Chapter 5

Differential Evolution and MAES for
Power Flow Problem of Droop

Controlled Islanded Microgrids

5.1 Introduction

Conventional PF algorithms are not effective in analyzing the of islanded microgrid as
the system frequency and voltage of the slack bus is assumed to be constant. Such
assumptions are not applicable in the operation of islanded microgrid as DGs provide
the real and reactive power to adjust the load demands as well as maintain the voltage
magnitude and system frequency in the absense of the main grid. To solve the power
flow of islanded microgrid, a novel formulation as a constrained optimization problem is
proposed in this thesis.

A MG has been recognized as a collection of DGs which are interconnected with
thermal and electrical loads, and energy storage units. In addition, it functions as a
single small scale low-voltage distribution system. Due to the use of power electronic
controls and interfaces in MGs, system reliability, security, and power electronic controls
can be enhanced [177,178]. An MG may run in islanded or grid-connected mode. In an
islanded mode, controllers of DGs are capable of voltage and frequency regulation along
with controlling active and reactive power. While in a grid-connected mode the frequency
and voltages of MGs are managed by the main grid.

In practice, different type of control strategies for MGs have been proposed such as
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distributed, decentralized, and centralized; any hybrid structure of these models is also
feasible. Strategies based on centralized control need to transfer data using stable com-
munication environment. In the case of large MGs, these strategies are not suitable where
DGs are placed far from each other [179-181]. Large MGs are usually controlled using de-
centralized strategies, such as DCIMGs, where communication of significant information
is not needed [178]. In droop controller based strategies, local variables can be utilized
for effective sharing of loads of loads among DGs. Here, the frequency and magnitude of

the voltage of MGs are used as local variables [182].

In DCIMGs, DGs are connected to MGs using suitable control approach using power
electronic converters [183-186]. For designing the effective and efficient control strategy,
a power flow analysis model is required to calculate the steady-state variables, especially
for an islanded MGs. Design of droop control strategies use power flow solutions to test

its efficacy. This is more so in the case of MGs operated in islanded mode.

To address the characteristics of MGs and distribution systems, a number of methods
have been introduced for PF analysis. Some of such algorithms are derived from the
NR approach [23,43], while others are based on the basic electric circuit laws [51]. In
[187], a modified algorithm, called BFS method, has been proposed for solving the power
mismatches equations of radial power systems. In [27], an implicit ZBus algorithm based
on the superposition principle of electric circuits is proposed to solve the power flow

problem.

In [56], a model of three-phase PF problem is proposed which adopt the real char-
acteristics of islanded MGs similar to three-phase distribution systems. In the model
proposed in [56], the problem is formulated as a non-linear optimization problem and this
problem is solved by NTR technique. But, it is highly sensitive to the initial solutions of
variables of the PF problem. In addition, a number of studies of PF analysis for droop
controlled islanded MGs based on a nature-inspired optimization algorithm have been
developed.

In general, Jacobian based PF algorithms, such as NR, and FD may not produce
PF solution for power mismatch equations of distribution systems having a high value of
R/X. To solve this problem, a number of methods [183-186] have been introduced. In
addition, to present an adequate platform for PF analysis, modeling of distributed slack

bus has also been studied [28,53,100].
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In current practices, DG having the highest capacity is considered as a slack bus
which operates like an infinite bus at a constant voltage to provide system frequency, and
other DGs are treated as either PV or PQ buses. However, this assumption cannot be
considered feasible in the case of islanded MGs. For example, the generation capacity
of DGs in MGs is not usually high enough to allow them to act as an infinite bus. In
addition, voltage swelling may occur in the buses of MG when a DG is acting as a slack
bus. In such a situation, slack bus (DGs) must provide power independently for the whole
power losses of MG which is not an effective state of operation for MG [43]. Therefore,
in an islanded MG, considering a DG as a slack bus is not appropriate for PF analysis.

In order to resolve this issue, one way is to consider that all DG units operate
using droop controllers where all DGs locally tune the voltage and frequency of islanded
MG [179]. In such operation, active power generation and voltage magnitude of each DG
is required to be fixed according to droop characteristics of controllers. This operation of
MG creates a new type of bus, called droop bus, in addition to PQ and PV buses in the
system. It is worth to note here that grid-connected MG behaves like a simple distribution
system having a slack bus operating as a infinite bus. Other problems related to power flow
analysis of islanded MGs can be outlined as dealing with the reactive power scheduling
of DGs, and singularity of the Jacobian matrix which causes failure in convergence of
PF [185].

