
Chapter 6

EBOwithCMAR in Optimization of

Grid-connected Microgrids

6.1 Introduction

In this part, a technique is proposed to reduce the active and reactive power loss with phase

balancing at the main transformer simultaneously in the system by using Single-Phase

Distributed Generators (SPDGs) with capacitors. An optimization algorithm, Effective

Butterfly Optimizer with Covariance Matrix Adapted Retreat Phase (EBOwithCMAR), is

proposed and applied to optimally size and site the SPDGs in power distribution systems

for reducing the active and reactive system losses with minimal load unbalance at the

primary transformer.

DGs with capacitor banks may be set up locally adjacent to the consumer points.

which can significantly support the extra load demand, cut down operational cost, min-

imize losses, enhance voltage profile and power capability of the system. DGs can be a

micro-turbine operated on natural gas, a light synchronous generator driven on diesel,

fuel cells, and wind turbines, etc. Several renewable sources such as wind turbine and

solar units have further added advantages of low direct emissions. In addition, the evolve-

ment of compact DGs is the principal reason to take advantage of cheaper investment

and low space requirement. Although DGs provide many improvements, there are vari-

ous challenges when these are consolidated with the power distribution system. DG can

set up a bidirectional flow of power through the line of the distribution system. If a DG

has not been accurately sited and sized, it may substantially increase system losses and
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overvoltages at the end of buses.

On the contrary, loads like high rated induction motors, system lines, transformers,

and cables are highly inductive. These kinds of loads use VAR as the primary source of

power and establish a lagging power factor at the buses which further increases losses and

degrades the behaviors of the system. Several DG technologies such as fuel and PV cells

can only deliver active power to the systems, while some alternative DG technologies such

as wind turbines can operate as a reactive and active power source. Capacitors are simple

static devices that can be utilized to provide reactive power support to the system for

compensating the lagging VAR. In several studies, it has been established that the shunt

capacitors can be utilized to reduce system losses, raise feeder strength and enhance the

reliability of the system.

Optimal siting and sizing of DGs are important in enhancing performances of the

distribution systems. Several research efforts focused on optimal siting and sizing of DGs

to reduce active power losses. Several numerical algorithms [203] and nature-inspired

meta-heuristics like GA [204], PSO [205,206], modified PSO (mPSO) [207], modified Ant

Colony Optimization and Artificial Bee Colony [208] have been investigated for different

types of DGs. While the impact of size and site of the DG has broadly been investigated,

a system containing both elements requires more consideration. Naik et al. [209] took an

analytical approach to optimally site and size both DG and capacitor. In [210], PSO is

adopted with improved results. In most recent studies, heuristic techniques such as Hybrid

Harmony Search method and Particle Artificial Bee Colony [211], Intersect Mutation

Differential Evolution [212] and Backtracking Search Algorithm [213] have all been used for

optimal size and site of both DGs and capacitors. All the above-mentioned methods aim

towards minimizeing active losses without properly addressing other system parameters,

such as voltage profile, reactive losses, etc.To reduce search space of the method and

hence the computational burden, Naik et al. [209] and Muthukumar et al. [211] approached

location optimization based on active power loss sensitivity factors of buses. The bus with

largest sensitivity of active power loss is preferred as candidate bus for DG placement.

In this chapter, an optimization method, EBOwithCMAR, is proposed and has been

applied to minimize the active and reactive power losses with minimal unbalance at the

end of the primary transformer in the distribution network. This study utilizes the un-

balanced distribution systems such as CASE11, CASE25, and CASE37 for demonstrating

164



the effectiveness of the proposed approach. As an optimization algorithm, EBOwithC-

MAR has several advantages over other popular algorithms and it is the winner of IEEE

CEC 2017’s competition on bound-constrained optimization problems.

6.2 Problem Formulation

The main objective of this study is to determine the appropriate location and size of

SPDGs in the power distribution system that will provide minimal power loss with low

phase unbalance at the main transformer. Though, the placement of SPDGs and sizing

of SPDGs are long term problem which considers reliability, cost and other aspects, these

were not in the scope of the thesis.

The active and reactive power losses in the line connecting buses i and j are computed

as follows.

Ploss(i, j) = Rij
P 2
i +Q2

i

|Vi|2
, (6.1)

Qloss(i, j) = Xij
P 2
i +Q2

i

|Vi|2
, (6.2)

where Ploss and Qloss represent active and reactive power loss. Total power loss of the

system can be determined by summing up all the lines losses of the system as follows.

Ploss =
N∑
i=1

N∑
j=1

Ploss(i, j), (6.3)

and,

Qloss =
N∑
i=1

N∑
j=1

Qloss(i, j) (6.4)

where Ploss and Qloss represent the total active and reactive power loss, respectively. N

is the total number of buses in the network.

Current injection at the root node (bus connected to main transformer) can be

calculated using the following equations.

Is1 =

(
Ss1
V s

1

)∗
(6.5)

where Is1 is current injection at phase s of root node (bus 1), Ss1 is total power transformed

at phase s of main transformer, and s ∈ {a, b, c}.
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Negative-sequence and zero-sequence current injection at main transformer can be

calculated as follows.

I−1 =
Ia1 + α2Ib1 + αIc1

3
, (6.6)

I0
1 =

Ia1 + Ib1 + Ic1
3

(6.7)

where, I−1 and I0
1 are negative-sequence and zero-sequence current injections at main

transformer, respectively and α = 16 120◦.

