
Chapter 2

Current Injection Based Power

Flow

This chapter reports an improvement in the current injection based Newton-

Raphson (CINR) load flow using a new representation of PV bus. This improved

CINR is named as Mod-CINR. In Mod-CINR, representation of PV buses is same

as CINR but modified equations are used to calculate current mismatch. Due to

new equations, the convergence property of Mod-CINR is improved. Experimen-

tal tests have been performed on different IEEE standard bus systems and some

practical unbalanced three-phase distribution systems and results of Mod-CINR

are compared with different Newton-Raphson load flow techniques viz. Conven-

tional Newton-Raphson(CNR) and CINR. The comparative analysis shows that

the convergence property of Mod-CINR improves without increasing the number

of equations.

2.1 Introduction

Power flow tools are extensively applied in power systems planning and operation.

These are also used to provide initial conditions for several power system studies

such as short-circuit, angle and voltage stability [18–20]. In real time operations,

these are used for simulating transmission line contingencies and for determining

load margin which require high computational processing time. Thus, there is a
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continuing search for methods that can provide faster convergence and are also

more robust and reliable. Among various numerical methods used for solving

power flow problems, “power injection” Newton-Raphson iterative method is the

most widely used one, since it is more reliable and the required number of iterations

are independent of size of the power system under consideration. Both, “power

injection” and “current injection” power flow formulations can be written with

voltages and admittances in either polar or rectangular coordinates. Some methods

also use hybrid formulations [20].

Electric power distribution systems are characterized by high R/X ratio and

unbalanced operation. These characteristics impose serious challenges for the de-

velopment of efficient computational power flow techniques. Two basic approaches

have been used to deal with this problem: (i) Newton and Newton like meth-

ods [21–23] and (ii) load flow for radial networks [24–27].

In [21] the network radial structure is explored to express the Jacobian matrix

as a product of UDU t, where U is a constant triangular matrix and D is a diagonal

matrix, the elements of which are updated at every iteration. This method is

developed for balanced networks.

In [22] the power flow equations for balanced networks are developed as a

function consisting of new variables in place of V 2
i , ViVjsinθij and ViVjcosθij terms.

The resulting system of equations are of the order of 3n (n=number of buses).

A three-phase power flow formulation (for unbalanced networks) is developed

in [23] where the Jacobian matrix is presented in complex form, but some simplifi-

cations are introduced by neglecting the components of the mismatch arising due

to voltage changes.

A compensation based technique is proposed in [24] for weakly meshed bal-

ance networks. In its first step, radial part of the network is solved using well known

forward/backward sweep technique and in its second step, meshes are handled us-

ing nodal current injection based compensation. In [26] an improved version of

this method has been presented, in which the branch power flows are used instead

of the branch currents.

In [25], a Zbus based approach is presented, in which the voltages at each bus
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depend on two factors viz. (i) the specified voltage sources (PV buses), and (ii) the

equivalent current (PQ buses). In [27] further extensions of the methods of [25]

and [26] are proposed for unbalanced loads.

In [28,29], the power flow formulations based on current injection mismatches

(CINR) were proposed to resolve the issues of (i) large calculations involved in the

update of Jacobian matrix in each iteration of CNR power flow and (ii) slow

convergence in case of ill-conditioned systems . In CINR approach, each update

of Jacobian matrix is faster than that in CNR power flow. This is so because, in

CINR, only diagonal elements need to be evaluated in each update (iteration) of

Jacobian matrix. Moreover, this formulation (CINR) does not require calculation

of transcendental (sine and cosine) functions at all during calculation iterations.

The CINR method performs very well in case of systems having only PQ

buses, but, in the case of presence of PV buses, the CINR mostly fails to converge.

In order to address the problem of convergence in the presence of PV buses, many

revised formulations of CINR (Rev-CINR) have been proposed [30,31]. In [30,31],

PV buses are treated as PQ buses considering reactive power as an additional

system variable. Consequently, this improvement increases the number of required

equations to three for each of the PV buses [32]. The revisions discussed above do

not make CINR a reliable method for transmission systems because these systems

consist of many PV buses resulting in more number of additional variables as

compared to the distribution systems which normally have relatively small number

of PV buses. Hence, CINR is mostly used for distribution systems [33,34].