In order to resolve these issues, this thesis proposes a new PF formulation for islanded
microgrids. This formulation is expressed in form of constrained optimization problem
which models different mode of operations of DGs (such as PV, PQ, and droops opera-
tions). In order to solve this constrained optimization problem, two novel optimization
algorithms are proposed.

The main contributions of this chapter are summarized as follows.

e [t introduces a novel formulation as a constrained optimization problem for PF

analysis of islanded MGs.

e It proposes PF constraint based on the droop characteristics of distributed slack
buses to deal with the droop buses in power flow analysis. In addition, system

frequency is also considered as an extra variable of the PF problem.

e [t provides an adequate method to share reactive and active power among DGs

127



based on the droop characteristics in the PF analysis.

e It provides the PF solutions for the islanded MGs using the proposed optimization

algorithms.

This chapter is organized as follows. In the second section, the microgrid system and
load are modeled. This is followed by formulating the constrained optimization problem
for power flow analysis of islanded MGs. In the fourth section, the main steps of the
optimization algorithm are proposed. Finally, the validation of the proposed algorithm

on the power flow problem of islanded MGs is discussed.

5.2 Modelling of Droop Controlled Microgrid

5.2.1 Modeling of Frequency and Voltage Dependent Loads

Generally, loads are assumed to be independent of the value of voltage and therefore, the
active and reactive power demands of loads are treated as constant parameters. However,
such premises are not true in practice, especially in MGs where power demand of some
loads are depended on the values of frequency and voltages. Mathematically, voltage-

dependent loads can be defined as

V\°
A=) (5.1)
and 5
Vv
Q1= Quo (70> (5.2)

where (o and Py represent the reactive and active power, respectively, at nominal
voltage; Q; and P, represent reactive and active power respectively, at operating voltage; V'
and Vj represent the magnitude of voltage and nominal voltage, respectively, at load buses;
B and « represent the exponent parameters for reactive and active powers, respectively,
for the model [188].

In similar way, frequency dependent load can be defined as

B =Py (g) (14 kpr AF) (5.3)
0
and
7 \?
Q1= Qo (7) (1 + kg AS) (5.4)
0
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where A f is the deviation in system frequency with respect to the nominal frequency;
kqr and k,y represent frequency dependent parameter, where their values are defined in

range (—2,0) and (0, 3), respectively [189)].

5.2.2 Modeling of Lines in Islanded MGs

Line impedance of islanded MGs can be defined as, z = r+jx(w) where, r and x represent
the resistance and reactance of the line, respectively. Here, the value of reactance, =,
depends on the operating frequency. Therefore, small deviation in frequency can change

the reactance of the lines.

5.2.3 Modeling of DGs in Islanded MGs

In grid-connected MGs, DGs can operate to provide pre-specified active and reactive
generation to satisfy the power demands of system loads. In such operation, the difference
in total load demand and power generated by DGs are supplied or absorbed by the
main grid to keep the system frequency and voltages of the buses constant. Similar to
conventional power systems, in grid-connected MGs, DGs can be modeled as a PV and
PQ bus [190,191]. However, this cannot be valid in the case of islanded MGs, as shown

below:
1. There is no slack bus in islanded MGs.
2. System frequency is not consant.

3. Reference voltage does not exist in islanded MGs to calculate the voltage of all

system buses.

4. In an islanded mode, the deviation between power generation and demands may be
fixed by changing the system frequency and magnitude of the voltage using droop

controllers.

Therefore, the power flow problem of islanded MGs will be solved without considering
the slack bus in the system. In order to formulate the PF problem of islanded MGs, in
place of a slack bus, multiple droop buses are modeled based on the droop characteristics

to share the power demand among the DGs. According to the droop characteristics of
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the controllers, an increment in reactive power and active power demand follows from a
decrement in magnitude of the voltage and operating frequency, respectively. So, in the
case of droop bus, reactive and active power generation of a DG can be calculated using

the following equations.

Lo

Pi= (i~ ) (55)
1 *

Q= (V=1 (56)

where V* and w} represent the nominal values of voltage magnitude and frequency, respec-
tively; mq; and np; represent the reactive and active power static droop gains, respectively.

Based on the IEEE Standard 1547.7 [184], equations (5.5) and (5.6) are valid for
islanded MGs where the output impedance of converter is assumed inductive. Figures

(5.2) and (5.4) show the sharing of active and reactive power among the DGs.

