
Chapter 3

Global Optimization Techniques

This chapter presents the basics of global optimization problems, their types and

techniques used to solve these problems. It also describes two nature-inspired opti-

mization algorithms, Particle Swarm Optimization (PSO) and Butterfly Optimizer

(BO) which are used in further chapters of this thesis to solve the optimization

problems discussed in Chapter 1.

3.1 What is the Optimization ?

Optimization is the process deployed to obtain best possible/feasible solution for

a given set of problems. The quality of solution can be represented in terms of

a real value and is problem specific. Thus, the main purpose of optimization

is to search the best feasible option for a given set of circumstances. In recent

decades the area of optimization has matured and is widely employed in numer-

ous engineering, financial and social applications. These applications include and

are not limited to the following domains; optimal missile trajectories, optimal

petroleum refining, aircrafts designs with minimum weight, profitable business

activities, physical, engineering, architecture, economics, biological and chemical

sciences and management. There are many algorithms or techniques available

to solve optimization problems. The history of optimization goes back to many

centuries; Euclid (300 B.C.) and Heron (100 B.C.) solved the problem of light trav-
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eling between two points and found the shortest path between them [41]. Leibniz

et al. [42], in their work, used optimization to solve real valued non-linear and

linear constrained problems. Harold Kuhn, Tucker addressed the problem of non-

linear constrained optimization in 1951. The authors used the principle of Leibniz-

Newton for optimization and therefore the solution was prone to get stuck in local

optima. The Monte-Carlo simulation based methods for optimization appeared

around 1940 [43]. A search based method similar to evolutionary methods was

introduced by George Box in 1957 [44]. The method exploited entire search space

for generating random candidate solutions. John Nelder and Roger Mead were

first to introduce simplex algorithm in [45]. The method incorporated the ability

to learn from previous search and algorithm had adaptation for search surface ter-

rain. Kirkpatrick et al. ( [47]) introduce simulated annealing (SA) in their work.

A breakthrough in evolutionary computation was achieved through the work of

John Holland presented in [46]. In this work, genetic algorithm (GA) was first

introduce. The method mimics the metallurgical process of annealing of metals.

In later years, ant colony optimization (ACO) and particle swarm optimization

(PSO) were introduced by Marco Dorigo in 1992 and Kennedy and Eberhart in

1995, respectively. The methods were based on foraging behavior of insects and

swarms of birds. An optimization problem can be stated as,

Search ~x = (x1, x2, x3....., xD)

Optimizes f1(~x), f2(~x), ...., fk(~x)

subject to : hi(~x) = 0, i = 1, 2, ....., p (3.1)

gi(~x) < 0, i = p+ 1, p+ 2, ......p+m

where li ≤ xi ≤ ui, i = 1, 2, 3....D

Here ~x is a solution vector, D is the dimension of problem, k refers to the
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number of objective functions needed to be simultaneously optimized. The fi(x),

∀ i ∈ [1, k], are the objective functions of the problem. li and ui, ∀ i ∈ [1, D] are

the lower and upper bounds defing the search space. A commonly used method

is Direct search method. This method does not require the gradient informa-

tion. These methods include iterative methods such as Nelder-Mead [51], Hooke-

Jeeves [50],and Heuristic techniques [52]. The Heuristic approaches for optimiza-

tion widely came into use in the optimization domain quite recently. In Heuristic

approach, optima is obtained by use of so-called exploitation and exploration of

the search-space. The process of exploitation is search scheme which examines

nearby space of a candidate solution. The exploration of search space incorporates

searching of faraway spaces to the candidate solution thereby avoiding local min-

ima. Swarm Intelligence (SI) based optimization have evolved and become popular

in recent times. One of the SI-based methods, PSO is quite widely used because

of simplicity in implementation.

3.1.1 Global Optimization

A multimodal objective functions can have multiple optimal solutions wherein

some may be sub-optimal local solutions. Finding global optimum for a multimodal

problem is typically considered to be a difficult tasks. The global optimization

methods aims to find a global optimum solution in presence of several local sub-

optimal solution. In general, global optimization problems are non-linear problems.
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3.1.2 Types of Optimization

The global optimization can broadly be categorized into four major domains based

on the number of objectives and or type of constraints involved.

