
Chapter 7

ESHADE in Optimization of

Islanded Microgrids

7.1 Introduction

This chapter presents a method to determine optimal droop settings of DGs in a DCIMG.

Minimization of system losses are considered as objective function while droop charac-

teristics and power balance is considered as operational constraints of the DCIMG. The

resultant optimization problem is solved using ESHADE and CINR. Here, ESHADE is

an enhanced version of SHADE algorithm [217]. SHADE [217] is an acronym for Success-

History based Parameter Adaption for Differential Evolution. CINR is used to calculate

the objective function and ESHADE is used to calculate the optimal droop setting for all

DGs.

An islanded MG is a low or medium voltage distribution system where electrical

boundaries are clearly defined and a group of DGs and loads are interconnected without

the support of the main grid [84,85,218]. In MG, the group of DGs supports local demands

fully or partially of electricity and heat within the electrical boundaries [84,85]. MGs can

be seen as a single controllable unit with respect to the main grid. In MGs, the system can

operate in islanded or grid-connected mode, or it can operate in a smooth transition state

between these two modes [84, 85, 219]. Islanded mode provides following benefits to the

utilities as well as customers 1) improved power quality, 2) improved the system reliability,

3) overloads prevention, 4) maintenance of components of systems without interruption

of power supply to the customers [220]. In the near future, microgrids are likely to be
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operated in an islanded mode for longer time durations due to above-mentioned potential

benefits.

For the successful operations of a DCIMG, microgrid’s local loads must be shared

among the DGs within the limits of the bus voltages and operating frequency. Besides,

the line flows should be within acceptable limits. In the literature, several droop control

schemes are introduced for power-sharing among the DGS in DCIMG [169, 221, 222].

However, it is essential to operate the microgrids in an islanded mode not only in a stable

state but also with optimal settings. From the customer perspective, the system should

be operated at a low operating cost without compromising with its performance.

Nowadays, researchers focus on the optimal operation of DCIMG. In [223], an energy

management system is proposed for DCIMG to operate stably with low fuel consump-

tion. In [224], an optimization process is proposed to dispatch DGs and storage systems

optimally for medium -voltage DCIMG with low operating cost and low emission. In

a DCIMG, the operating frequency and bus voltages are been determined by the droop

characteristics of DGs and loading conditions of the system. Moreover, the power output

of a droop-controlled DGs are not known before the power flow analysis. In [225], a mul-

tistage algorithm is proposed to minimize fuel cost by considering constraints on voltage,

frequency, and stability for a VSC-based microgrid.

In this thesis, a multi-operator variant of DE, ESHADE, is proposed to calculate

the optimal droop settings of DGs for minimizing the operating cost and system losses in

DCIMG. The proposed approach integrates the CINR method to perform the power flow

analysis calculating the objective function values for each combination of droop settings of

DGs. In ESHADE, four mutation strategies are employed with the same self-adaptation

scheme of control parameters, but strategies are selected for individuals independently

using a probability-based selection. To update the said probability, the success rate of

each mutation strategy is utilized. Thus, the larger part of the population will get enrolled

gradually in the better performing strategy.

7.2 Problem Formulation

In this work, we presume the existence of a Microgrid Central Controller (MGCC) and a

noncritical low-bandwidth communication infrastructure to complement the droop con-
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trol scheme. In this paradigm, the optimization of the islanded microgrid operation is

performed centrally by a higher level coordinated management function at the MGCC.

Using periodic measurements of the islanded microgrid generation and loads, the MGCC

updates the DG unit droop settings (i.e., characteristics) in order to optimally dispatch

the different DG units in the Islanded microgrids.

The main objective of this chapter is to find an optimal setting for droop controllers

to minimize active power losses and reactive power losses.

The active and reactive power losses in the line connecting buses i and j can be

calculated using following equations.

