List of Tables

Chapter 2

2.1	Power Flow (PF) solution of ill-conditioned version of CASE13 system	
	using CINR	34
2.2	PF solution of ill-conditioned version of CASE13 test system using LMPF	35
2.3	$\rm PF$ solution of ill-conditioned version of CASE13 system using RK4PF $$	35
2.4	PF solution of ill-conditioned version of CASE28 test system using CINR .	37
2.5	PF solution of ill-conditioned version of CASE28 test system using LMPF	38
2.6	PF solution of ill-conditioned version of CASE28 test system using RK4PF	39
2.7	Obtained results of CINR, LMPF, RK4PF, BFS, TCIM, and iTCIM over	
	several test systems. (NC: Not Converged)	41
2.8	Obtained results of CINR, LMPF, RK4PF, BFS, TCIM, and iTCIM over	
	large test systems. (NC: Not Converged)	41
2.9	Execuation time (in sec) of CINR, LMPF, RK4PF, BFS, TCIM, and	
	iTCIM. (NC: Not Converged)	41
2.10	Total Number of iterations required for different PF algorithms in heavily	
	loaded ill-conditioned systems. (LF: Loading Factor, NC: Not Converged) $% \mathcal{A}$.	42
2.11	Total Number of iterations required for different PF algorithms in ill-	
	conditioned systems with high r/x ratios. (NC: Not Converged) $\ \ldots \ \ldots$	43
3.1	Mean and SD of best error value obtained by algorithms on $30-D$ CEC2014	
	problem suite.	55
3.2	Mean and SD of best error value obtained by algorithms on $30-D$ CEC2014	
	problem suite.	57
3.3	Mean and SD of best error value obtained by algorithms on $30-D$ CEC2014	
	problem suite.	59

3.4	Mean and SD of best error value obtained by algorithms on $30\text{-}D$ CEC2014	
	problem suite.	61
3.5	Initial seed obtained by SS for CASE25 test system	62
3.6	Power Flow solution obtained using SSTCIM for CASE25 test system	63
3.7	Total Number of iterations required for different Power Flow algorithms	64
3.8	Total Number of iterations required for different Power Flow algorithms	65
3.9	Mean and SD of best error value obtained by algorithms on $30\text{-}D$ CEC2014	
	problem suite.	67
3.10	Ranking of Algorithm according to Friedman ranking	68
3.11	Properties of benchmark problems given in CEC 2006	74
3.12	Error Values achieved when FEs are 5000, 50000, and 500000 for test	
	function $g01 - g06$	75
3.13	Error Values achieved when FEs are 5000, 50000, and 500000 for test $% \left({{{\rm{T}}_{{\rm{T}}}} \right)$	
	function $g07 - g12$	75
3.14	Error Values achieved when FEs are 5000, 50000, and 500000 for test	
	function $g13 - g18$	76
3.15	Error Values achieved when FEs are 5000, 50000, and 500000 for test	
	function $g19 - g24$	76
3.16	Best, Median, worst, mean, and standard deviation of NFES to achieve	
	the fixed accuarcy level	77
3.17	Mean NFES to schieve the accuracy level and SR on the CEC 2006	78
3.18	Ranking based on the SP of all algorithm on the CEC 2006	79
3.19	Average ranking of the Friedman test	80
3.20	Multiple solution obtained using BCO for ill-conditioned CASE13	82

Chapter 4

4.1	Component modelling of microgrid in Power Flow algorithm 92
4.2	Representation of elements of Jacobian Matrix
4.3	Data required for modeling of the six bus test system in time-domain 100
4.4	Validation of results obtained for six-bus test system

4.5	Computation time required by different algorithms to solve power flow for
	different cases
4.6	Validation of obtained result of the six-bus test system
4.7	NBFS algorithm versus DBFS, MBFS, and PSCAD/EMTDC results for
	CASE33 system
4.8	Droop gains, nominal values and operative mode of DGs and Q_{max} limit
	for the 22-bus, 38-bus, and 69-bus test system
4.9	Computation time required by algorithms to solve power flow for 22-bus,
	38-bus, and 69-bus systems
4.10	computation time required by algorithms to solve power flow problem of
	CASE160 test system
4.11	Number of iteration and computation time (in second) required to solve
	power flow problem of CASE38 test system for different value of $\lambda.$ 120
4.12	Computation time required by algorithms to solve power flow for different
	cases
4.13	Computational effort of different algorithms for solving different test cases. 123

Chapter 5

5.1	Default value of parameters of MA-ES [1]
5.2	Validation of obtained result of the six-bus test system
5.3	Comparison of results on 33-bus system
5.4	Droop control settings of DGs in CASE6 test system
5.5	Outcomes of proposed load flow algorithm for a CASE6 test system com-
	pared with other methods
5.6	Droop control settings of DGs in CASE69 test system
5.7	Voltage profile obtained from $\epsilon \mathrm{DE}\text{-}\mathrm{GN}$ for CASE69 distribution system
	operated as an islanded microgrid
5.8	Voltage profile obtained from $\upsilon {\rm MAESbm}$ for CASE69 distribution system
	operated as an islanded microgrid
5.9	Droop control settings of DGs in CASE33 system
5.10	Load exponents of different loads