1. Single Objective Unconstrained Optimization (SOUO)

2. Single Objective Constrained Optimization (SOCO)

3. Multi Objective Unconstrained Optimization (MOUO)

4. Multi Objective Constrained Optimization (MOCO)

3.1.2.1 Single Objective Unconstrained Optimization

The equation (3.1) states the generic optimization problem. In equation (3.1),

if p = 0, m = 0 and k = 1, then this equation reduces to Single Objective

Unconstrained Optimization (SOUO). This class of optimization problem involves

only one objective function without any constraints. The simplified mathematical

equation is given below.

Search ~x = (x1, x2, x3..., xD) (3.2)

optimizes f(x̄)

Where li ≤ xi ≤ ui, i = 1, 2, ...., D

3.1.2.2 Single Objective Constrained Optimization

Considering equation (3.1) for the values of p > 0 and/or m > 0 and k = 1, the

resulting equation reduces to Single Objective Constrained Optimization (SOCO).

Thus, the problem has one objective function with at least one constraint. The
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constraints could be of equality ( p > 0) or inequality (m > 0) type, or both

(m > 0, p > 0). Thus the problem can be simplified as follows.

Search ~x = (x1, x2, x3, ...., xD) (3.3)

optimizes f(x̄)

subject to : hi = 0, i = 1, 2, ....., p

gi < 0, i = p+ 1, p+ 2, ......p+m

where li ≤ xi ≤ ui, i = 1, 2, 3....D

3.1.2.3 Multi Objective Unconstrained Optimization

Consider equation (3.1) with values of p = 0, m = 0 and k > 1. The resulting equa-

tion reduced to so-called multi-objective unconstrained optimization (MOUO).

The resulting optimization problem has multiple objective functions with no con-

straints. All objective functions are to be optimized simultaneously. The mathe-

matical of equation (3.1) can be re-written (for p = 0, m = 0 and k > 1) as given

below.

Search ~x = (x1, x2, x3..., xD) (3.4)

optimizes f1(~x), f2(~x), ....fk(~x)

Where li ≤ xi ≤ ui, i = 1, 2, ...., D

3.1.2.4 Multi Objective Constrained Optimization

The equation (3.1), for the values of p ≥ 1, m ≥ 1 and k > 1 reduces to Multi

Objective Constrained Optimization (MOCO). The optimization problem involves

multi-objective function with one or several constraints. The reduced mathemati-

cal equation of problem can be written as,

Search ~x = (x1, x2, x3, ...., xD) (3.5)
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optimizes f1(~x), f2(~x), f3(~x), ...., fk(~x)

subject to : hi(~x) = 0, i = 1, 2, ....., p

gi(~x) < 0, i = p+ 1, p+ 2, ......p+m,

where li ≤ xi ≤ ui, i = 1, 2, 3....D.

3.1.3 Optimization Problem used in this Work

As discussed in Chapter 1, this thesis deals with the problem of phase balanc-

ing in the distribution systems. Phase balancing has been attempted using two

approaches, (i) load switching among phases, and (ii) switching of single-phase

DGs among phases and sizing of these DGs. Load switching problem and opti-

mal sizing and siting of distributed generation are the types of single objective

unconstrained optimization problems. The objective functions of these problems

are highly non-linear, discontinuous, multi-modal, and hard to solve using conven-

tional optimization technique. Two nature-inspired optimization algorithms, PSO

and BO, have been employed to solve these problems. This phase balancing has

been formulated as global optimization problem and basic theory of the algorithms

of these two optimization methods has been discussed in the following sections.

3.2 Particle Swarm Optimization

3.2.1 Swarm Intelligence

SI presents an innovative approach towards solving optimization problems. The

methods incorporating SI-based approaches mimic naturally occurring swarm be-

havior such as swarming of insects, bird flocking, fish schooling, and food-foraging

of bees herding. the real world problems are characterized by their multi-modality,

non-linearity, discontinuities and non-availability of derivatives. The conventional
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methods in several cases are not suited for finding solution for such problems show

difficulty in optimizing the real world problems. The real world problems often are

characterized by noisy, incomplete data or multi- modality due to their inflexible

construction. Natural systems have been mimicked for decades to solve the op-

timization problems. These natural systems often contain many simple elements

which, when work together, produce complex emergent behavior. The natural com-

puting paradigms can be used, where conventional computing paradigm perform

unsatisfactorily. Swarm Intelligence (SI) belongs to one such natural computing

paradigm.