Ploss(i, j) = Rij
P 2
i +Q2

i

|Vi|2
(7.1)

Qloss(i, j) = Xij
P 2
i +Q2

i

|Vi|2
(7.2)

where Ploss and Qloss are active and reactive power loss. Total power loss of the system

can be calculated by summing up all the lines losses of the system, i.e.,

Ploss =
N∑
i=1

N∑
j=1

Ploss(i, j), (7.3)

Qloss =
N∑
i=1

N∑
j=1

Qloss(i, j) (7.4)

where Ploss and Qloss represent the total active and reactive power loss, respectively. N

is the total number of buses in the network.

In this study, the optimal values of the droop setting are obtained to calculate for

minimizing the active and reactive losses. This problem can be formulated as a bound-

constrained optimization problem. During the optimization process, the algorithm must

evaluate all feasible settings of droop controllers to provide the minimum losses. For this

purpose, the following optimization problem is considered in this study.

Minimize f(mp,nq) = w1Ploss + w2Qloss (7.5)

where mp = {mp1,mp2...,mpn} and nq = {nq1, nq2..., nqn} represent the droop settings

of active and reactive power of DGs. Index n represents the number of DGs in islanded

microgrids. Parameters w1, and w2 are the weighing factor for different objectives to
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represent multi-objective optimization problem into single objective optimization prob-

lem. This optimization problem is a non-convex, and non-linear continuous unconstrained

optimization problem.

7.3 Proposed Methodology

To solve the above-discussed optimization problem, an optimization algorithm, ESHADE,

is proposed in this section. The objective function of this problem can not be directly

calculated because bus voltages of the system are not available for a different setting of

droop controllers. Therefore, power flow analysis is required for calculating bus voltages to

evaluate the objective function. In this work, CINR (proposed in chapter 4) is considered

for power flow analysis.

7.3.1 ESHADE

In this section, the procedures and steps of ESHADE are discussed in detailed form. The

self-adaptation mechanism for control parameters is also discussed which is an improved

version of success history based parameter adaptation scheme proposed in [217]. The

main step of ESHADE Algorithm is shown in Algorithm- 8. Steps, which is not described

in Algorithm -8, is discussed in following subsections:

Initialization

In order to start the optimization process, an initial population P 0 should be generated

uniformly within the upper and lower bound of the search-space. The Population, P 0 is

represented using the following equation:

P 0 = [x̄0
1, x̄

0
2.....x̄

0
Np ], where (7.6)

x̄0
i = [x0

i1, x
0
i2....x

0
iD]′

where, Np and D are the size of population and dimension of search-space respectively.

Here, x0
ij is initialized randomly as follows:

x0
ij = xLj + rand(0, 1].× (xUj − xLj) (7.7)

where xLj and xUj are the lower and upper bound of jth-dimension of search-space. Op-

erator rand(0, 1] stands for random number generator from uniform distribution.
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Algorithm 8: Framework of ESHADE
Data: Define N0

P and all other parameters required

Result: X

1 Generate an initial population, P 0 of N0
P individual;

2 Objective function evaluation at each individual of population;

3 nfes← N0
P , g ← 0;

4 µsF ← 0.5, µcr ← 0.5, µprob ← 1, k ← 1;

5 while termination condition is not satisfied do

6 g ← g + 1;

7 for i = 1:NP do

8 % calculation of parameter starts;

9 sFi ← using Equations 7.14 and 7.15;

10 cri ← using Equations 7.16;

11 prob← using Equations 7.18;

12 % Mutation;

13 if rand < 0.5 then

14 r ← rand();

15 if r < prob(1) then

16 v̄i ← using DE1;

17 else if prob(1) < r < prob(1) + prob(2) then

18 v̄i ← using DE2;

19 else

20 v̄i ← using DE3;

21 end

22 else

23 v̄i ← using DE4;

24 end

25 % Crossover;

26 ūi ← BinomialCrossover(x̄i, ūi, cri);

27 % Selection;

28 objective function evaluate at ūi;