Current injection based power flow method proposed in [35] attempts to solve

an augmented system of equations where bus voltages and current injections ap-

pear as state variables. The resulting simultaneous equations of power and cur-

rent mismatches are solved using the Newton’s method instead of combining nodal

equations and the bus constraints into a single set of simultaneous nonlinear equa-

tions.

The current equations in the above-mentioned papers are expressed in rectan-

gular coordinates or in a mix of polar and rectangular coordinates. Nevertheless,

a variety of tools based on polar coordinates have been widely applied for power
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system analysis, such as power system dynamics analysis and state estimation.

The use of rectangular coordinates results in a reduction of the effort to compute

the Jacobian terms, since most of them remain constant during the iterative pro-

cess. On the other hand, the use of polar coordinates leads to a smaller number

of equations [35]. In most of the current injection formulations, the appropriate

representation of PV buses has been the main concern. In case of PV bus, only

one quantity (reactive power mismatch, 4Q) is unknown in polar formulation,

contrary to the rectangular formulation, where two quantities (real and imaginary

current mismatches) are unknown. Therefore, additional equations (one equation

for each of the PV buses) need to be introduced in the rectangular formulation.

In [36] a hybrid polar coordinate formulation of current injection method

is proposed using a dependent variable, 4Q, for each PV bus associated to an

active power mismatch equation. A hybrid power flow method (NR-CINR) is

presented in [37–39]where (i) PV buses are represented by equations of active

power mismatches in terms of angle deviation, and (ii) PQ buses are represented

by equations of current injection in rectangular coordinates.

A simplified Newton Raphson (NR) power flow method is presented in [40]

where nonlinear current mismatch equations are expressed in polar coordinates.

In [40], a comparison of above method has also been performed with other power

flow methods having power mismatches in polar coordinates. The reactive powers

at PV buses are kept constant during an iteration and is updated in the end of

each of the iterations.

From the above discussion, it can be concluded that attempts have been

made in literature to incorporate PV modelling in CIM. Nevertheless, CIM with-

out incorporating PV modelling have got wide application in the conventional

distribution system because of following two reasons. First, the conventional dis-

tribution systems don’t have PV buses and second, CIM is more efficient and

effective as compared to the conventional NR load flow methods for distribution

systems. Nowadays, many types of sources are getting introduced in the distribu-

tion systems which need to be modelled as PV buses. Hence, there is need for such

CIM methods which can effectively model and incorporate sources as PV buses.
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In order to address this requirement, in this chapter a new method, Mod-CINR,

has been proposed to model PV buses in CIM framework.

The main contributions of this chapter are as follows. Mod-CINR is more

robust than other CINR based algorithm because it can solve a wide variety of

power flow problems including systems having a large number of PV buses. Mod-

CINR is more efficient than the other algorithms CNR, CINR, Rev-CINR, and

NR-CINR except for FDBX. However, FDBX cannot be employed in distribution

systems due to large R/X ratio, while Mod-CINR provides better convergence

speed as compared to CNR. Hence, Mod-CINR is a better alternative for CNR in

terms of efficiency. In Mod-CINR, PV buses are quiet better handled as compared

to other representative algorithms because of the use of proposed equations for

elements of the Jacobian matrix associated with PV buses.

Following parts of this chapter are organized as follows. Section 2.2 first

presents basics of three-phase CIM for power flow discussing modelling of PQ

buses and then discusses the incorporation of proposed PV bus modeling. Section

2.3 presents results of Mod-CINR (CINR incorporating proposed PV model) and

its comparison with other CINR methods incorporating existing PV modeling

approaches.

2.2 Three-Phase Current Injection Power flow

Before discussing the proposed PV modelling, three-phase CIM for power flow has

been described in the following section for PQ buses.

2.2.1 Modelling of PQ buses

Total injected power at PQ bus i is given by

Sspi = P sp
i + jQsp

i = EiI
∗
i (2.1)

where

P sp
i = P sp

Gi − P
sp
Li , (2.2)

Qsp
i = Qsp

Gi −Q
sp
Li, and (2.3)
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Ei = Vri + jVmi. (2.4)

Total injected current at PQ bus i can be derived from equation 2.1. From equation

2.1 we can define.