The collective behaviors of animals as swarms have been studied by biologists

for animals such insects, fish , bee, bird and mammal. Grasse [53]in their work re-

ported the swarm behavior of African termites for food foraging. The first flocking

model was first developed by Craig Reynolds [54] in 1987. Craig Reynolds intro-

duces a flock of entities called Biods in their bio-inspired computational framework

for simulating the swarm behavior. Jean-Louis and Simon Goss [55] demonstrated

the use of collective patterns and decision making in their work presented in 1991.

They investigated the food foraging behavior of Ants and their strategy for finding

shortest path between food sources. The term swarm intelligence first introduced

by Beni and Wang [56] in their work related to robotics systems. first introduced

the term Swarm Intelligence in the context of cellular robotic systems in 1991. In

1992 Marco Dorigo introduced Ant Colony Optimization (ACO) algorithm [48].

The method of PSO presented by Eberhart and Kennedy in [49] mimicked social

behavior of flock of birds. Karboga in their work ( [57]) introduce Artificial Bee

Colony (ABC) algorithm which simulated the food foraging behavior of honey

bees. The detailed algorithmic explanations of ABC and ACO algorithms are out

of scope of the thesis.

3.2.2 Particle Swarm Optimization

The particle swarm optimization (PSO) is a parallel evolutionary computation

technique developed by Kennedy and Eberhart [49] based on the social behavior
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metaphor. Reynolds [54] proposed a behavioral model in which each of the particles

follows three rules for finding the food [54].

1. Separation: Each particle tries to move away from its neighbors if they are

too close.

2. Alignment: Each particle steers towards a general direction of neighboring

particles.

3. Cohesion: Each particle tries to go towards the general position of its neigh-

bors.

The PSO algorithm is initialized with a population of random particles (candidate

solution vectors). Each particle is characterized by its position (solution vector)

and velocity (direction in which it will move toward a new solution vector in the

problem space). For each particle a random velocity is assigned initially. Each

particle iteratively moves in the problem space. Using above stated behavioral

model, the particle moves towards the position of minimum value of the objective

function (or best fitness) achieved so far by the particle itself and towards the

position of the best fitness achieved so far by the whole population. For the

optimization problem, represented by equation (3.2), the PSO algorithm updates

the velocity, vi, and position, xi, of i-th particles in the following manner at kth

iteration.

~vk+1
i = mv ⊗ ~vki +mx1 ⊗ r̄1⊗ (~p1i − ~xki ) +mx2 ⊗ r̄2⊗ (~p2 − ~xki ) (3.6)

~xk+1
i = cx ⊗ ~xki + cv ⊗ r̄1⊗ ~vk+1

i (3.7)

The symbol ⊗ denotes element by element vector multiplication. mv, mx1 , and

mx2 are momentum values, r̄1 and r̄2 are the random vectors. ~p1i is vector of

local-best solution achieved by particle i, consisting of best fit achieved so far (up

to the kth iteration) by the particular particle ~xki and ~p2 is called the global best

solution. It is a solution vector having best fit achieved so far by particles in the
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swarm (up to the k-th iteration). The new solution vector ~xk+1 is obtained by

linearly combining the last position ~xk and velocity ~vk+1.

3.2.3 PSO terminology

The following terminologies are used to describe PSO.

1. Particle: A candidate solution is referred as a particle which is analogies to

a bird in a flock. All the particles in a flock are independent to each other.

2. Position: Every particles is defined by its position in the search space. The

position is represented by coordinates of the particle in the N -dimensional

search space. An N -dimensional search space is the solution space for the

optimization problem, coordinates of which represents a solution to the prob-

lem.

3. pBest location: This is the information of best location that the particle

has found during search process which is reffered as pBest. Each particle

has its own local-best location determined by the path that it has flown.