29 nfes← nfes+ 1;

30 x̄i ← Selection(x̄i, ūi);

31 end

32 Update the kth element of µ for all parameter;

33 σ ← describe as in [226];

34 C ← describe as in [226];

35 k ← rem(k + 1, h);

36 Resize the Population and Archive using EPSR;

37 end

Mutation

For each individual, a mutant vector has been generated. In ESHADE, four mutation

strategies (modified version of mutation strategies reported in [217,226,227]) are used to

generate mutant vectors and are as follows:
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• DE1: current-to-pbest with archive [217]:

v̄gi = x̄gi + sFi × (x̄gpbest − x̄
g
i + x̄gr1 − x̂

g
r2

) (7.8)

• DE2: current-to-φrand [226]:

v̄gi = x̄gi + sFi × (x̄grφ − x̄
g
i + x̄gφbest − x̄

g
φworst) (7.9)

• DE3: Modified DCMA-ES with archive [227]:

v̄gi = N (x̄gm, σ
2Cg) + 0.1sFi × (x̄gr1 − x̂

g
r2

) (7.10)

• DE4: φrand [226]:

v̄gi = x̄grφ + sFi × (x̄gφbest − x̄
g
φworst) (7.11)

where, r1 6= r2 6= i are integer with x̄r1 is randomly selected from population P , x̂r2 is

randomly selected from union of population and archive. While ¯pbest is selected from p%

individuals from best individuals of P . In order to select x̄rφ , x̄φbest, and x̄φworst; entire

population is divided into three clusters, φbest, φ, and φworst (best, better, and worst)

of size p%, (1 − 2p)% and p% of Np respectively. x̄rφ , x̄φbest, and x̄φworst are randomly

selected from cluster φ, φbest, and φworst respectively. The calculation procedures of σ

and C used in equation (7.10) are discussed in Section 6.3.1 in previous chapter.

In ESHADE, all mutation strategies are classified into two classes. In the first class,

the three mutation strategies: DE1, DE2, and DE3 are applied with probability prob(1),

prob(2), and prob(3) respectively to generate a mutant vector. While in the second class,

a mutant vector is generated using DE3. In every iteration, a mutant vector is calculated

for every individual of the population using one of the above-mentioned mutation class

with equal probability.

Crossover

In this chapter, binomial crossover is employed. In the binomial crossover, the target

vector, x̄i, is crossed over with the mutated vector,v̄i, using the binomial experiment

scheme, to generate the trial vector, ūi for target vector.

ugij =

x
g
ij, if (randij > cri),

vgij, if (randij < cri) or (j == jrand)

(7.12)
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Selection

After trial vector, ūi, has been calculated, a selection operator is applied to find out the

survivor for the next generation [132]. In selection operator, x̄i is compared with the ūi

on the basis of their objective function value and the better one is stored in population

for the next generation.

x̄g+1
i =

x̄
g
i , if (f(x̄gi ) < f(ūgi )),

ūgi , otherwise

(7.13)

Parameter adaptation of population size (Np), scaling factor (sF ), and crossover

rate (cr)

The performance of DE is highly influenced by the parameter setting. Parameter setting

is problem dependent and each problem has its own set of parameter values. In order to

resolve this issue, self-adaptation procedures for parameters are proposed in this subsec-

tion.

Adaptation procedure for scaling factor, sF :

In order to perform an adaptation for sF , the procedure is composed of two sections. The

first section is activated during the initial evolutionary process, while the other section is

activated later part of the evolutionary process.

Here, the first section uses the condition : nfes < 0.2 × maxnfes to activate. In

first section of adaptation of scaling factor, sFi is generated within the range of [0.45, 0.5]

using following mathematical equation:

sFi =

0.5, if (µsF (j) > 0.5),

0.45 + rand(0, 0.1], otherwise

(7.14)

where µsF (j) is the jth element of µsF . Here, µsF is a memory where Lehmer mean

of successful scaling factor’s value of previous generations are stored [217]. Index j is

randomly selected for each individual independently from the range [1, H] where H is

memory size.

