List of Figures

2.1	Convergence properties of CNR on IEEE 30 Bus system	24
2.2	Convergence properties of CINR on IEEE 30 Bus system	24
2.3	Convergence properties of Rev-CINR on IEEE 30 Bus system	25
2.4	Convergence properties of NR-CINR on IEEE 30 Bus system	25
2.5	Convergence properties of Mod-CINR on IEEE 30 Bus system $\ . \ . \ .$	25
3.1	Flow chart of Particle Swarm Optimization	41
4.1	Flow chart of re-phasing using PSO	80
4.2	Test system showing line type (#) and line length (ft.)	81
4.3	System voltages for base case	82
4.4	System voltages after re-phasing	83
4.5	Comparison of MVA flows in each phase at the main substation for	
	base case and re-phased case using PSO, GA and BO	84
4.6	Comparison of Sequence Currents and %RMSI for base case and	
	re-phased case using PSO, GA and BO	85
4.7	Base case phase currents and MVA intake at main sub-station for	
	the system	86
4.8	Re-phased phase currents and MVA intake at main sub-station. $$. $$.	87
4.9	Base case sequence currents at main sub-station for the system. $\ .$.	88
4.10	Re-phased sequence currents at main sub-station	89
4.11	Minimum system voltages for the daily load curve for the base case.	90
4.12	Minimum system voltages for the daily load curve for the re-phased	
	system	91

4.13	RMSI values for base case and re-phased case at main sub-station 92
5.1	Test system showing line type(#) and line length (ft.) 97
5.2	Active load for all the buses at phase-a for 24 hours
5.3	Active load for all the buses at phase-b for 24 hours
5.4	Active load for all the buses at phase-c for 24 hours
5.5	Reactive load for all the buses at phase-a for 24 hours 102
5.6	Reactive load for all the buses at phase-bfor 24 hours
5.7	Reactive load for all the buses at phase-c for 24 hours
5.8	Bus voltages without and with DGs. V_a, V_b, V_c indicate bus voltages
	without DGs. V_a^*, V_b^*, V_c^* indicate bus voltages with DGs 108
5.9	Hourly positive-, zero-, negative-sequence currents without and with
	DGs. I_0 , I_1 , and I_2 indicate sequence currents for the case when
	DGs are not placed. I_0^* , I_1^* , and I_2^* indicate sequence currents for
	the case when DGs are placed
5.10	Hourly phase currents without and with DGs. I_a , I_b , and I_c indicate
	phase currents for the case when DGs are not placed. I_a^* , I_b^* , and
	I_c^* indicate phase currents for the case when DGs are placed 110
5.11	Minimum of the all bus Voltages without DGs and with DGs for 24
	hour. V_{min} and V_{min}^* indicate the minimum bus voltage in case of
	Without DGs and with DGs respectively
5.12	Total active and reactive power line loses for 24-hours. P_{loss} and
	Q_{loss} indicate total active and reactive line losses for the case when
	DGs are not placed. P_{loss}^* and Q_{loss}^* indicate total active and reactive
	power line loss for the case when DGs are placed
5.13	Phase Utilization Index at main feeder for 24 hours. PUI and
	PUI^* indicates the phase utilization index in case of without DGs
	and with DGs respectively
7.1	VVVF system generator model using DDS
7.2	DTC simulink model
7.3	DTC System generator model 124