proposed algorithms, one has

to sacrifice noticeable loss in the sum rate.

3.5 Concluding Remarks

In this chapter, mmWave beamspace MU-MIMO downlink system is considered.

To reduce the required number of beams, a “QR-based” beam selection algorithm

is discussed. Further, low complexity algorithms, i.e., a greedy and “MWM-based”

beam selection is discussed while taking advantages of mmWave cellular system

with regards to the availability of users in the cell and cell size. Next, the perfor-

mance metrics (spectral efficiency and energy efficiency) are discussed, and com-

pared with the other existing beam selection algorithms and also complexity of the

proposed beam selection algorithms are also discussed, and compared with the ex-

isting beam selection algorithms. It has been observed that the “QR-based” beam

selection algorithm outperforms the existing beam selection algorithms. On the
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other hand, a greedy and “MWM-based” beam selection algorithms achieve per-

formance comparable to the “QR-based” beam selection algorithm with very low

complexity.
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