5.3 Power Flow Formulation

In general, four variables are involved in a conventional power flow viz. active power,
reactive power, voltage magnitude, and voltage angle. In the case of PQ bus, the value of
voltage angle and voltage magnitude are unknown. In case of PV bus, voltage magnitude
and reactive power are unknown. But, in the case of droop bus, all these variables are un-
known. Conventional techniques cannot be applied to the power flow problem of islanded
MGs as a frequency is not considered constant. In islanded MGs, the operating frequency
is also an unknown variable for the power flow problem. Therefore, new equations should

be derived for the PV, PQ, and droop buses are presented in the following section.

5.3.1 Modeling of Droop Bus

The value of active and reactive power injection of bus ¢ can be defined as
b= Piag— Piy (5.7)

Qi = Qidg — Qiy (5.8)
where, P, 4, and @); 4, are calculated using equations (5.5) and (5.6). Here, P; and (); can

be calculated using following equations.
N

N
Py =V (VijGij = VinjBij) + Vini ¥ _ (Ve Bij + Vinj Gij) (5.9)
7j=1

=1
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Figure 5.1: Sharing of active power among DGs using droop based controller
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Figure 5.2: Sharing of reactive power among DGs using droop based controller
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N N
Qi = Vimi > _(VijGij = VinjBij) = Vei Y _(VijBij + Vi Gij) (5.10)
- p

Power flow equations for droop bus can be derived using equations (5.5), (5.6), (5.7),

(5.8), (5.9), and (5.10), which are given below.

1 *
o (Wi =) sz +iGij — Vi By +szz VB + Vi;Gy)  (5.11)
i =
1 N
maq (V Qzl sz Z rj 1] m - ‘/m Z(V;«]BZ] + Vm]Gl]) (512)
i =

5.3.2 Modeling of PQ Bus

The active and reactive power injection are known in PQ buses, so PQ buses can be

defined by following equations

P, = wkz V;jGrj — Vini Bj) + mGZ V;jBij + VinjGr;)) (5.13)
J=1 J=1
N N

Q= Vink Y (VisGry = Vini Big) = Vit D (Vey By + Vi Giy) (5.14)
j=1 j=1

5.3.3 Modeling of PV bus

The active power and voltage magnitude are known in PV buses, so PV buses can be

defined as given below

N N
Py =V Y (VijGrj = VinjBi) + Ve O_ (Ve Bij + VinjGij) (5.15)

j:l j:l

VE=Vi+ V2 (5.16)

To solve this proposed power flow formulation, a constrained optimization problem shall
be discussed later in the chapter to optimize objective function corresponding to power

flow.

5.3.4 Objective Function

The objective function can be formulated as the sum of square error of mismatch equations

of droop bus (equations (5.11) and (5.12)) i.e.

Minimize, f = » (AP} + AQ}) (5.17)

keS g,
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where

N
1
APz = np(w _w 'Ll ‘/rzz rj ’Lj m 1.7) — Vini Z(‘/?"JBZJ+VmJG1]) (518)
7 J=1
and
1 = -
AQ; = ma. (VX =Vi) = Qiy— Vin Z(Verij — VinjBij) + Vi Z(VWBZJ + ViniGij) (5.19)
i =1 j=1

The objective function, defined in equation 5.17, has (2 x N + 1) variables. This objective

function is to be optimized subject to following constraints.

1. Equality constraints related to k-th PQ bus:

N N
Py = Vi Y (VejGrj = Ving Biy) = Vou Y (Vo Bij + VinjGig) = 0 (5.20)
j=1 j=1
and
N N
Q= Vink Y (VijGrj = VinjBij) + Vir Y (VejBij + ViniGlj) = 0 (5.21)
j=1 j=1
2. Equality constraints related to k-th PV bus:
N
Py = Vir > (VejGrj = VinBij) — me V,;Brj + VinjGij) = (5.22)
j=1 j=1
and
VE-V3i—-VZ2 =0 (5.23)
3. Bound constraints:
Vk,min S ‘/k S V;c,maa: (524)
and
Wimin S w S Wmaz (525)

In the later sections, two novel constrained optimization algorithms are discussed which
have been used to solve the above-mentioned objective for corresponding to power flow

problem.
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5.4 Differential Evolution with Gauss-Newton based