In this study, SPDGs with capacitor bank are considered to supply single-phase

active and reactive power. When an SPDG is connected to s-th phase of i-th bus for

delivering power, Sdg, the load in that phase changes from Ssi to Ssi − Sdg. To test

proposed formulation, a representative distribution system having SPDGs of fixed size

at fixed bus locations was needed. However, to have a system with fixed SPDG sizes

(capacities) at specified bus locations, we have developed such systems considering the

loss minimization and negative- and zero-sequence current minimization for peak loading

conditions of the system. The resulting system with fixed SPDG sizes (capacities) at pre-

specified locations is considered to be a representative distribution system of the above

problem. For creating a representative distribution system, the optimization algorithm

must check all possible locations of SPDGs with a different capacity at peak loading

condition for minimum losses with minimal phase unbalance at the root node. Therefore,

this optimization problem can be defined as follows.

Minimize f(k, s,Pdg,Qdg) = w1Ploss + w2Qloss + w3

√
(I−1 )2 + (I0

1 )2 (6.8)

where k = {k1, k2..., kn} represents the bus location of SPDGs, s = {s1, s2..., sn} repre-

sents the phase location of SPDGs. Similarly, Sdg = Pdg + jQdg = {Sdg,1, Sdg,1..., Sdg,n}

represents the power capacity of SPDGs. Parameters w1, w2, and w3 (w1 +w2 +w3)are the

weighing factor for different objectives to transform multi-objective optimization problem

into single objective optimization problem. This optimization problem is a non-convex,

non-linear, and mixed integer bound-constrained optimization problem.

Once the locations and SPDG sizes (capacities) are fixed on a peak loading scenario,

then the generation scheduling of SPDG (within the said capacities) and phase switch-

ing at the pre-specified buses are determined on hourly basis. For this case, the new

optimization problem can be defined as

Minimize f(s,Pdg,Qdg) = w1Ploss + w2Qloss + w3

√
(I−1 )2 + (I0

1 )2 (6.9)
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6.3 Proposed Methodology

To solve above-discussed optimization problems, an optimization algorithm, EBOwith-

CMAR, is proposed in this section. Objective function of these problems can not be

directly calculated as bus voltages of the system are not available for different locations of

SPDGs. Therefore, power flow analysis is required for calculating bus voltages to evaluate

the objective function. In this work, CINR (proposed in chapter 2) is employed for power

flow analysis.

6.3.1 EBOwithCMAR

EBOwithCMAR is an optimization algorithm which incorporates Effective Butterfly Op-

timizer (EBO) with a powerful local search technique, Covariance Matrix Adapted Re-

treat Phase (CMAR) to improve local search capability of EBO. Before describing the

framework of EBOwithCMAR, main steps of EBO and CMAR are presented in following

subsections.

EBO

EBO is a dual population-based global optimization algorithm based on the mate-locating

behaviors of male butterflies. Two mate-locating behaviors, Perching and Patrolling, are

used in EBO to update the solutions. In EBO, the following rules are utilized to implement

mate-locating behaviors of male butterflies.

1. Male butterflies are attracted to the object with the highest UV radiation/reflection.

2. Male butterflies memorize the best perching position by using different cues of the

surrounding.

3. Population size is kept constant during the algorithmic process.

4. Position of all male butterflies is updated using one of the mate-locating behaviour

viz. Perching and Patrolling.
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Algorithm begins with randomly initialized solutions that form two populations

(X1 = {x̂11, x̂12, ...x̂1NP1}, X2 = {x̂21, x̂22, ....x̂2NP2}), where NP1 and NP2 are the

sizes of the population of the primary and secondary population, respectively. A new set

of updated solutions, Y = {ŷ1, ŷ2, ...ŷNP1}, is calculated using “towards-best” or “criss-

cross” modification operators.

Modification Operators:

In the case of criss-cross modification operator, ŷi is calculated using the following equa-

tion.

ŷi = x̂1cci + F ∗ (x̂1r1i − (X1 ∪X2)r2i), (6.10)

and in case of towards-best modification operator, ŷi is calculated using the following

equation.

ŷi = x̂1besti + F ∗ (x̂1cci − (X1 ∪X2)r2i), (6.11)

where (x̂1cci , x̂1r1i , and (X1 ∪ X2)r2i) are distinct from each other and r1i and r2i

are randomly chosen index from 1 to NP1 and 1 to (NP1 + NP2), respectively. x̂1besti

represents a best-neighbor of individual i and F is a parameter used to control the evolving

rate of solutions. X1∪X2 represents the combination of both the populations of solutions.

Here, x̂1cci is a criss-cross neighbor of the ith solution and cci is calculated using

Equation 6.12.

{cc1, cc2, ...ccNP1} = randp(1, NP1) (6.12)

where randp(1, NP1) is a random permutation of integers between 1 and NP1. To update

each solution, the selection of modification operator is decided using probabilities, Pperch

and Ppat.

Hanging Binomial Crossover:

Hanging Binomial Crossover is a modified version of Binomial Crossover. Crossover rate

of each elements j, crj, is calculated using equations (6.13) and (6.14).

nj = Rem(D + j − jrand,
D

2
) (6.13)

where D is the total number of decision variable of the problem and Rem(x, y) is a

remainder function operator which produces the remainder to the division of x and y.

Parameter jrand is randomly selected index from 1 to D.

crj = CR ∗ e−
t
D
∗nj (6.14)
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where t represents a parameter within the range of [0, 0.5]. If t = 0, then this crossover

method is reduced to binomial crossover.