Ii =
P sp
i − jQ

sp
i

E∗i
(2.5)

By converting equation 2.5 into its real and imaginary components, we get,

Iri =
PiVri +QiVmi

V 2
i

, and (2.6)

Imi =
PiVmi −QiVri

V 2
i

. (2.7)

Current mismatch at PQ bus i in terms of power mismatch is derived by

partial differentiation of equations 2.6 and 2.7 with respect to active and reactive

powers as follows.

4Iri =
4PiVri +4QiVmi

V 2
i

(2.8)

4Imi =
4PiVmi −4QiVri

V 2
i

(2.9)

Power mismatches 4Pi and 4Qi for bus i (PQ bus) are calculated in the same

way as these are calculated in conventional Newton-Raphson (CNR) power flow,

in the following manner.

4Pi = P sp
i − VriIcalcri − VmiIcalcmi , and (2.10)

4Qi = Qsp
i − VmiIcalcri + VriI

calc
mi . (2.11)

Solution of non-linear equations 2.8 and 2.9 using Newton-Raphson numerical

technique, considering all system buses as PQ type, can be given as follows.

4Im1

4Ir1
4Im2

4Ir2
::

::

4Imn
4Irn



=



Y ∗11 Y ∗12 :: Y ∗1n

Y ∗21 Y ∗22 :: Y ∗23

:: :: :: ::

Y ∗n1 Y ∗n2 :: Y ∗nn





4Vr1
4Vm1

4Vr2
4Vm2

::

::

4Vrn
4Vmn



(2.12)
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where,

Y ∗kk =

B′kk G′kk

G′′kk B′′kk

 , (2.13)

Y ∗jk =

Bjk Gjk

Gjk −Bjk

 , (2.14)

B′kk = Bkk − ak, (2.15)

G′kk = Gkk − bk, (2.16)

G′′kk = Gkk − ck, and (2.17)

B′′kk = −Bkk − dk. (2.18)

Here,

ak =
Qk(V

2
rk − V 2

mk)− 2VrkVmkPk
V 4
k

,

bk =
Pk(V

2
rk − V 2

mk) + 2VrkVmkQk

V 4
k

,

ck = −bk, and

dk = ak.

So far, incorporation of PQ buses in CIM formulation has been discussed.

Now in the following section, proposed PV modeling used in Mod-CIM formulation

has been described.

2.2.2 Modelling of PV buses for balanced cases

For CINR, different PV bus models are proposed in [28–30] to handle the PV

buses in distribution systems. However, their convergence performance degrades

when distribution systems consist of high number of PV buses w.r.t. number of

system buses. This is because the expressions of elements of the Jacobian matrix

do not model PV buses properly rather they proceed to solve systems with PV

buses retaining PQ models. In order to address this issue, a new expression for

elements of the Jacobian matrix associated with PV buses has been proposed using

the actual model of PV buses rather than using the model of PQ buses.
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Let us assume that a single node k is connected to the slack bus. The current

mismatch equations for this node in rectangular coordinates are given by,Vmk

V 2
k
4Pk − Vrk

V 2
k
4Qk

Vrk
V 2
k
4Pk + Vmk

V 2
k
4Qk

 =

 B∗′kk G∗′kk
G∗′′kk B∗′′kk

4Vrk
4Vmk

 . (2.19)

For PV bus k, Qk is not known. Hence, 4Qk becomes dependent variable, then

equation 2.19 becomes

Vmk

V 2
k
4Pk

Vrk
V 2
k
4Pk

 =

 B∗′kk G∗′kk
Vrk
V 2
k

G∗′′kk B∗′′kk −
Vmk

V 2
k



4Vrk
4Vmk
4Qk

 . (2.20)

Vk is a known variable for PV bus k. An additional constraint,4Vk = 0 is added to

the equation 2.20 to eliminate the over determination. After adding this constraint

the equation 2.20 reduced to

 Vrk
V 2
k
4Pk

Vmk

V 2
k
4Pk

 =

 B ∗′′kk −
Vmk

Vrk
G∗′′kk −

Vmk

V 2
k

G ∗′kk −
Vmk

Vrk
B∗′kk

Vrk
V 2
k

4Vmk
4Qk

 , (2.21)

where,

G∗′kk = Gkk +
real(EiIi)

V 2
k

, (2.22)

B∗′kk = −Bkk +
imag(EiIi)

V 2
k

, (2.23)

B∗′′kk = Bkk +
imag(EiIi)

V 2
k

, and (2.24)

G∗′′kk = Gkk −
real(EiIi)

V 2
k

. (2.25)

This reduction creates the power flow Jacobian matrix maintaining (2n × 2n)

matrix structure, with a new variable 4Qk replacing 4Vrk, for each PV bus.