Mutation

The DE [132] algorithm is a popular global optimization technique used in different prob-
lems of the power system. The DE relatively more robust and efficient technique as
compared with other evolutionary algorithms. Several latest variants of DE have been
judged as top-ranked algorithms in recent IEEE congress on evolutionary computation
competitions [122,192]. However, DE may not be directly applied to the constrained
optimization problem. A constraint handling technique is required to evaluate the fitness
of the solutions on the basis of feasibility and objective function value. In this chapter,
epsilon-based constraint handling technique [146] has been employed with the operators
of DE to solve the constrained optimization problems. In addition, it is also challenging
for EAs to determine a feasible solution for a constrained problem with many equality
constraints. For handling the equality constraints, most of the EAs convert equality con-
straints into relaxed inequality constraints. As a result, the feasibility of the obtained
solutions is inadequate. In order to address this issue, this thesis introduces an algorithm
to solve the problem with many equality constraints by introducing a Gauss-Newton (GN)
based mutation operator that finds a feasible solution from an infeasible solution using the
GN [193] algorithm. The proposed algorithm is named as eDE-GN and main operators

of eDE-GN are summarized in the following sub-sections.

5.4.1 Differential Evolution

DE is a search-based global optimization algorithm proposed by Storn and Price [132].
DE can be applied to different type of optimization problems viz. Non-convex, non-
differentiable, non-linear and multi-modal problems. In literature, it is shown that DE
is robust and efficient on these types of problems. In DE, initial solutions are generated
randomly within the lower and upper bound of search space and these solutions form
an initial population. Each solution consists of n elements as decision parameters of
the problem. At each iteration, all solutions of the population are selected as parents.
Offspring generation for each parent is done as follows. The mutation process begins
with the random selection of 3 solutions (different from the parent) from the population.

The first solution out of 3 is considered as base vector. Other two solutions are utilized
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to generate a difference vector. The difference vectors are weighted using parameter sg
and added to the base vector. The resulting solution is then passed through a process of
crossover with parent solution. The probability of crossover is guided using a parameter
CR (Crossover Rate). The crossover scheme returns a trial solution. Finally, for selection
of solution for the next iteration, the trail solution is accepted if the trail vector is better
than the parent. In algorithm eDE-GN, an exponential crossover is implemented. Another
variant of crossover, Binomial Crossover, has been studied well in literature. However,
exponential crossover performs better in constrained optimization problem as compared

to binomial crossover. Hence, the exponential crossover is adopted in this work.

5.4.2 Gauss-Newton Mutation

The GN mutation is an operator used to calculate a feasible solution for an infeasible
solution using gradient information of constraints, VC(z). The constraint vector, C'(x),
the constraint violation vector, AC(z), and increment expected in point z, Az, to satisfy

constraints are related in the following manner [193]:
VC(x)TAC(z)

BT = =GV ()

(5.26)
where,
AC(z) = [Dgi(x)...Agn(z), A1 (7). Dby (2)]T, Agi(z) = max{0,g;(z)}  (5.27)

The relation 5.26 is utilized whenever an infeasible solution, z"*/¢¢, is encountered. This

mutation operation, z/¢ = ™™/ 4 Az, is executed where /¢ is an infeasible solution.

5.4.3 ¢e-Constrained Handling Technique

In e-constraint handling technique establishes an e-level comparison to compare the solu-
tions [146]. The e-level comparison is defined using lexicographic order in which constraint
violation, ¢(x)(= Y_;", AC;(x)), precedes objective function value, f(x) as described in
following paragraph [146].

Let {¢1, 92} and {f1, fo} be the constraint violation value and the function values

at points {z1, zo} respectively. Then, the € level comparisons are defined as follows:

n _
(f2, P2) <c (fr,01) & Hr<h ipng e orih #2) (5.28)

¢2 < ¢1, otherwise
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" _
(f2, 2) <c (f1.¢1) & H<h Egud<e)or #2) (5.29)

P2 < ¢1, otherwise
Generally, € level may not be controlled for most of the constrained optimization problems.
However, constrained problems with equality constraints should be solved using controlled
e level. A simple way to control the e-level is proposed in [146], which is defined using

following equations.

d(xg)(1 — )P, 0<t<T,
e(t) = e (5.30)
0, T.<t
where xy represents the top #—th individuals and cp represent parameter to control the

speed of reduction of the e-level.