Selection:

Selection of solutions in both the populations for the next iteration is done by the following

equations.

x̂1k+1
i =

ŷ1ki , if f(x̂1ki ) > f(ŷ1ki )

x̂1ki , otherwise

, (6.15)

and

x̂2k+1
i =

x̂1ki , if f(x̂1ki ) > f(ŷ1ki )

x̂2ki , otherwise

, (6.16)

where, f(x̂1i) represents the objective function value of solution x̂1i. Note that the

objective function value of solution x̂2k+1
i is not evaluated because the objective function

value of solution x̂2k+1
i is not utilized in optimization steps of EBO. Step-by-step procedure

of EBO is shown in Algorithm-6.

CMAR

CMAR is population based iterative optimization techniques which sample new solutions

from probabilistic models. For generating a new sample of the solution, it is essential

to calculate the mean and the covariance matrix of the distribution of the probabilistic

model. The parameter adaptation procedure of CMAR is adopted from [214]. A brief

description of the main steps used to generate new samples is as follows.

1. Probabilistic Model : Two probabilistic models are used in CMAR to sample the

new solution with a probability of 0.5. The distribution of these two models are

individually controlled by its mean m and covariance matrix C. The distribution of

these models can be described using the following ways.

M1(m,C) ∼ m+ C
1
2 .M1(0, I), (6.17)

M2(m,C) ∼ m+ C
1
2 .M2(0, I), (6.18)

where M1 and M2 represent the distribution of probabilistic models, I is an identity

matrix, and m and C represent the mean and covariance matrix of the distribution,

respectively.
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Algorithm 6: Effective Butterfly Optimizer

1 Initialization;

2 Fitness evaluation;

3 while stopping criteria is not met. do

4 /*Modification Operator*/;

5 {cc1, cc2, ..., ccNP1
} ← randp(1, NP1);

6 for i = 1 to NP1 do

7 r2i ← randomly selected solution from X1 ∪X2;

8 if rand < Pperch then

9 /*Generate ŷi using criss-cross modification operator8/;

10 r1i ← randomly selected solution from X1;

11 ŷi ← x̂1cci + F (x̂1r1i − (X1 ∪X2)r2i );

12 else

13 /*Generate ŷi using towards-best modification operator*/;

14 ŷi ← x̂1besti + F ∗ (x̂1cci − (X1 ∪X2)r2i );

15 end

16 end

17 /*Hanging Binomial Crossover*/;

18 for i = 1 to NP1 do

19 /*crossover between ŷi and x̂1i*/;

20 jrand ← randomly selected index from 1 to D;

21 for j = 1 to D do

22 nj ← Rem(D + j − jrand), D
2

;

23 crj ← CR× e−
t
D
nj ;

24 rand← randomly generated number from uniform distribution;

25 if (rand ≥ crj)||(j = jrand) then

26 yi,j ← x1i,j ;

27 end

28 end

29 end

30 Evaluate fitness value on newly updated positions;

31 /* Selection*/;

32 for i = 1 to NP1 do

33 if f(x̂1
k
i ) > f(ŷ1

k
i ) then

34 x̂1
k+1
i ← ŷ1

k
i ;

35 x̂2
k+1
i ← x̂1

k
i ;

36 end

37 end

38 k ← k + 1;

39 end

Result: Best Solution having lowest objective function

2. Sampling : The i-th new sample of a solution is generated at k-th iteration by using
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following equation.

x
(k+1)
i ∼

m
(k) + σ(k)C

1
2

(k)M1(0, I), if rand ≤ 0.5

m(k) + σ(k)C
1
2

(k)M2(0, I), otherwise

(6.19)

where, σ is the step-size value and rand is the random number generated from

uniform distribution within the range (0, 1).

3. Mean Calculation: The mean, m, for the next iteration is calculated using a weighted

average of half of the best solutions from the current N samples, {x1, x2, ...., xN},

as shown in Equation 6.20.

m(k+1) =

N
2∑
i=1

wix
(k)
i:N , (6.20)

where xi:N represents the i-th best solution of N samples of solutions. Here,∑N
2
i=1wi = 1 and wi is calculated by following equation.

wi =
ln(N

2
+ 1)− ln(i)∑N

2
j=1 ln(N

2
+ 1)− ln(j)

, (6.21)

where f(∗) represents the objective function value at ∗ solution.

4. Calculation of square root of covariance matrix : In CMAR, square root of the

covariance matrix is adapted in each iteration by using the evolution path, P
(k)
c ,

and random numbers, z
(k)
i (= M1(0, I) or M2(0, I)), used to genrate samples at

k-th iteration.

P (k)
c = (1− cc)P (k−1)

c + hs(k)
√
cc(2− cc)µeff .z(k)

m , (6.22)

C
1
2

(k+1) = (1− ccov − c1(1− (1− hs(k))cc(2− cc)))C
1
2

(k) (6.23)

c1C
1
2

(k)
(
P (k)
c (P (k)

c )T
)

+ ccovC
1
2

(k)

N
2∑
i=1

wiz
(k)
i:N

(
z

(k)
i:N

)T
, (6.24)

where,

z(k)
m =

N
2∑
i=1

wiz
(k)
i:N . (6.25)

The control parameters N , cc, c1, ccov, and µeff are set by using following equations.

N = 4 + b3ln(D)c, (6.26)
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µeff =
(
∑N

2
i=1wi)

2∑N
2
i=1w

2
i

, (6.27)

cc =
4D + µeff

D2 + 4D + 2µeff
, (6.28)

c1 =
1

(D + 1.3)2 + µeff
, (6.29)

ccov = min

(
0.5− c1,

µ2
eff − 2µeff + 1

µ2
eff + µeff (D + 2)2

)
. (6.30)

5. Step-size adaptation: The adaptation of step-size are done by using following equa-

tion.