Voltage profile obtained by $\epsilon \text{DE-GN}$ for CASE33 distribution system op-
erated as an islanded microgrid
Voltage profile obtained by v MAESbm for CASE33 distribution system
operated as an islanded microgrid
Droop control settings of DGs in CASE25 test system
Power flow result obtained by $\epsilon \text{DE-GN}$ for CASE25 unbalanced distribu-
tion system operated as an islanded microgrid
Power flow result obtained by v MAESbm for CASE25 unbalanced distri-
bution system operated as an islanded microgrid

Chapter 6

6.1	The detail of experimental setup
6.2	Simulation results for CASE13 test system
6.3	Results for CASE13 for scenario-4
6.4	Value of main parameters of system for different cases of CASE13 181
6.5	Simulation results for CASE25 test system for scenario-4
6.6	Obtained results for CASE25
6.7	Value of main parameters of system for different cases of CASE25 183
6.8	Simulation results for CASE37 test system of scenario-4
6.9	Obtained results for CASE37
6.10	Value of main parameters of system for different cases of CASE37 184

Chapter 7

7.1	Results of optimal power flow problem of CASE6	201
7.2	Results of optimal power flow problem of CASE22	202
7.3	Results of optimal power flow problem of CASE38	203

Appendix I

I.1	General Data of CASE13	209
I.2	Topology of CASE13	209

I.3	Line Parameter of CASE13
I.4	Load Data of CASE13
I.5	Load Data of ill-conditioned CASE13
I.6	General Data of CASE25
I.7	Topology of CASE25
I.8	Line Parameters of CASE25
I.9	Load Data of CASE25
I.10	General Data of CASE37
I.11	Tolology of CASE37
I.12	Line Parameters of CASE37
I.13	Load Data of CASE37
I.14	General Data of CASE28
I.15	Topology of CASE28
I.16	Line Parameters of CASE28
I.17	Load Data of CASE28
I.18	Load and Voltage Data of CASE28

Appendix II

Line Data of CASE6
Active Load Data of CASE6
Reactive Load Data of CASE6
DG's Data of CASE6
Line Data of CASE22
Active Load Data of CASE22
Reactive Load Data of CASE22
DG's Data of CASE22
Line Data of CASE38
Active Load Data of CASE38
Reactive Load Data of CASE38
DG's Data of CASE38
Line Data of CASE33
Active Load Data of CASE33

II.15	Reactive Load Data of CASE33	228
II.16	DG's Data of CASE33	228

Appendix III

III.1	Experimental Results of ϵ DE-GN on CEC-2006 Benchmark Suite 229
III.2	Comparison of algorithms on CEC-2006 benchmark problems
III.3	Experimental results of v MA-ESbm over 25 independent run on 18 test
	problems with 10D of IEEE CEC 2010
III.4	Experimental results of v MA-ESbm over 25 independent run on 18 test
	problems with 30D of IEEE CEC 2010
III.5	Experimental results of algorithms on 18 test problems with $10D$ of IEEE
	CEC 2010
III.6	Experimental results of algorithms on 18 test problems with $30D$ of IEEE
	CEC 2010
III.7	number of trials of ESHADE in a run of 50 that found correct digits $\ . \ . \ . \ 235$
III.8	Score achieved by HSES, EBOwithCMAR and ESHADE for problem suite
	of 100-Digit Challenge

Appendix IV

IV.1 Power Flow solution of CASE22 test system operating in conventional droop.237
IV.2 Power Flow solution of CASE22 test system operating in inverse droop 238
IV.3 Power Flow solution of CASE22 test system operating in mixed droop 238 $$
IV.4 Power Flow solution of CASE22 test system operating in isochronous mode.239
IV.5 Power Flow solution of CASE38 test system operating in conventional mode.239
IV.6 Power Flow solution of CASE38 test system operating in inverse mode 240 $$
IV.7 Power Flow solution of CASE38 test system operating in mixed mode 241 $$
IV.8 Power Flow solution of CASE38 test system operating in isochronous mode.242
IV.9 Power Flow solution of CASE69 test system operating in conventional mode.243
$\operatorname{IV.10Power}$ Flow solution of CASE69 test system operating in inverse mode 244
IV.11 Power Flow solution of CASE69 test system operating in mixed mode 245 $$
IV.12 Power Flow solution of CASE69 test system operating in isochronous mode.246
IV.13 Power Flow solution of CASE6 test system operating in islanded mode 247

$\rm IV.14$ Power Flow solution of CASE22 test system in case of without optimization
condition. $\ldots \ldots 247$
IV.15 Power Flow solution of CASE22 test system in case of minimization of $\mathbf{P}_{loss}.248$
IV.16 Power Flow solution of CASE22 test system in case of minimization of \mathbf{Q}_{loss} .249
IV.17 Power Flow solution of CASE22 test system in case of minimization of
$(0.5 * \mathbf{P}_{loss} + 0.5 * \mathbf{Q}_{loss})$
IV.18 Power Flow solution of CASE38 test system in without optimization con-
dition
IV.19 Power Flow solution of CASE38 test system in case of minimization of $\mathbf{P}_{loss}.251$
IV.20 Power Flow solution of CASE38 test system in case of minimization of \mathbf{Q}_{loss} .252
IV.21 Power Flow solution of CASE38 test system in case of minimization of
$(0.5 * \mathbf{P}_{loss} + 0.5 * \mathbf{Q}_{loss})$