5.4.4 The Algorithm: eDE-GN

The algorithm eDE-GN is based on DE/rand/1/exp [146]. The main steps of algorithm
eDE-GN are as follows.

e Step 1: Initialization- In this step, initial population, P°, of N, solutions is initial-

ized within the bound of search-space using following equation.
1) = (zy — xp)rand + xp, i =1,2,...N (5.31)

where zy and x are the upper and lower bounds of search space respectively and
rand represents the random number from uniform distribution within the range

(0,1). An initial value of e—level, €(0), is calculated using equation (7.18).

k

e Step 2: Mutation- For each solution x¥, three different solution z¥,, x%,, and z¥,

are selected from population, P*  at k-th iteration. A new mutant solution, v, is

: ko ok k
calculated using x7,, x5, and )5 as follows.

oF = 2F o sp(af, — 2F,), where (r1 # r2 # r3 #£4) (5.32)

where sF' is a parameter called scaling factor.

e Step 3: Crossover- The mutant solution v¥, is used as a donor solution in crossover
operation for solution z¥ to generate a trial solution, u¥. A crossover point, [, is ran-

domly selected from 1 to D, where D is the dimension of the problem. The element
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corresponding | — th dimension of the trail solution u¥ is taken from the element
corresponding to [ —th dimension of donor solution v¥. Subsequent elements of trial

solution u¥ are taken from donor solution v¥ with exponentially decreasing proba-

k

i

bility (calculated using crossover rate CR). Rest of the elements of trial solution u
k

i

are taken from the elements of solution =

e Step 4: Gauss-Newton Mutation-If the generated trial solution u¥ is infeasible (does
not satisfy the all constraint), u¥ is updated using GN. This process is repeated until
the number of trials of GN reaches to N, or solution u¥ becomes feasible solution.
If after Ny, number of trials, infeasible trail solution does not become feasible the

trial infeasible solutions is discarded in favor of previous feasible solution.

e Step 5: Selection- If the trial solution u is better than solution z¥ on the basis
of e— level comparison, the trial solution u¥ replaces the solution z¥ for the next

iteration.
e Step 6: c¢— level control- The value of e— level is updated using equation (7.18).

e Step 7: Termination Condition- If the total number of iteration becomes greater
than maximum allowed iteration (7,4, ), the algorithm is terminated. Otherwise go

to Step 2.

The performance of eDE-GN has been validated on benchmark problems and reported in

Appendix-III.

5.5 Matrix Adaptation Evolution Strategy

The performance of Evolutionary Algorithms (EAs) can be heavily undermined in case
of COPs where several constraints limit the feasible regions. For example, CMA-ES,
one of the most efficient algorithms for unconstrained optimization, cannot readily be
extended to solve COPs. Although some attempts of adopting CMA-ES for COPs have
been made [156,157], it is not yet competitive on these types of problems as compared
to other popular algorithms like DE, GA, and PSO. There are two main reasons behind
the relatively bleaker performance of CMA-ES on COPs: (i) conventional recombination

approach of the algorithm cannot be suitable for the search space of COPs due to the
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ranking of solutions based on the objective function value and (ii) the self-adaptation of
the parameters of the algorithm is not suitable for COPs due to lower volume of the feasible
region in search space especially in case of COPs involving several equality constraints.

To overcome these limitations of CMA-ES, we introduce here (i) a constraint han-
dling technique, called v-level penalty function to modify the fitness value of solutions
while ranking the solutions in the algorithm and (ii) a solution repair scheme, called
Broyden-based mutation, to handle the feasibility issue of solutions during the optimiza-
tion process.

Firstly we introduce the v-level penalty function and Broyden based mutation, then
the main steps and framework of the proposed algorithm are discussed.

To solve the COPs, a new constraint handling technique called v-level penalty func-

tion, is proposed in this section.