During the second section, the adaptation of scaling factor is done using following

equation:

sFi = randc(µsF (j), 0.1) (7.15)
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where randc stands for random number generator from Cauchy distribution.

Adaptation procedure for crossover rate, cr:

In ESHADE, the crossover rate, cri, is adapted according following equation:

cri = randn(µcr(j), 0.1) (7.16)

where, µcr has similar function of µsF , but it stores the weighted mean of successful

crossover rate’s values of previous generations and randn stands for normal distribution

[217].

Exponential population size reduction for population size, Np:

In order to improve the performance of ESHADE, exponential population size reduction

(EPSR) technique is employed to reduce the population exponentially. In EPSR, the

following equation is used:

N g+1
p = N0

p × round
(

1− γ
N0
p −Np,min

maxnfes

)g
(7.17)

where γ is a parameter to control the exponential curve, N0
p is the initial population size

and Np,min is minimum allowed population size which is equal to 4.

The calculation and adaptation procedure of the parameters associated with DE3,

σ and C, have already been discussed in Section 6.3.1.

Calculation of prob

In order to calculate prob, an index, j, is generated randomly within the range [1, h] for

every individual. Then, jth element of the historical memory, µprob, is used to calculate

prob using following equation:

prob(k) =
µprob(j, k)∑3
n=1 µprob(j, n)

, where k = 1, 2, 3. (7.18)

Updation of historical memory, µ

Elements of the historical memory, µ, is updated using the success of the individuals at

the end of every iteration. Here at g iteration, the success of ith individual is calculated

using the following equation:

successgi = f(x̄gi )− f(x̄g+1
i ) (7.19)

where, f(.) stands for objective function value.
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For parameters cr, and sF , kth element of historical memory µcr and µsF respectively

are calculated using following equations:

µcr(k) =

∑Np
n=1w

2
ncrn∑Np

n=1wncrn
(7.20)

µsF (k) =

∑Np
n=1w

2
nsFn∑Np

n=1wnsFn
(7.21)

where,

wi =
successi∑Np
n=1 successn

(7.22)

In case of prob, kth elements of historical memory µprob are calculated using following

equation:

µprob(k,m) = (1− c)µprob(k,m) + c4m (7.23)

where c is the learning rate, and 4m is calculated using Equation-(7.24)

4m =

∑
nεSm

successn∑Np
n=1 successn

(7.24)

where Sm is the set of individuals which are selected for mth mutation strategy (here m

can be 1, 2, and 3 which are stand for for DE1, DE2, and DE3 respectively).

7.3.2 Evaluation of Objective Function

In optimization algorithms, evaluation of objective function at each iterations for all the

solutions is required for improving the solutions. The objective function considered in this

chapter cannot be evaluated directly. Power flow analysis is to be perform to obtain the

steady-state voltage at each bus of the system because these voltages are used to calculate

the objective function defined in Equation 7.5.

CINR algorithm is utilized to calculate the steady-state voltage at each bus for

every solution of the optimization process. Each solution contains the droop settings of

all DGs. First of all, power capacity of the DGs are updated according to the solution

(droop settings of DGs). Power generation are modified by using following equations.

Pdg,i =
1

npi
(w∗i − w) (7.25)

and,

Qdg,i =
1

mqi

(|Vi|∗−|Vi|) (7.26)
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where Pdg,i and Qdg,i represent the active and reactive power at i-th bus. {npi,mqi}

represent the droop characteristics of i-th DG.

After modifying the power capacity equations, power flow analysis is performed using

CINR to calculate the voltage at each bus. Further these voltages are used to calculate

the objective function values.

7.3.3 Proposed Algorithm

The above-discussed optimization problem considers droop settings (related to active and

reactive power output) of DGs as the problem variables. Each solution vector has 2 ∗M

elements where M is the total number of DGs in the systems.