At each point along its path, the particle compares the fitness value of its

current location to that of pBest location. If the current location has a better

fitness, pBest solution is replaced with its current location.

4. gBest location: This is the information of best position in the whole swarm.

For entire swarm there is one gBest location to which each particle is at-

tracted. At each point along their path every particle compares the fitness

of their current location to that of gBest location. If any particle is at a

location of better fitness than gBest location is replaced by that particle’s

current position.

5. Cognitive factor (mx1): It is a relative pull on the velocity of the particle

by the pBest location of the same particle. This is the major factor that

alters the trajectory of the particle flight during due course of search.
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6. Social factor (mx2): It is a relative pull on the velocity of the particles by

the gBest location. This is also the major factor to alters the trajectory of

the particle flight.

3.2.4 A Newtonian Mechanical Model

The Newtonian mechanical model explains how iterative (velocity and position)

equations of Particle Swarm Optimization are deduced from mechanics. The po-

sition and velocity of each particle with mass m can be expressed according to the

Newtons second law of motion as

d~x

dt
= ~v, (3.8)

d~v

dt
= ~a =

~F

m
, (3.9)

where, ~F denotes the force on the particles, ~a and ~v are the acceleration

and velocity, respectively. The forward differentiation of equations (3.8) and (3.9)

converts it to iterative process as follows.

~xt − ~xt−1

4t
= ~v =⇒ ~xt = ~xt−1 + ~vt4t, (3.10)

~vt − ~vt−1

4t
=

~Ft−1

m
=⇒ ~vt = ~vt−1 +

~Ft−1

m t
4t. (3.11)

Considering m and 4t to be unity in above equations, (3.10) and (3.11), we get

the following.

~xt = ~xt−1 + ~vt, (3.12)

~vt = ~vt−1 + ~Ft−1. (3.13)
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All the terms in equations (3.10) and (3.11) are known except force ~Ft−1 at

(t− 1)th iteration. To model this (~Ft−1), the swarm characteristics are considered.

The important feature of swarm is that any particle is influenced by the relative

pull of local-best and global-best locations. These two relative pulls on swarm are

equivalent to two spring like attractions and hence can be expressed as

~Ft−1 = mx1 ⊗ (~p1 − ~xk) +mx2 ⊗ (~p2 − ~xk) (3.14)

where mx1 and mx2 are Hooks constants of two springs. The mx1 and mx2 are

considered as cognitive and social factors respectively. The behavior of the entire

swarm can be expressed by writing the above equations in a matrix form. To

inject the randomness into the swarm behavior, Hookes constants mx1 and mx2

are multiplied by random number generators. Thus the final equation can be

expressed as below.

~vk+1
i = mv ⊗ ~vki +mx1 ⊗ r̄1⊗ (~p1i − ~xki ) +mx2 ⊗ r̄2⊗ (~p2 − ~xki ) (3.15)

~xk+1
i = cx ⊗ ~xki + cv ⊗ r̄1⊗ ~vk+1

i (3.16)

The equations (3.15) and (3.16) are the position and velocity update equations for

PSO. The main steps of PSO are shown in figure 3.1.

3.3 Butterfly Optimizer

BO is a dual population based technique for unconstrained optimization [58]. Brief

discussion of the technique is given as follows.

3.3.1 Dual population of BO

BO is based on dual population of positions of male butterflies. Perching and

patrolling operations of BO correspond to exploration and exploitation of search

space respectively, to look for new solution. For D− dimensional problem, with

N butterflies, population P1 represents current perching positions and, P2 consists

of best perching positions of every male butterfly. P1 and P2 are represented as

40



Figure 3.1: Flow chart of Particle Swarm Optimization

N ×D matrix as follows.

P k
1 = [x̄k1, x̄

k
2....x̄

k
N ] (3.17)

41



where

x̄ki = [xki1, x
k
i2, x

k
i3....x

k
iD]T , i = 1, 2, ...N (3.18)

and

P k
2 = [m̄xk1, m̄x

k
2....m̄x

k
N ] (3.19)

where

m̄xki = [mxki1,mx
k
i2,mx

k
i3....mx

k
iD]T , i = 1, 2, ...N (3.20)

The vector x̄ki and m̄xki , and thereby P1 and P2 are updated using BO algorithm

to get newer solutions.