5.5.1 wv-level Modification in Constraints

Although, e-level comparison of e-constrained method shows good performance as a con-
straint handling technique with several EAs on COPs [1,146,194], its capability of relaxing
infeasible solutions is more prominent in case the solutions violate a lower number of con-
straints as compared to the situation when several constraints are violated (as illustrated

in Figure 5.3). The relaxed feasible region can be represented using Eqn. 5.33.

da) < e = d(z)—e<0, (5.33)

where ¢(x) represents the value of constraint violation at solution = and it can be calcu-
lated as follows.

q m

o(x) =y _(max{0,g;(x)}) + Y (max{0,|h,(z)[}) (5.34)

J=1 J=q+1
It is seen from Eqn. (5.33), a fixed value of € is used to modify the feasible region for each
constraint violation without considering the number of violated constraints. This e value is
shared among the violated constraints. Therefore, the infeasible region with a low number
of violated constraints is getting more sharing of € as compared to the infeasible region with
a higher number of violated constraints. This may strongly degrade the performance on

COPs with a higher number of constraints with the optimum solution at active constraints.
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To demonstrate this issue, a pictorial representation of a simple COP having five linear
constraints are shown in figure 5.3. It can be seen from figure 5.3 that the e-level feasible
region has a very low volume of relaxed feasible region nearer to the optimum value as
compared to the volume of the relaxed feasible region of other areas. Since the main
function of this relaxed feasible region is to facilitate the population to search solutions
at the boundary of the feasible region then the very low volume of relaxed feasible region
nearer to the optimum solution cannot be the best situation. In [195] and [196], relaxed
equality and inequality constraint functions are used to create separate surrogate models
for all constraints. Further, these surrogate models are utilized to generate new solutions
for expansive COPs. The performance of these surrogate assisted algorithms is highly
improved after using relaxed equality and inequality constraint functions in place of actual
constraint functions [195].

To sum up, the separate relaxation of constraints can provide a sufficient volume of
the relaxed feasible region, which is beneficial to explore the optimum solutions nearer
to the boundaries of feasible regions. Nevertheless, this approach has been discovered
in surrogate modeling but has not been utilized in constrained handling techniques by
existing constrained optimizations EAs. To overcome the limitation of e-level modification
without losing its core properties and to utilize the features of separate relaxation of
constraints, a v-level modification is proposed in this study.

In v-level modification, the boundaries of all the feasible regions are modified. It is

done by subtracting v from all the constraints of the problem as shown below:
9 (x) <0 = gi(z) — v <0, (5.35)

where v represents the v-level and its value must be a non-negative number. Usually,
there is no need to have v-level modification in constraints and many problems can be
solved where the value of v-level is set to 0 during the optimization process. However,
in case of problems with smaller feasible regions, a high number of active inequality
and equality constraints, the v-level modification in constraint with proper controlling
of v-level would be required to obtain the better quality solutions. The calculation and
controlling procedure of v-level is discussed in the later section.

It is worth noting here that the v-level modification is applicable to inequality con-

straints only. As an equality constraint, h;(z) = 0 can be replaced with two inequality
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Figure 5.3: Graphical representation of main feature of v-level modification as compared
to e-level comparison on a simple 2-D search space. Green solid line and blue dotted line
represent the boundaries of v-level and e-level feasible regions respectively, at e = v = 5.
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constraints h;(x) < €, and —h;(z) < €,, where €, is set to 107*. Thus, equality constraints

can also be modified by v-level modification as shown below.
W (2)|< ep = |hil(z)]—v < . (5.36)

Moreover, we propose a simple procedure to control the v-level at each iteration.
The v-level is only controlled for the first 7" iterations. After that, the v-level is set to 0.

The v-level for each iteration is calculated as follows.

_Z?ilgbiﬂ)\
Vo = 0)\ )
v (1—£)Y ,0<k<T,
oo Jro=7) (5.37)

0 , k>T,
where ¢y, represents the constraint violation of top it" individual, # = 0.9, 7
represents a parameter to control decay of the v-level, and A\ represents the population
size. In this approach, it is presumed that the v-level is equal to 107° (very small) at
k = 0.95T. Now from Eqn. (5.37), this assumption can be reflected in the following way.

957"
V0T = (1 0oL zf’ ) =107, (5.38)

Thus, parameter v can be tuned according to Eqn. (5.38) and this can be done as shown

below:

_ (=5 —log(vo))
v = mazx {3, 10 (0.05) } : (5.39)

where the minimum value of v is set to 3 to avoid too small a value for ~.

It is worth noting here that the value of T is problem dependent. The value of T’
can be fixed by using the sensitivity analysis over the wide variety of problems. From
sensitivity analysis, it was found that the value of T can be set between 20% to 50% of

the maximum allowed number of iterations.

Constraint violation and v-level penalty function

In the v-level penalty function, a v-level constraint violation ¢(*)(z) is calculated by the

sum of all the modified constraints:

o(z) =Y (maz{0, g (@)}) + Y (maz{0, |1 ()€, }). (5.40)
Jj=1 Jj=q+1
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A v-level penalty function is defined as follows.
F(z) = f(z) +a- 6" (), (5.41)

where f(x) and F(z) denote the objective function value and fitness value at x respec-

tively, and « is the penalty factor.