P (k+1)
s = (1− cs)P (k)

s +
√
cs(2− cs)µeff .z(k)

m , (6.31)

σ(k+1) = σ(k).exp

(
cs
ds

(
||P (k+1)

s ||
Ex

− 1

))
(6.32)

where, cs, ds, and Ex are the control parameters. These parameters can be calculated

by using following equations.

cs =
µeff + 2

µeff +D + 5
, (6.33)

ds = 1 + 2.max

(
0,

√
µeff − 1

D + 1
− 1

)
+ cs, (6.34)

Ex =
√
D

(
1− 1

4D
+

1

21D2

)
(6.35)

The parameter hs used in Equation 6.22 is updated in each iteration by using

following equation.

hs(k+1) =

1, if ||Ps||2D
(1−(1−cs)2(k+1))

< 2 + 4
D+1

,

0, otherwise

(6.36)

In the following sections, the framework of EBOwithCMAR is discussed.

Framework of EBOwithCMAR

In EBOwithCMAR, an initial population of size N is randomly generated from the uni-

form distribution within the bound of solution-space. This population is split into three

different populations, X1, X2, and X3 of sizes, N1, N2, and N3, respectively, where the
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first two populations are used in EBO and the last population is used in CMAR. Algo-

rithms EBO and CMAR are utilized to update the solutions with probabilities probEBO

and probCMAR, respectively, at a particular iteration. A cycle, cy, of a fixed number of

iteration is initialized at the beginning of the optimization process where both of the

algorithms are utilized parallelly ( probEBO and probCMAR are set to 1) for the half of the

cycle. At the end of the half cycle, the new values of probEBO and probCMAR are updated

for the next half of the cycle. The new value of probabilities probEBO and probCMAR

depends upon the following criteria.

1. Based on the superiority of the best solution obtained using EBO and CMAR, and

2. Based on the diversity of solutions of the populations, X1 and X3.

A data sharing between the populations X1 and X3 are done at the last of each cycle.

Whenever EBOwithCMAR will enter into the next cycle, and similar steps are replicated.

To improve the local search potential of EBOwithCMAR, sequential quadratic program-

ming is utilized at the later phases of the optimization process (75% of the optimization

process is completed) with a probability of probls. In case of failure of the SQP algorithm,

probability probls is reduced to a very small value.

In EBOwithCMAR, some components of EBO are modified. The modified compo-

nents of EBO are described in the following sections.

Modified component of EBO:

A brief description of the main steps of EBO is discussed earlier. In EBOwithCMAR,

modification operators are modified to improve the diversity of the populations X1 and

X2, and a self-adaptive approach is utilized for the different parameters of EBO.

1. Modified modification operators : A modified criss-cross and towards-best modifica-

tion operators used in EBOwithCMAR are shown in Equation (6.37) and Equation

(6.38), respectively.

ŷi,j =



x̂1i,j + Fi(x̂1cci,j − x̂1i,j + x̂1r1i,j − (X1 ∪X2)r2i,j),

if (randj(0, 1) ≤ cri,j or j = jrand)

x̂1i,j ,

otherwise.

(6.37)

173



ŷi,j =



x̂1i,j + Fi(x̂1besti,j − x̂1i,j + x̂1cci,j − (X1 ∪X2)r2i,j),

if (randj(0, 1) ≤ cri,j or j = jrand)

x1i,j ,

otherwise.

(6.38)

where (cci, r1i, and r2i) are distinct integers.

2. Selection of besti: The besti is the best solution among the randomly selected D

solutions from population X1. When the size of the population X1 is less than the

2D, besti is randomly selected from the 10% of best solutions.

3. Calculation of Pperch and Ppat: The probabilities Pperch and Ppat are initially set to

0.5. The improvement rate of objective function values is utilized to modify the

value of these probabilities. The improvement rate is estimated using the following

equation.

I
(k+1)
i =

∑PS1

z∈Simax(0, f
(k+1)
z − f (k)

z )∑PS1

z∈Si f
(k)
z

where Si is a set of solutions updated by

perching, if i = 1

patrolling, if i = 2.

(6.39)

Now, Pperch and Ppat are modified using following equation.

Pperch = max

(
0.1,min

(
0.9,

I1

I1 + I2

))
, (6.40)

Ppat = 1− Pperch (6.41)

4. Linear Reduction of Size of N1 and N2: Reduction in the size of populations X1

and X2 at the end of each iteration is done by using a linear reduction mechanism

proposed in [215]. In this approach, the size of X1 is reduced by eliminating the

worst solutions, while the size of X2 is reduced by eliminating random solutions from

the population. The reduced sizes of populations are calculated using the following

equations.

N
(k+1)
1 = round

((
N1,min −N1,max

FEmax

)
∗ FEs

)
+ N1,max (6.42)
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N
(k+1)
2 = round

((
N2,min −N2,max

FEmax

)
∗ FEs

)
+ N2,max (6.43)

where (N1,max, N2,max) and (N1,min, N2,min) are the maximum and minimum values

allowed forN1 andN2 respectively. FEmax and FEs represent the maximum allowed

function evaluation and current function evaluation, respectively.

5. Adaptation of F , freq, CR and T : In EBOwithCMAR, a parameter adaptation

technique is utilized to auto-tune the parameters F , freq, CR, and T at each

iteration. The following steps are performed to adapt the parameters.

• A matrix of size (4×H), M, is initialized at their default values. The default

value of parameters F , CR, freq, and T are 0.7, 0.5, 0.5, and 0.1, respectively.

• The new value of parameters CRi, Fi, freqi, and Ti associated with solution

x̂1i is calculated by following equations.