A velocity vector, mvi is associated with each solution i, which is represented

by following equation.

m̄vki = [mvki1,mv
k
i2,mv

k
i3.......mx

k
iD]T , i = 1, 2, ...N (3.21)

3.3.2 Initialization

Solution process is intialised in search space using equation (3.22).

x0
ij = (Uj − Lj) ∗ rand+ Lj (3.22)

mx0
ij = (Uj − Lj) ∗ rand+ Lj

mv0
ij = 0

For jth parameter, Lj and Uj are lower and upper bound and rand is uniformly

distributed random number between (0, 1]

3.3.3 Perching

Perching operation consists of (i) Crisscross modification and (ii) Ist-selection.

Crisscross Modification

Crisscross modification updates the perching position vector x̄k+1
i , by modifying

one of its randomly selected elements, in the following manner.

xk+1
ij =


R(xkccij,mx

k
ccij

) + F ∗ (

R(xkqij,mx
k
qij

)−R(xkrij,mx
k
rij

)), if j == d

mxkij, otherwise.

(3.23)
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R(∗, ∗), is a random operator, which can pick one of the arguments with equal

probability. Crisscross neighbour of ith butterfly is cci. Other randomly selected

neighbors of ith butterfly, qi and ri satisfy the following criteria.

i 6= cci 6= qi 6= ri (3.24)

At the beginning of an iteration, c̄c of length N is initialized by randomly

shuffling integers from 1 to N .

c̄c = [cc1, cc2, ....cci...ccN ]T (3.25)

Ist-Selection

Ist-selection is given by equation (3.26) which updates m̄xki of P2 as follows.

m̄xk+1
i =

x̄i
k+1, if f(x̄i

k+1) ≤ f(m̄xi
k)

m̄xi
k, otherwise.

(3.26)

where f(∗) is the objective function value at ∗ position.

3.3.4 Patrolling

Male butterflies which remain un-updated during perching operation are updated

in patrolling operation. Patrolling operation consists of following two sub-operations.

Towards-best modification

This step gives patrolling position vector, ūxi

ūxi = m̄xki + s ∗ m̄vki + F ∗ (m̄xkbest − m̄xki ) (3.27)

where m̄xbest is the best position in the population, F is a random value between

(0, 1] and s is a constant between [0, 1].

IInd-Selection

IInd-Selection is similar to Ist-selection; the only difference is that it also updates

velocity vector m̄vki . Equation (3.28) updates velocity vector as follows,

m̄vk+1
i =


ūxk+1

i − m̄xki , iff(ūxi
k+1) ≤ f(m̄xi

k)

d ∗ m̄vki + F∗

(m̄xkbest − m̄xki ), otherwise.

(3.28)
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BO algorithm is terminated if specified maximum number of objective function

evaluation is reached or solution does not change over a specified number of con-

secutive iterations.

Algorithms 1 and 3.27 show the main steps of the BO algorithm.

3.4 Performance Analysis of PSO and BO

In this section, BO and PSO are benchmarked on 55 benchmark problems to

evaluate their performance. All benchmark problems are taken from [2] paper.

These benchmark problems are grouped into four categories according to their

property as listed in Tables 3.1-3.4. D indicates the dimension of problem, R is

an array representing the upper and lower boundary of variables in search space

and Fmin is the global minimum of the problem.

All the benchmark problems are minimization type and fall in any of the following

4 groups, (i) Floating Dimension Unimodal, (ii) Fixed Dimension Unimodal, (iii)

Floating Dimension Multimodal, and (iv) Fixed Dimension Multimodal. BO runs

30 times on each benchmark function to reduce the randomness in the error.

In this analysis, following three tests are performed on the all problems (i)

Exploitation behavior analysis, (ii) Exploring behavior analysis and (iii) Local

optimum avoidance analysis. Results of this experiment are reported in Table 3.5

- 3.8.