Calculation of the penalty factor «

Solving COPs with population-based EAs requires a balance between the minimization
of the objective function and the constraint violation(s) during the optimization process.
In [197], the correlation between constraint violation and objective function is calculated
to guide the population for finding the feasible region. Although this approach performs
well on COPs, a learning stage is required to calculate the correlation between the objec-
tive function and constrained violation. However, the correlation gained from the learning
stage provides global correlation information and this correlation is not uniform over the
search space. During the optimization process, it is more beneficial to use a local corre-
lation between the objective function and constraints. In addition, no learning stage is
required to calculate the local correlation between objective function and constraint which
reduces the computational overhead. Here, we propose a simple approach to calculate the
local correlation between the objective function and constraint violation to update the
penalty factor.

Two kinds of relationship exist between constraints and the objective function.

1. The objective function f(z) decreases as the degree of constraint violation ¢(*)(z)

decreases.

2. The objective function f(x) does not decreases as the degree of constraint violation

#™) () decreases.

For case (1), the objective function and constraint violation correlate with each other. In
this situation, searching for a solution using constraint violation can easily stagnate the
population in the feasible region. Therefore, the objective function value can help the
solution to jump from the infeasible region to a feasible region. In such cases, the value

of o should be equal to zero.
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In the second type of relationship, objective function and constraint violation are
not correlated to each other. Under this situation, too much weight to objective function
or constraint violation may prevent the solution from stagnating the population. In such
cases, the value of a should be tuned to provide proper weight to the objective function
and constraint violation in fitness value.

To sum up, the value of a needs to tune according to the correlation between con-
straints and the objective function to guide the solutions to find the feasible region.
However, this correlation information has not been utilized in the existing penalty func-
tions. Hence a new self-adaptive technique is proposed in this chapter to auto-tune the
value of o by using the correlation information.

At each iteration, the fitness value of the best solution should be lower than the
fitness value of the other solution of the population of current or past iterations (in
case of minimization problem). Mathematically, this relation can be represented in the
following way:

f)+ a6 (y) > fla*) +a- ¢ ("), (5.42)

where y represents a solution of population of the current or past generation and z*

represents the best solution found so far. Further, Eqn. (5.42) can be reduced to

o) (y) — o) (z*)

The right hand side of Eqn. (5.43) indicate the relative variation of objective function

value with respect to opposite variation of the constraint violation between the best
solution and other solutions. When we mine this variation for all solutions of population,
it provides the local correlation information between objective function and constraint in
terms of relative variation from best solution.

In order to provide better mining of the correlation, an archive of solutions A, of
fixed size is formed which contains the solutions generated in past generations. When the
size of this archive exceeds the fixed size, randomly selected solutions are discarded from
the archive to maintain the size. From Eqn. (5.43),

P G Rri
W (yr) — o) (z*)’

where y¥ represents the i—th individual of archive A, and N, represents the size of A,.

(5.44)

This information can be utilized to tune the value of penalty factor («) in each iteration.
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In v-level penalty function, we use the following equation to tune the value of a.

K — maz f@*) — f(y7)
o = e { G o) o8

where 1 =1,2,...Ny4, .

5.5.2 Broyden-based Mutation

In this subsection, Broyden-based Mutation is discussed.

Motivation

COPs with non-linear equality constraints can be hard to solve using COEAs. Most
of constrained optimization EAs transform equality constraints into relaxed inequality
constraints to solve these COPs. Feasible region of the search-space becomes very low due
to the involvement of a large number of equality constraints. As a result, the performance
of MA-ES (or CMA-ES) has been mediocre on these COPs as compared to other class of
EAs. To address this issue, a gradient-based repair method is utilized in [1]. In literature,
this repair method has also been utilized with other class of EAs such as in [198] with
GA, and in [146] with DE. However, this repair method requires a large number of FEs
(multiple of the number of decision variables) to repair a single infeasible solution. The
main reason for the requirement of high function evaluations is the evaluation of gradient
information (Jacobian matrix) of constraint space in each iteration of the repair process.
In order to resolve this issue, a Broyden-based Mutation (BBM) technique is proposed in
this chapter that requires only one FE in each iteration except for the first iteration to
repair the infeasible solution. For the first iteration of the repairing process, the steps are

similar to reported in [1].