CRi = M2(M3,r, 0.1), (6.44)

freqi = randci(M2,r, 0.1), (6.45)

Fi =


1
2

(
tan(π(FEs+ 1))FEmax−FE

FEmax
+ 1
)
, if FEs ≤ FEmax & rand ≤ 0.5

1
2

(
tan(2πfreqi ∗ FEs) FEs

FEmax
+ 1
)
, if FEs ≤ FEmax & rand > 0.5

randci(M1,r, 0.1), otherwise

,

(6.46)

Ti = M2(M4,r, 0.05), (6.47)

where r represents a integer from [1, H], and randci provides the random num-

ber from cauchy distribution.

• The value of Mi,d is updated by using the following equation at the end of each

iteration.

Mi,d =

∑4
γ=1 wγS

2
i,γ∑4

γ=1 wγSi,γ
, (6.48)

where, Si,1:γ = (Fi, CRi, freqi, Ti) and 1 < d < H is the index of the memory

to be updated. It is initialized to 1, and then increased by 1 whenever an

index of memory is updated and if it is greater than H, it is reset to 1. wγ is

calculated by using following equation.

w(k+1)
γ =

4f (k+1)
γ∑N1

i=14f
(k+1)
γ

(6.49)
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and 4fγ = |f (k)
γ − f (k+1)

γ |.

• CMAR: CMAR starts with a randomly generated initial population of size

N3 (X3 = {x1, x2...xN3} from uniform distribution within the solution-space.

Initial mean, m(0), is calculated by the arithmetic mean of X3.

Update of probEBO and probCMAR:

Two factors are considered to update the probabilities probEBO and probCMAR. They are

the diversity of the population and quality of solutions.

Two quality values, Q̂EBO and Q̂CMAR, are calculated at the end of half of cycle by

using the following equation.

Q̂i =
f
CS
2

best,i

f
CS
2

best,EBO + f
CS
2

best,CMAR

∀ i ∈ {EBO,CMAR}, (6.50)

where f
CS
2

best,i is the best objective function value at the end of half of cycle, CS
2

by i-th

algorithm.

At the same time, the diversity of the populations X1 and X3 are calculated using

the following equation.

d̂ivi =
divi

divX1 + divX3

∀ i ∈ {EBO,CMAR}, (6.51)

where divi is the diversity rate of population with respect to best solution at the end of

half of cycle, CS
2

by i-th algorithm.

A progress index, PIi is calculated by using equation (6.52).

PIi = (1− Q̂i) + d̂ivi, ∀ i ∈ {EBO,CMAR} (6.52)

Now, the probability, probi is calculated as shown in equation (6.53).

probi = max

(
0.1,min

(
0.9,

P Ii
PIEBO + PICMAR

))
, ∀ i ∈ {EBO,CMAR} (6.53)

If the sum of PI is equal to zero, probEBO and probCMAR are set to 1.

Data Sharing:

At the end of every cycle, CS, algorithm having a greater value of probability is considered

to be best algorithm of that cycle. If EBO is considered as the best, then population

X3 is replaced by the random solution of population X1. Parameters of CMAR is also
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Algorithm 7: EBOwithCMAR

1 Define N ← N1 +N2 +N3, cy ← 0, probEBO = probCMAR ← 1 and all other parameters required;

2 for i = 1 to N do

3 Xi ← uniformly distributed D random numbers within the bounds of search-space;

4 end

5 Randomly assign N1, N2, and N3 individuals from X to Xi, ∀i = 1, 2, 3;

6 while termination condition is not satisfied do

7 cy ← cy + 1;

8 if cy == CS
2

then

9 Calculate probEBO and probCMAR using Equation (6.53);

10 end

11 if cy == CS then

12 Share Data;

13 probEBO = 1, and probCMAR = 1;

14 cy ← 0;

15 end

16 if rand ≤ prob1 then

17 Apply EBO;

18 FEs← FEs+N1;

19 end

20 if rand ≤ prob2 then

21 Apply CMAR;

22 FEs← FEs+N3;

23 end

24 if rand ≤ probls & FEs ≥ 0.75 ∗ FEmax then

25 Apply SEQ;

26 FEs← FEs+ FEseq ;

27 if best solution is improved then

28 probls ← 0.1;

29 update X1 and X2;

30 else

31 probls ← 0.0001;

32 end

33 end

34 k ← k + 1;

35 end

Result: Best Solution having lowest objective function

reinitialized at default value except the step size, σ, where σ is calculated as σ = σinitial ∗

(1− cFE/FEmax).

On the other hand, if CMAR emerges as the best, the worst individual in X1 is

replaced by the best individual in X3. After data sharing, new cycle is again started and

process repeated. The step-by-step procedure of EBOwithCMAR is shown in Algorithm-

7. The performance of EBOwithCMAR in comparison of state-of-the-art algorithms are
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reported in the Appendix.

6.3.2 Evaluation of Objective Function

In any optimization algorithm, objective function for each generated solution needs to be

evaluated for improving the solutions. The objective function of the optimization problem

discussed in the section 6.2 cannot be evaluated directly. Power flow analysis is needed

to obtain the steady-state voltage at each bus of the system because these voltages are

used to calculate the objective function defined in Equation 7.5.

CINR algorithm is employed to calculate the steady-state voltage at each bus for

every solution of the optimization problem. Each solution contains the location (bus

and phase) and power capacity of SPDG. First of all, loads of the system are updated

according to the solution (location and capacity of SPDGs). Loads are modified by using

following equations.

P t
L,i =

P
t
L,i − Pdg,j, if i == kj & t == sj

P t
L,i, else

(6.54)

and,

Qt
L,i =

Q
t
L,i −Qdg,j, if i == kj & t == sj

Qt
L,i, else

(6.55)

where P t
L,i and Qt

L,i represent the active and reactive load at t-th phase of i-th bus.