2.2.2.1 Elements of Jacobian matrix after adding PV buses in power sys-

tem

The Jacobian matrix of power network, having both, PQ and PV types of

buses, has four types of (2× 2) blocks, as described below.
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i) Type 1 : The (2× 2) diagonal block associated with PV bus k, is given

by

Y ∗kk =

B ∗′′kk −Vmk

Vrk
G∗′′kk −

Vmk

V 2
k

G ∗′kk −
Vmk

Vrk
B∗′kk

Vrk
V 2
k

 .
ii) Type 2 : The (2× 2) diagonal block associated with PQ bus i, is given

by

Y ∗ii =

B′ii G′ii

G′′ii B′′ii

 .
iii) Type 3 : The (2 × 2) diagonal block associated with a branch l − k,

where k is a PV bus, is given by

Y ∗lk

Blk − Vmk

Vrk
Gkk 0

Glk − Vmk

Vrk
Bkk 0


iv) Type 4 : The (2 × 2) diagonal block associated with a branch l − i,

where i is a PQ bus, is given by

Y ∗li =

Bli Gli

Gli Bli

 .
2.2.2.2 Calculation of Current mismatch

The current mismatch for PQ bus i is given by equations 2.8 and 2.9. For

PV bus k, the current mismatch equation is given by

4I∗rk =
Vrk
V 2
k

4Pk, and (2.26)

4I∗mk =
Vmk
V 2
k

4Pk. (2.27)

2.2.2.3 Bus voltage correction

Relation between voltage mismatch in polar coordinates and in rectangular

coordinates are given by

4Vk =
Vrk
Vk
4Vrk +

Vmk
Vk
4Vmk, and (2.28)

4θk =
Vrk
V 2
k

4Vmk −
Vmk
V 2
k

4Vrk. (2.29)
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After expressing the voltage mismatches in polar coordinates by equation

2.28 and 2.29, the updated voltage in polar coordinate at iteration h + 1 is

given by

V
(h+1)
k = V

(h)
k +4V (h)

k , and (2.30)

θ
(h+1)
k = θ

(h)
k +4θ(h)

k . (2.31)

2.3 Results and Discussion

The load-flow algorithms based on conventional Newton-Raphson (CNR) power

flow, proposed modified current injection method (Mod-CINR), and conventional

current injection (CINR) with different PV modelings have been implemented in

MATLAB, and all algorithm were applied on two standard IEEE test systems, 30

and 50- bus test systems, and three practical unbalanced distribution test systems,

case28, case55 and case82 (refer code in Annexure A, for data). It is to be noted

that the standard IEEE distribution test systems with PV buses are not available

in the literature, hence IEEE 30 and 57- bus test systems have been used for

performing load flow assuming them as distribution systems where slack bus is

assumed as root node and other generator buses are assumed as PV buses. In this

study, all balanced test systems (i.e. IEEE 30 and 57-bus test system) have been

modified to give unbalanced systems for studies in this section.

The test results on the performance of the above load-flow methods are pre-

sented in the following subsections. In this experiment, three representative CINR

methods viz. CINR [28], Rev-CINR [30], and NR-CINR [37], discussed in section

2.1, suggesting different models PV buses have been chosen for comparison with

Mod-CINR which implements the model of PV bus proposed in this thesis.

The comparison has been performed on following four characteristic perfor-

mance parameters of any generic load flow algorithm: (i) size of Jacobian matrix

(number of system variables), (ii) convergence property, (iii) ill-conditioned sys-

tems with different load condition, and (iv) ill-conditioned systems with large R/X

ratio. Further, computation time of Mod-CINR has been compared with those of
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CNR and FDBX to demonstrate its robustness and efficiency in terms of conver-

gence and convergence speed respectively.