3.4.1 Exploitation Behavior Analysis

Benchmark Problems of Table 3.1 and Table 3.2 are suitable for exploitation be-

havior analysis. These benchmark functions contain only one optimum in search

space called global optimum. In this test, all the problem of these table are solved

using PSO and BO and the results are reported in Table 3.5-3.6. These tables

show that the BO is able to solve all of these problem very well. PSO also could

solve all the problems except F3, F4, F11, F12, F14, and F16. These results also

show that the performance of BO is far better in terms of exploiting the best so-

lution in search space. Perching behavior of butterfly is the main reason of better
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Algorithm 1 Perching

1: procedure Perching()

2: cci ← RandP(i)

3: qi ← randi(1, N)

4: while (pi == qi)or(i == qi) do

5: qi ← randi(1, N)

6: end while

7: ri ← randi(1, N)

8: while (pi == ri)or(qi == ri)or(i == ri) do

9: ri ← randi(1, N)

10: end while

11: mi ← randi(1, D)

12: s ← rand(0, 1)

13: for j = 1 to D do

14: if j == m then

15: xij = R(xccij ,mxccij) + F × (R(xqij ,mxqij)−R(xrij ,mxrij))

16: else

17: xij = mxij

18: end if

19: end for

20: f(x̄i)← function evaluation at m̄xi

21: FEs← FEs + 1

22: if f(x̄i) ≤ f(m̄xi then

23: m̄xi ← x̄i

24: f(m̄xi)← x̄i

25: end if

26: end procedure
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Algorithm 2 Patrolling

1: procedure Patrolling()

2: for j = 1 to D do

3: t← uniformly distributed number from −1 to 1

4: uxij ← xij + d ∗ vij + (xbest − xij) ∗ t

5: end for

6: f(ūxi)← function evaluation at z̄i

7: FEs← FEs + 1

8: if f(ūxi) ≤ f(x̄i) then

9: m̄vi ← ūxi − m̄xi

10: m̄xi ← ūxi

11: f(m̄xi)← f(ūxi)

12: else

13: m̄vi ← d ∗ m̄vi

14: end if

15: end procedure

Table 3.1: Fixed Dimension Unimodal Functions [2]. (D = Dimension, R = Range

of the search-space, Fmin = minimum of the problem)

S.N Function’s Name D R Fmin

F1. Aluffi-Pentini’s Function 2 [-10,10] -0.3523

F2. Beale Function 2 [-4.5,4.5] 0

F3. Colville Function 4 [-10,10] 0

F4. Easom Function 2 [-100,100] -1

F5. Matyas Function 2 [-10,10] 0

F6. Quadratic Function 2 [-10,10] -3873.7243

F7. Three Hump Camel Function 2 [-5,5] 0

F8. Wolfe Function 3 [0,2] 0

F9. Zettle Function 2 [-5,10] -0.003791

F10. Leon Function 2 [-1.2,1.2] 0
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Table 3.2: Floating Dimension Unimodal Functions [2]. (D = Dimension, R =

Range of the search-space, Fmin = minimum of the problem)

S.N Function’s Name D R Fmin

F11. Dixon and Price Function 30 [-10,10] 0

F12. Rosenbrock Function 30 [-30,30] 0

F13. Schwefel 1.2 Function 30 [-100,100] 0

F14. Schwefel 2.22 Function 30 [-10,10] 0

F15. Step Function 30 [-100,100] 0

F16. Stepint Function 30 [-5.12,5.12] 0

F17. Sphere Function 30 [-5.12,5.12] 0

F18. Sumsquare Function 30 [-10,10] 0

F19. Trid Function 30 [-100,100] -4930

F20. Zakharov Function 30 [-5,5] 0

exploiting performance.

3.4.2 Exploration Behavior Analysis

Benchmark functions of Table 3.3 and 3.4 are having multiple minimum in search

space. So, these functions are suitable for exploration analysis. In this test, all the

problems of these tables are solved by PSO and BO and the results are reported

in Table 3.7-3.8. The results in the tables show that the BO is able to solve

all of these problems very well except F37 and F54. PSO also could solve all the

problems satisfactory except a few such as F37, F40, F46, F47, F48, F51, F53, and

F55. BO algorithm provide better result on the majority of multimodal functions

as compared to PSO. Therefore, BO algorithm has very competitive exploring

behavior. Patrolling behavior of butterfly is the main reason of better exploring

performance.
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Table 3.3: Fixed Dimension Multimodal Functions [2]. (D = Dimension, R =