{Kj, sj, Pdg,j, Qdg,j} represents the bus-location, phase-location, active power capacity,

and reactive power capacity of j-th SPDG.

After modifying the loads, power flow analysis is performed on this loading condition

using CINR to calculate the voltage at each bus. Further these voltages are used to

calculate the objective function values.

6.3.3 Proposed Algorithm

The above-discussed optimization problem considers location (in terms of phase and bus)

and size (in terms of active and reactive power) of SPDGs as the problem variables. Each

solution vector has 4 ∗M elements where M is the total number of SPDGs used in the

systems.
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The purpose of this problem is to find the optimum location and rating for all the

SPDGs so that the objective function is minimized. It is worth mentioning here that

the solution variables related to location must be an integer value. Therefore, during

the calculation of objective function value, these variables are rounded off to its adjacent

integer value.

The following steps are utilized to solve the optimization problem.

1. Step 1: Initialization of population of Np solutions is done as uniformly distributed

random points within the bound of each variables.

2. Step 2: Power flow Analysis is performed using each solution of current population.

3. Step 3: Objective function is evaluated using each solution of current population

4. Step 4: Solutions of population are updated using EBOwithCMAR

5. Step 5: Check the stopping criteria. If stopping criteria is met, go to Step 6,

otherwise go to Step 2

6. Step 6: Best solution on the basis of minimum objective function value is extracted

from population to locate and schedule the SPDGs within the system.

6.4 Results and Discussion

In this section, the performance of the proposed approach, as well as comparative analysis

are discussed.

In this analysis, three test systems, CASE13, CASE25, and CASE37, are considered.

The details of these systems are reported in the Appendix I. Details of the experimental

setup are given in Table 6.1. The performance of proposed algorithm has been compared

with state-of-the-art algorithms reported in literature. The algorithms chosen for com-

parative analysis are IMDE [212], Analytical Approach (AA) [209], PSO [210], BSA [213],

and IPSO [216].

Four scenario are studied in this work. In first case, only phase-balancing is done

i.e. negative-sequence and zero-sequence currents are minimized at root node. In second

scenario, minimization of active power loss is considered as objective function. Similarly,

reactive power loss is considered as objective function in third scenario. In last scenario,
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Table 6.1: The detail of experimental setup

S.N. Test System Number of SPDGs Pmax Qmax

1. CASE13 3 2 p.u. 2 p.u.

2. CASE25 5 2 p.u. 2 p.u.

3. CASE37 7 2 p.u. 2 p.u.

the weighted objective function with equal weighing factor is considered to minimize all

the objective function simultaneously.

6.4.1 Parameter Settings

For EBO, N1,max = 18D, N1,min = 4,N2,max = 46.8D, N2,min = 10 H = 6. For CMAR,

N3 = 4 + (3log(D)) [214], and σ = 0.3. CS = 100. For local search, probls = 0.1 and

FEls = 0.25 ∗ FEmax function evaluations. Here, D = 4 ∗M .

6.4.2 Case Studies

The proposed algorithm with other state-of-the-art algorithms has been run for all the

test cases.

CASE13

The best site and size of SPDGs obtained after 100 independent runs using all algorithms

are recorded for the weighted objective function. The parameters (negative-sequence cur-

rent, zero-sequence current, active loss and reactive loss) at the optimal solution obtained

from all algorithms are reported in Table 6.2. This table shows that the optimal solu-

tions obtained from all algorithms are different from each other. The proposed algorithm

provides better solutions as compared to solutions obtained from other competitive algo-

rithms. From this analysis, it can be concluded that the proposed approach is a better

option to solve the optimization problem in case of CASE13.

Further, proposed algorithm is utilized for analyzing the system for all the objective

function cases. The optimal size and site of SPDGs for different objective functions

(scenarios) are depicted in Table 6.3. From table 6.3, the site of SPDGs for scenario-2,
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Table 6.2: Simulation results for CASE13 test system.

Index EBOwithCMAR IMDE AA PSO BSA IPSO

I0
1 2.08E-09 6.72E-06 8.24E-06 7.45E-05 8.25E-06 1.87E-08

I−1 9.23E-10 2.41E-05 4.21E-05 1.06E-05 5.87E-05 6.83E-09

Ploss 7.23E-02 6.23E-02 5.34E-02 1.07E-01 8.43E-02 7.54E-02

Qloss 1.51E-01 1.48E-01 1.45E-01 1.83E-01 1.73E-01 1.76E-01

scenario-3 and scenario-4 are same, while the size of SPDGs are different to minimize

objective functions of these scenarios.

Table 6.3: Results for CASE13 for scenario-4

scenario-1

location 2-b 7-a 10-c

Pdg 3.24E-01 4.73E-01 5.48E-01

Qdg 2.26E-01 2.04E-01 2.93E-01

scenario-2

location 7-c 8-a 9-b

Pdg 1.02E+00 7.68E-01 3.24E-01

Qdg 4.28E-01 2.03E-01 3.13E-02

scenario-3

location 7-c 8-a 9-b

Pdg 1.02E+00 9.11E-01 3.16E-01

Qdg 4.03E-01 3.37E-01 7.40E-02

scenario-4

location 7-c 8-a 9-b

Pdg 7.06E-01 5.83E-01 4.75E-01

Qdg 1.18E-01 1.00E-02 4.33E-02

Table 6.4: Value of main parameters of system for different cases of CASE13

Index scenario-1 scenario-2 scenario-3 scenario-4

I0
1 4.72E-12 8.77E-02 8.87E-02 2.08E-09

I−1 2.05E-12 9.17E-02 1.52E-01 9.23E-10

Ploss 1.04E-01 4.70E-02 5.04E-02 7.23E-02

Qloss 2.10E-01 6.10E-02 5.40E-02 1.51E-01

181



CASE25

From 100 independent runs, the best size and site of SPDGs are selected for comparative

analysis on CASE25. The parameters of CASE25 at the optimal solution are reported

in Table 6.5 for all algorithms. This table shows that the proposed algorithm performs

better than other algorithms for this test system. These outcomes conclude that the

proposed algorithm provides a better option for solving this optimization problem in this

test system.