2.3.1 Size of Jacobian Matrix (Number of System Vari-

able)

The sizes of Jacobian matrices of the above mentioned methods with CNR are

compared, as shown in Table 2.1. It can be stated that the revised current injection

based load flow method (Rev-CINR) needs more equations than other methods.

On the other hand, the required equations are minimum in the NR and NR-CINR

because both are using the same PV modeling where only one equation is required

for PV bus. At the same time, CINR and Mod-CINR required the same number

of equations of load flow, two for each bus.

Table 2.1: Size of Jacobian matrices of CNR, CINR, Rev-CINR, NR-CINR, and

Mod-CINR (where n = Total number of buses, and p = number of PV buses in

the system.)

Method Order of Jacobian Matix IEEE 30-bus IEEE 57-bus

(p = 5) (p = 6)

CNR (2n - p - 2) x (2n - p - 2) 53 x 53 106 x 106

CINR (2n - 2) x (2n - 2) 58 x 58 112 x 112

Rev-CINR (2n + p - 2) x (2n + p - 2) 63 x 63 118 x 118

NR-CINR (2n - p - 2) x (2n - p - 2) 53 x 53 106 x 106

Mod-CINR (2n - 2) x (2n - 2) 58 x 58 112 x 112

2.3.2 Convergence Property

The convergence property of these five algorithms is described by outlining the

maximum active and reactive power mismatches alongside the number of iteration.

Figures 2.1-2.5 demonstrate the convergence property of the six algorithms for the

IEEE 30 bus test system. It can be seen from figures 2.1-2.5 that all the six
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Figure 2.1: Convergence properties of CNR on IEEE 30 Bus system
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Figure 2.2: Convergence properties of CINR on IEEE 30 Bus system

algorithms show moderately fast convergence and the difference are only one or

two iterations. Where the developed Mod-CINR has almost same convergence

characteristics to conventional NR. At the same time, the number of iterations

required by CINR and their other variants for solving power flow problem of IEEE

30 bus system is greater than the conventional CNR and Mod-CINR.

2.3.3 Ill-conditioned Systems with Different Load Condi-

tion

The sensitivity of enhanced representation for PV bus in CINR load flow (Mod-

CINR) on different loading conditions is validated on the IEEE 30- bus system in

comparison with conventional NR power flow and fast decoupled load flow (FDBX)
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Figure 2.3: Convergence properties of Rev-CINR on IEEE 30 Bus system
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Figure 2.4: Convergence properties of NR-CINR on IEEE 30 Bus system
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Figure 2.5: Convergence properties of Mod-CINR on IEEE 30 Bus system
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techniques and different variants of CINR at the same tolerance equal to 1.E-5 p.u.

The loading level is increased in the step of 40% and the results are reported in

Table 2.2.

It can be detected that in all the six algorithms, as the loading level gradually

increased close the maximum loading point, the required number of iterations

grows respectively. However, it can be seen from table 2.2 that the developed

Mod-CINR load flow algorithm has adjacent convergence characteristics to the

conventional NR. At the same time, the other variants of CINR require more

iterations to converge with respect to proposed Mod-CINR and also they fail to

converge as loading level factor is increased from 280% in case of IEEE 30 bus

system.

Table 2.2: Comparison of performance of all NR methods under different loading

conditions.(NC = no convergence)

Level CNR CINR Rev- NR- FDBX Mod-

Factor (%) CINR CINR CINR

40 3 4 3 3 6 3

80 3 4 4 3 7 3

120 3 6 4 4 8 3

160 3 8 4 4 9 3

200 3 10 5 4 11 4

240 4 12 6 4 13 4

280 5 NC NC 5 17 5

320 5 NC NC NC 26 5

360 6 NC NC NC NC 6

400 NC NC NC NC NC NC
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2.3.4 Ill-conditioned Systems with Large R/X Ratios Con-

dition

The reliability of the proposed CINR, Mod-CINR on ill-conditioned systems with

large R/X ratios is inspected by increasing the line resistances of the IEEE 30-bus

system. In this test, three different levels of R/X ratio: 300%, 350% and 400% of

the original R/X ratio at different tolerances are used. The table 2.3 demonstrates

the convergence behavior of all the six algorithms (CNR, CINR, Rev-CINR, NR-

CINR, Mod-CINR, and FDBX) for the given ill-conditioned systems.