The purpose of this problem is to find the optimum droop settings for all the DGs

so that the objective function is minimized.

The following steps are utilized to solve the optimization problem.

1. Step 1: Initialization of population of Np solution is done using uniformly dis-

tributed in random points within the bound of each variables.

2. Step 2: Power flow analysis is performed at each solution of current population.

3. Step 3: Objective function is evaluated at each solution of current population

4. Step 4: Solutions of population are updated using ESHADE (proposed algorithm)

5. Step 5: Check the stopping criteria. If stopping criteria is met go to Step 6,

otherwise go to Step 2

6. Step 6: Best solution on the basis of minimum objective function value is extracted

from population to set the droop controllers of DGs within the system.

7.4 Results and Discussion

In this section, the proposed optimization algorithm is applied to solve the optimal power

flow problem of droop-controlled islanded microgrids through optimal setting of droop

parameters.
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Before applying this method for optimal power flow problem, the proposed algorithm

is validated on standard benchmark problem used in 100-digit challenge at IEEE CEC

2019 [228]. The results corresponding to all problems are given in Appendix III

7.4.1 Parameter Setting

For ESHADE, the parameter are set as follows: N0
p = 18 × D, Np,min = 4, γ = 5, and

c = 0.8.

7.4.2 Case Studies

Three test systems viz. CASE6, CASE22, and CASE38, are considered to analyze the

performance of proposed algorithm. The detail of these test systems are reported in

Appendix-II.

Proposed algorithm is applied on CASE6 test system to obtained the optimal droop

settings for minimal active and reactive power losses.

Table 7.1: Results of optimal power flow problem of CASE6

Without Optimization Min of Ploss Min of Qloss Min of (0.5 ∗Ploss + 0.5 ∗Qloss)

w 0.9991 w 0.9961 w 0.9941 w 0.9945

Ploss 0.0080 Ploss 0.0063 Ploss 0.0064 Ploss 0.0063

Qloss 0.0062 Qloss 0.0026 Qloss 0.0025 Qloss 0.0025

Voltage

Bus |V | V6

Voltage

Bus |V | V6

Voltage

Bus |V | V6

Voltage

Bus |V | V 6

1 0.9600 0.0000 1 0.9481 0.0000 1 0.9495 0.0000 1 0.9505 0.0000

2 0.9725 -0.5214 2 0.9646 -0.3301 2 0.9690 -0.3961 2 0.9682 -0.3772

3 0.9639 -2.6710 3 0.9568 -0.3260 3 0.9686 -0.3515 3 0.9653 -0.3466

4 0.9872 -0.0740 4 0.9723 -0.2379 4 0.9714 -0.2098 4 0.9738 -0.2121

5 0.9901 -0.4461 5 0.9746 -0.5212 5 0.9790 -0.5033 5 0.9778 -0.5185

6 0.9693 -2.8542 6 0.9645 -0.4217 6 0.9768 -0.4736 6 0.9733 -0.4599

Power

Bus P Q

Power

Bus P Q

Power

Bus P Q

Power

Bus P Q

1 -0.1487 -0.0984 1 -0.1451 -0.0960 1 -0.1455 -0.0963 1 -0.1458 -0.0965

2 0.0000 0.0000 2 0.0000 0.0000 2 0.0000 0.0000 2 0.0000 0.0000

3 -0.1993 -0.1409 3 -0.1964 -0.1388 3 -0.2013 -0.1422 3 -0.1999 -0.1413

4 0.1187 0.0587 4 0.0985 0.0638 4 0.0894 0.0572 4 0.0957 0.0603

5 0.1187 0.0457 5 0.0546 0.0508 5 0.0591 0.0420 5 0.0548 0.0445

6 0.1187 0.1411 6 0.1946 0.1228 6 0.2046 0.1418 6 0.2015 0.1355

mp 0.0075 0.0075 0.0075 mp 0.0713 0.0200 0.0395 mp 0.1000 0.0289 0.0661 mp 0.1000 0.0272 0.0573

nq 0.2173 0.2173 0.2173 nq 0.5000 0.2888 0.4343 nq 0.5000 0.1637 0.5000 nq 0.5000 0.1971 0.4352