Table 6.5: Simulation results for CASE25 test system for scenario-4

Index EBOwithCMAR IMDE AA PSO BSA IPSO

I0
1 2.65E-11 1.32E-06 3.56E-06 2.93E-05 2.85E-06 5.85E-06

I−1 2.69E-11 4.23E-05 3.83E-05 3.08E-05 9.75E-05 4.86E-06

Ploss 2.93E-01 3.01E-01 3.28E-01 3.18E-01 3.87E-01 2.98E-01

Qloss 3.35E-01 3.37E-01 3.85E-01 4.01E-01 4.01E-01 3.38E-01

In addition, EBOwithCMAR is employed to further analyze the CASE25 for different

scenarios having different objective function. The experimental outcomes are depicted in

Table 6.6. From this table, the site and size of SPDGs are different from each other to

minimize all objective functions. Negative-sequence current and zero-sequence current at

root node with active and reactive power loss are also reported in Table 6.7 at the optimal

solution of all cases of the objective function.

CASE37

The performance of the proposed algorithm is also analyzed on CASE37. Similarly to

CASE13 and CASE25, the best solution from 100 independent runs is selected for analysis.

Negative-sequence and zero-sequence with active and reactive power loss are reported

in Table 6.8 for all solutions obtained by all algorithms. As shown in Table 6.8, the

performance of EBOwithCMAR is superior to other algorithms. Therefore, for further

analysis only the proposed algorithm is utilized for all objective functions (scenarios).

The optimal site and size of SPDGs for all case of the objective function are reported

in Table 6.9. From this table, it can be seen that the location and size of SPDGs are

different in all cases. Obtained active and reactive loss with zero-sequence and negative-
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Table 6.6: Obtained results for CASE25

scenario-1

location 4-a 5-c 12-c 16-a 17a

Pdg 1.32E+00 1.15E+00 9.02E-01 1.36E+00 1.06E+00

Qdg 5.65E-01 6.68E-01 5.76E-01 1.03E+00 1.03E+00

scenario-2

location 9-b 10-c 11-a 14-a 15-a

Pdg 2.00E+00 2.00E+00 2.00E+00 2.00E+00 1.26E+00

Qdg 2.00E+00 2.00E+00 1.63E+00 1.76E+00 4.36E-02

scenario-3

location 11-a 13-b 14-c 23-a 25-c

Pdg 2.00E+00 1.99E+00 2.00E+00 2.00E+00 2.00E+00

Qdg 2.00E+00 1.90E+00 2.00E+00 2.00E+00 1.12E+00

scenario-4

location 5-c 8-a 10-b 11-c 13-a

Pdg 3.02E-01 2.00E+00 2.45E-01 2.00E+00 2.00E+00

Qdg 1.15E+00 2.00E+00 1.78E+00 1.86E+00 2.00E+00

Table 6.7: Value of main parameters of system for different cases of CASE25

Index scenario-1 scenario-2 scenario-3 scenario-4

I0
1 1.23E-20 9.63E-01 9.30E-01 2.65E-11

I−1 9.98E-21 2.06E+00 8.57E-01 2.69E-11

Ploss 4.00E-01 2.29E-01 2.48E-01 2.93E-01

Qloss 4.37E-01 2.82E-01 2.68E-01 3.35E-01

sequence current at root node are also shown in Table 6.8 for all cases of the objective

function.

6.4.3 24-hour loading scenario

In this loading scenario the optimal SPDG locations obtained in case studies of CASE25

have been fixed. Using these sites for SPDGs along with reactive supports, the opti-

mization for 24-hour load scenarios for objective function stated in equation 6.9 has been

considered.

For each of the 24-hour loading scenario the optimal phase and sizes of the SPDGs

have been obtained using EBOwithCMAR algorithm. In the following paragraphs the re-
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Table 6.8: Simulation results for CASE37 test system of scenario-4