Range of the search-space, Fmin = minimum of the problem)

S.N Function’s Name D R Fmin

F21. Beckar-Lago Function 2 [-10,10] 0

F22. Bohachevsky 1 Function 2 [-100,100] 0

F23. Bohachevsky 2 Function 2 [-100,100] 0

F24. Bohachevsky 3 Function 2 [-100,100] 0

F25. Booth Function 2 [-10,10] 0

F26. Branin Function 2 [-5,15] 0.398

F27. Butterfly Function 2 [-2,2] -1

F28. Carrom Table Function 2 [-10,10] -24.157

F29. Chichinadze Function 2 [-30,30] -42.315

F30. Egg Crate Function 2 [-5,5] 0

F31. Freudenstein Roth Function 2 [-10,10] 0

F32. Giunta Function 2 [-1,1] 0.060447

F33. Goldstein-Price Function 2 [-2,2] 3

F34. Hartman 3 Function 3 [0,1] -3.863

F35. Hartman 6 Function 6 [0,1] -3.322

F36. Hosaki Function 2 [-10,10] -2.3458

F37. Kowalik Function 4 [-5,5] 0.00030784

F38. Penholder Function 2 [-11,11] -0.96354

F39. Periodic Function 2 [-10,10] 0.9

F40. Shekel 5 Function 4 [0,10] -10.15

F41. Shekel 7 Function 4 [0,10] -10.40

F42. Shekel 10 Function 4 [0,10] -10.53

F43. Six Hump Camel Function 2 [-5,5] -1.0316

F44. Testtube Holder Function 2 [-10,10] -10.8723

F45. Trecanni Function 2 [-5,5] 0
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Table 3.4: Floating Dimension Multimodal Functions [2]. (D = Dimension, R =

Range of the search-space, Fmin = minimum of the problem)

S.N Function’s Name D R Fmin

F46. Ackley Function 30 [-35,35] 0

F47. Alpine Function 30 [-10,10] 0

F48. Cosine Function 30 [-1,1] 3

F49. Csendas Function 30 [-1,1] 0

F50. Exponential Function 30 [-1,1] -1

F51. Griewank Function 30 [-100,100] 0

F52. Quintic Function 30 [-10,10] 0

F53. Schwefel Function 30 [-500,500] -12569.48

F54. Trigonometric Function 30 [0,pi] 0

F55. Wavy’s Function 30 [-100,100] 0

Table 3.5: Result of Fixed Unimodal Functions

S.N Min BO PSO

F1 -3.5239E-01 -3.5239E-01 -3.5239E-01

F2 0.0000E+00 0.0000E+00 0.0000E+00

F3 0.0000E+00 0.0000E+00 4.2771E-02

F4 -1.0000E+00 -1.0000E+00 -9.8882E-01

F5 0.0000E+00 0.0000E+00 0.0000E+00

F6 -3.8737E+03 -3.8737E+03 -3.8737E+03

F7 0.0000E+00 0.0000E+00 0.0000E+00

F8 0.0000E+00 0.0000E+00 0.0000E+00

F9 -3.7912E-03 -3.7912E-03 -3.7912E-03

F10 0.0000E+00 0.0000E+00 0.0000E+00
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Table 3.6: Result of Unfixed Unimodal Functions

S.N Min BO PSO

F11 0.0000E+00 0.0000E+00 6.6667E-01

F12 0.0000E+00 0.0000E+00 9.3021E-01

F13 0.0000E+00 0.0000E+00 0.0000E+00

F14 0.0000E+00 0.0000E+00 4.7446E-02

F15 0.0000E+00 0.0000E+00 0.0000E+00

F16 0.0000E+00 0.0000E+00 3.7000E+00

F17 0.0000E+00 0.0000E+00 0.0000E+00

F18 0.0000E+00 0.0000E+00 0.0000E+00

F19 -4.9300E+03 -4.9300E+03 -4.9300E+03

F20 0.0000E+00 0.0000E+00 0.0000E+00

3.4.3 Local Optimum Avoidance

In case of multimodal problems, algorithms some time get stuck on local optimum

of problems. This must be avoided by the algorithm while searching of global

optimum. The result of some problem of Table 3.7-3.8 also provide a comparison

of local optimum avoidance property of PSO and BO. These results show that BO

avoids local minimum very well in all of the multimodal benchmark function as

compared to PSO. Other meta-heuristics get stuck on local optima of highly modal

problems, whereas BO easily avoid these local optimum even in high dimensional

multimodal problem. Therefore, BO algorithm is able to avoid local optimum

of the complex, high modal and high dimensional mulitimodal functions. Previ-

ous velocity term of velocity update equation is the key factor of local optimum

avoidance of BO algorithm.