Table 7.1 shows the results of CASE6 after solving the optimal power problem using

ESHADE. It can be concluded from Table 7.1 that the active and reactive power losses

are reduced by 21.25% and 59.68%, respectively after using the optimal setting of droop
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coefficients. In Table 7.1, results of single objective optimal power flow is also reported

and these results show that these objectives are also able to reduce the active and reactive

power losses with sufficient margins.

The Voltage profile of system is reduced in the system after including optimal droop

settings. The main reason behind this issue is that the droop coefficient related to reactive

power are increased to minimize the losses. Similarly system operating frequency is also

reduced due to increase of droop coefficient related to active power.

Table 7.2: Results of optimal power flow problem of CASE22

Normal Min of Ploss Min of Qloss Min of (0.5 ∗Ploss + 0.5 ∗Qloss)

w 0.9996 w 0.9994 w 0.9865 w 0.9994

Ploss 0.0053 Ploss 0.0022 Ploss 0.0022 Ploss 0.0022

Qloss 0.0027 Qloss 0.0011 Qloss 0.0011 Qloss 0.0011

mp

0.0051

mp

0.0043

mp

0.1000

mp

0.0041

0.0015 0.0043 0.1000 0.0041

0.0045 0.0027 0.0623 0.0025

0.0015 0.0033 0.0766 0.0031

nq

0.0500

nq

0.0103

nq

0.0100

nq

0.0103

0.0300 0.0135 0.0132 0.0135

0.0100 0.0100 0.0100 0.0100

0.0200 0.0114 0.0112 0.0113

The outcomes of CASE22 and CASE38 are reported in Tables 7.2 and 7.3, respec-

tively. From these tables, it can be concluded that the active and reactive power losses

are reduced after implementing the optimal droop settings into the systems. It is worth-

while to note that the outcomes of all types of objective functions are almost similar in

all case studies. This outcome implies that the minimizing of active power and minimiz-

ing of reactive power are not conflicting objectives in case of droop controlled islanded

microgrids.

7.5 Summary

In this chapter, a new optimization algorithm, ESHADE, is proposed to solve the optimal

power flow problem of droop-controlled islanded microgrids where minimization of power

losses are the objectives. The proposed algorithm is validated on the standard benchmark
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Table 7.3: Results of optimal power flow problem of CASE38

Normal Min of Ploss Min of Qloss Min of (0.5 ∗Ploss + 0.5 ∗Qloss)

w 0.9982 w 0.9772 w 0.9555 w 0.9579

Ploss 0.0053 Ploss 0.0841 Ploss 0.0845 Ploss 0.0842

Qloss 0.1269 Qloss 0.0700 Qloss 0.0685 Qloss 0.0686

mp

0.0051

mp

0.0291

mp

0.0618

mp

0.0569

0.0015 0.0452 0.0994 0.0868

0.0045 0.0586 0.1000 0.1000

0.0023 0.0565 0.1000 0.1000

0.0023 0.0153 0.0295 0.0281

nq

0.0500

nq

0.0684

nq

0.0830

nq

0.0775

0.0300 0.1000 0.1000 0.1000

0.0500 0.1000 0.1000 0.1000

0.0100 0.1000 0.1000 0.1000

0.1000 0.0423 0.0405 0.0422

problems and obtained results show that the proposed algorithm is effective and robust

in comparison to state-of-the-art algorithms.

The results of the optimal power flow show that active and reactive power losses of

the system are reduced, while the voltage profile is also reduced to adjust the new setting

of droop coefficients related to reactive power generation.
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