Index EBOwithCMAR IMDE AA PSO BSA IPSO

I0
1 3.20E-12 6.87E-06 5.90E-06 4.88E-07 3.95E-07 3.94E-06

I−1 1.82E-12 4.56E-05 8.36E-05 3.87E-06 2.95E-06 4.69E-06

Ploss 8.98E-02 1.05E-01 9.87E-02 1.15E-01 1.13E-01 1.04E-01

Qloss 4.89E-02 8.48E-02 7.84E-02 1.09E-01 1.14E-01 9.25E-02

Table 6.9: Obtained results for CASE37

scenario-1

Location 30-c 31-a 31-b 31-c 32-a 32-b 33-a

Pdg 1.81E-01 5.06E-02 3.91E-02 1.19E-01 5.36E-02 3.73E-02 5.39E-02

Qdg 1.03E-01 4.61E-02 5.07E-02 1.07E-01 4.67E-02 4.76E-02 4.67E-02

scenario-2

Location 26-a 28-c 30-a 31-a 34-b 35-a 35-c

Pdg 6.38E-02 2.55E-01 1.37E-01 1.22E-01 1.52E-01 1.27E-01 2.19E-01

Qdg 5.48E-02 9.99E-02 9.35E-02 1.00E-02 9.87E-02 1.18E-01 7.55E-02

scenario-3

Location 5-b 8-a 10-c 12-c 24-c 25-a 34-b

Pdg 2.53E-01 4.49E-01 2.40E-01 1.94E-01 1.70E-01 1.00E-02 8.48E-02

Qdg 1.02E-01 2.41E-01 1.29E-01 1.38E-01 3.71E-02 1.00E-02 3.66E-02

scenario-4

Location 8-c 12-c 21-a 22-a 25-c 34-b 35-a

Pdg 2.99E-01 1.40E-01 3.01E-02 4.20E-02 4.20E-02 2.55E-01 2.88E-01

Qdg 1.81E-01 4.88E-02 1.68E-02 2.10E-02 2.10E-02 1.44E-01 1.61E-01

Table 6.10: Value of main parameters of system for different cases of CASE37

Index case-1 case-2 case-3 case-4

I0
1 3.94E-22 9.82E-03 1.62E-03 3.20E-12

I−1 6.26E-23 3.23E-02 2.00E-03 1.82E-12

Ploss 6.96E-02 4.67E-02 6.28E-02 8.98E-02

Qloss 4.39E-02 2.51E-02 3.08E-02 4.89E-02
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sults obtained in terms of sequence and phase currents, voltages, losses (real and reactive),

and phase utilization index are discussed.

Sequence Currents : The hourly negative- and zero-sequence currents for 24-hours

without SPDG and with SPDG are shown in Fig. 6.1. It is observed from the figure

that, without SPDG the amount of negative- and zero-sequence currents lie in the range

0.66 pu to 1.90 pu and with DG the negative- and zero-sequence currents are found to be

almost negligible.
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Figure 6.1: Hourly positive-, zero-, negative-sequence currents without and with SPDGs.

I0, I1, and I2 indicate sequence currents for the case when SPDGs are not placed. I∗0 , I∗1 ,

and I∗2 indicate sequence currents for the case when SPDGs are placed.

Phase currents : The effect of reduction in zero- and negative-sequence currents is

also reflected in the phase currents at main-substation as shown in Fig. 6.2. Fig. 6.2

shows that the SPDGs provide currents in such a manner that currents in three phases

at the main substation get balanced. An important observation made from the figure

is that the balanced phase currents of all the three phases at the main-substation are
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reduced to the minimum of three phase currents under unbalance (without SPDG). It is

to be noted that Ib (minimum of phase current) overlaps with I∗a , I
∗
b , I

∗
c . This results in

increased MVA margins on the other two phases.
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Figure 6.2: Hourly phase currents without and with SPDGs. Ia, Ib, and Ic indicate phase

currents for the case when SPDGs are not placed. I∗a , I∗b , and I∗c indicate phase currents

for the case when SPDGs are placed.

Voltages : The bus-wise phase voltages for the peak load condition are plotted in

Fig. 6.3. From this figure, it is observed that with the use of SPDGs, voltage profile

improves and voltages become more balanced as compared to the case without SPDG. It

is observed that phase voltages after scheduling SPDGs get pulled up towards the highest

phase voltage of the case when SPDGs are not used. Comparison of minimum bus voltage

before and after placing the SPDGs at every hour is shown in Fig. 6.4. From Fig. 6.4,

minimum bus voltages of the system considerably improve when SPDGs are optimally

placed in the system.

Losses : Scheduling of SPDGs in the system also affect the line losses. If SPDGs are
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Figure 6.3: Bus voltages without and with SPDGs. Va, Vb, Vc indicate bus voltages without

SPDGs. V ∗a , V
∗
b , V

∗
c indicate bus voltages with SPDGs.

not suitably placed, losses may increase dramatically. Effect of placement of single-phase

SPDGs on the active and reactive line losses is also studied. Active and reactive line losses

before and after placing SPDGs for 24-hour are shown in Fig. 6.5. It is clear from Fig.

6.5 that the active and reactive line losses also reduce. Hence, the placement of SPDGs

to balance the currents at main feeder does not increase the line losses, instead losses will

come down.

Phase Utilization Index (PUI): PUIs before and after placing the SPDGs for 24-hour

are shown in Fig. 6.6. Fig. 6.6 clearly shows that the PUIs are negligible when the SPDGs

are optimally placed.
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Figure 6.4: Minimum of the all bus Voltages without SPDGs and with SPDGs for 24

hour. Vmin and V ∗min indicate the minimum bus voltage in case of Without SPDGs and

with SPDGs respectively.

6.5 Summary

Planning of SPDGs for the purpose of phase balancing and a loss minimization is pro-

posed in this chapter. EBOwithCMAR with CINR algorithm is utilized to solve this

problem. CINR is utilized to calculate objective function at each solution. The plan-

ning is approached for different objectives. In the first objective function, the optimal

SPDG locations (phase and bus) and sizes are obtained for minimum negative-sequence

and zero-sequence current at the root node. The location and size are then evaluated for

the minimization of active and reactive loss. Also, hourly scheduling of SPDG (in term of

phase and size) for 24-hour loading scenario to obtain the phase balancing with minimum

active and reactive losses is performed. It has been established that EBOwithCMAR with

CINR is an effective algorithm for solving phase balancing and loss minimization problem.
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Figure 6.5: Total active and reactive power line loses for 24-hours. Ploss and Qloss indicate

total active and reactive line losses for the case when SPDGs are not placed. P ∗loss and

Q∗loss indicate total active and reactive power line loss for the case when SPDGs are placed.
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Figure 6.6: Phase Utilization Index at main feeder for 24 hours. PUI and PUI∗ indicates

the phase utilization index in case of without SPDGs and with SPDGs respectively.
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