It can be seen from the table 2.3 that the convergence rates of the developed

Mod-CINR and CNR on the ill-conditioned system at different tolerance values

are fairly similar. On the other variants of CINR, they need more iterations than

the developed Mod-CINR to converge particularly at high R/X ratio and high

tolerance.

Table 2.3: Comparison of performance of all NR methods under different R/X

ratio condition.(NC = no convergence, T = Tolerance (pu) )

T R/X CNR CINR Rev- NR- FDBX Mod-

Ratio CINR CINR CINR

1.00E-02

300 2 4 4 3 8 2

350 3 5 7 3 16 3

400 4 11 7 5 NC 4

1.00E-03

300 3 7 4 3 10 3

350 3 10 8 4 18 3

400 5 NC 8 6 NC 5

1.00E-04

300 3 10 5 4 12 3

350 4 NC 8 4 21 4

400 6 NC 10 7 NC 5

1.00E-05

300 4 14 5 4 13 3

350 4 NC 8 4 22 4

400 6 NC 10 7 NC 6
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2.3.5 Comparison of Computation Time with CNR and

FDBX

The efficiency of the developed Mod-CINR on the different test system is investi-

gated in comparison with CNR and FDBX algorithms. In this test, five different

IEEE test system: 9, 14, 30, 57, and 118 and three unbalanced practical distribu-

tion test systems: case28, case55, case82 are used. The computation time of all

algorithms on the different test system is reported in the table 2.4.

It can be observed from the table 2.4 that the proposed Mod-CINR takes

less time to converge in the case of 9, and 14 bus system than FDBX and CNR

methods. The computation time of Mod-CINR is increasing with the increase of a

number of PV buses in the test system and at the same time, the computation time

of FDBX is almost constant for every system. With respect to the CNR method,

Mod-CINR needs less computation time to converge for all the test systems. It is

worthy to note that other CINRs cannot be converged on a single test system due

to high number of PV buses. Hence, they are not considered in this analysis.

Table 2.4: Computational Time (s) for CNR, FDBX, and Mod − CINR algo-

rithms on different IEEE bus system (NC: Not Converged)

IEEE Bus CNR (s) FDBX (s) Mod-CINR (s)

9 0.02311 0.01122 0.00374

14 0.03404 0.01057 0.00479

30 0.25039 0.01102 0.02073

57 0.66943 0.01144 0.05697

118 2.26578 0.01229 0.37299

case28 0.28021 NC 0.021032

case55 0.61635 NC 0.043274

case82 1.16452 NC 0.134279
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2.4 Conclusion

In this chapter, an improved CINR, Mod-CINR, load flow method has been pre-

sented. The developed load flow method uses new equations to model PV bus in

current injection power flow formulation, which are based on real and imaginary

parts of simple multiplication of voltages and currents of PV buses. The Mod-

CINR load flow technique decreases the required number of equations and also

achieves the convergence property similar to conventional CNR method particu-

larly in the case of PV nodes. At heavily loaded and large R/X ratio conditions the

convergence characteristics also improve. The results also demonstrate that the

computation time of Mod-CINR is less than the FDBX methods in the absence

of PV buses in systems. The experiments suggest that the performance of the

improved method in comparison to other techniques is better in terms of conver-

gence, efficiency, sensitivity and reliability. From the outcomes of studies, it can

be concluded that the proposed algorithm Mod-CINR has following advantages.

1. Mod-CINR is more robust than other CINR based algorithm because it can

solve a wide variety of power flow problems including systems having a large

number of PV buses.

2. Mod-CINR is more efficient than the other algorithms such as CNR, CINR,

Rev-CINR, and NR-CINR except for FDBX which cannot be employed in

distribution systems due to large R/X ratio, while Mod-CINR provides better

convergence speed as compared to CNR.

3. In Mod-CINR, PV buses are handled effectively as compared to other rep-

resentative algorithms. It is because of the use of proposed equations for

elements of the Jacobian matrix associated with PV buses.
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