The results presented in this chapter show the performance of PSO and BO

on well known problems, but as we are not sure about the nature of the resulting

objective function corresponding to the phase balancing problem, PSO (widely

accepted in the literature) and recently proposed BO (which outperforms on the

conventional benchmark problems) both have been attempted to see their perfor-
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Table 3.7: Result of Fixed Multimodal Functions

S.N MIN BO PSO

F21 0 0.000000e+00 0.000000e+00

F22 0 0.000000e+00 0.000000e+00

F23 0 0.000000e+00 0.000000e+00

F24 0 0.000000e+00 0.000000e+00

F25 0 0.000000e+00 0.000000e+00

F26 0.397887 3.978874e-01 3.978874e-01

F27 -1 -1.000000e+00 -1.000000e+00

F28 -24.156815 -2.415682e+01 -2.415682e+01

F29 -42.944387 -4.294439e+01 -4.294439e+01

F30 0 0.000000e+00 0.000000e+00

F31 0 0.000000e+00 0.000000e+00

F32 0.064470 6.447042e-02 6.447042e-02

F33 3 3.000000e+00 3.000000e+00

F34 -3.9273827 -3.927383e+00 -3.927383e+00

F35 -3.306605 -3.306605e+00 -3.292826e+00

F36 -2.345812 -2.345812e+00 -2.345812e+00

F37 0.0003075 3.176639e-04 3.706802e-04

F38 -0.963534 -9.635348e-01 -9.635348e-01

F39 0.9 9.000000e-01 9.000000e-01

F40 -10.1532 -1.015320e+01 -9.565726e+00

F41 -10.4029 -1.040294e+01 -1.040294e+01

F42 -10.5364 -1.053641e+01 -1.053641e+01

F43 -1.031628 -1.031628e+00 -1.031628e+00

F44 -10.8723 -1.087230e+01 -1.087164e+01

F45 0 0.000000e+00 0.000000e+00

mance on phase balancing problems.
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Table 3.8: Result of Unfixed Multimodal Functions

S.N Min BO PSO

F46 0.0000E+00 1.0629E-14 5.0058E-02

F47 0.0000E+00 0.0000E+00 8.1955E-03

F48 3.0000E+00 3.0000E+00 3.3216E+00

F49 0.0000E+00 0.0000E+00 0.0000E+00

F50 -1.0000E+00 -1.0000E+00 -1.0000E+00

F51 0.0000E+00 0.0000E+00 4.5971E-03

F52 0.0000E+00 0.0000E+00 8.7886E+00

F53 -1.2569E+04 -1.2569E+04 -8.3947E+03

F54 0.0000E+00 1.8810E-06 0.0000E+00

F55 0.0000E+00 0.0000E+00 3.1799E+01

3.5 Conclusion

In this chapter, the basics of global optimization with their types and techniques

used to solve global optimization problems are briefly described. Furthermore,

two nature-inspired optimization algorithms, PSO and BO, are described which

are used in this thesis to solve the mix-integer global optimization problems, phase

balancing problem of an unbalanced distribution system using load switching and

phase balancing problem of an unbalanced distribution system using optimal sizing

and siting of single-phase distributed generation. A comparative analysis between

PSO and BO has also been done on the conventional benchmark problems. Out-

comes of the comparative analysis show that both algorithms perform well in all

the benchmark problems, however, BO outperforms the PSO some of the bench-

mark problems. From the outcomes of the PSO and BO on benchmark problems,

it can be concluded that these algorithms can be applied to the real world com-

plex global optimization problems such as phase balancing problem being studied

in the following chapters.

52