Broyden’s method

To solve a system of non-linear equations, F(x) = [fi(x), fo(z)....fo(z)]T = 0, where n
is the total number of non-linear equations and = = [z, Zs, ... .z,]", Newton’s method
is the computationaly inefficient due to the requirement of partial derivative of F(z) at
x (Jacobian matrix) during each iteration. This method cannot facilitate the reusing

of information gained from previous iterations and in some situations determination of
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the partial derivatives can be very costly. Finite-difference based calculation of partial
derivatives of F'(x) at x requires n function evaluations (FEs) per iteration.

To overcome this issue of Newton’s method, approximate partial derivatives can be
used alternatively, since it provides slightly slower convergence due to approximation but
it improves the efficiency overall. A simple and robust way to approximate the partial
derivatives is proposed by C. G. Broyden in his seminal work on finding the solution of
system of non-linear simultaneous equations [199]. In [199], the following equations are

proposed to solve the simultaneous equations.

2EHD) — (k) B_l(k)F(ZE(k))7 (5.46)
where
B—l(k) _ B_l(k_l) 4 (S(k) — Bil(kfl)y(k))(S(k))TBfl(k) (5 47)
(s(k))TB—l(k—1)y(k) ) .
sk — 4 (F) _ x(k—l)) and (5.48)
y(k) - F(x(k)) _ F(x(k—l))' (5.49)

It can be seen from the above equations that an approximation of the inverse of the matrix

of partial derivatives requires only one FE.

Proposed Scheme

Our proposed BBM to repair the infeasible solution is inspired by Broyden’s method. The

main steps of BBM are as follows:

1. First of all, all the constraints (Inequality, equality and bound constraints) of the

COP are transformed into a system of simultaneous equations using slack variables,

i.e.
gi(x)+s3=0, j=1,...,q, (5.50)
hj(x) =0, j=q+1,....,m, (5.51)
i — 1= =0,i=1,...,n, (5.52)
T —u+ubi =0, i=1,...,n, (5.53)

where, s;, [b;, and ub; are the slack variables used to transform inequality, lower-

bound, and upper-bound constraints into non-linear equations.
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2. In second step, above mentioned system of simultaneous equations is solved using

BBM (shown in Algorithm 4).

Algorithm 4: BBM(z)
Result: z, FE

1 Set Maxpg < (3D + 1), and TolF < 1071
2 Define s; <~ 0, j=1,...,q, b < v; = l;, ,o=1,...., D, and
’U/bz — VU — Ty, ,’i = 1, 7l),

3 Initialize 2 < [27 sy, ..54, by, ..Ibp, uby, .ubp]T;

4 J < Calculate Jacobian using Finite-difference approximation;
5 FE < D;

6 B0 < Psuedolnverse(J);

7 FO) « F(z0);

8 FEs < FFEs+1;

9 k<« 0

10 while (FEs < Maxpg)||(||F®||> TolF) do
11 k<+k+1,

12 k1)  gk) _ p=1(k) (k).

13 | FOF) o p(a0tD),

14 FE +— FE+1;

15 | gD D) _ sk,

16 yh ) F(k+1)_F(k)§

(S(k-‘rl),B—l(k)y(ki-&-l))(S(k+1))TB—1(k) .

—1(k+1 —1(k
17 B1k+1) « p=1k) 4 (OAD) T B=1(k) (R F1) ;

18 end

AON
19 T < T.p;

5.5.3 Proposed Algorithm: vMA-ESbm

The proposed algorithm, named vMA-ESbm, is described. MA-ES [200] is used as the core
optimizer. In order to deal with the constraints of the problem, v-level penalty function
based constraint handling technique with Broyden-based mutation is consolidated in the
framework of MA-ES described in [200]. The pseudo code of vMA-ESbm is shown in
Algorithm 5.
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Algorithm 5: vMA-ESbm

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Result: bestx, bestf, and bestc

Set A, p, 0%, omaz, T, kr, and 0;;

Initialize the parameters of MA-ES at their default values as shown in Table 5.1;
Initialize M© < I, P, + 0, and X0 « {m?,mg....mg};

Evaluate f9, g9, and h® at each individual of X?9;

FEs+ )\

¢EO) =2 max(ggj,ﬂ) +22; max(|hg’]-|—ev,0), i€ {1,2..7}

Calculate vg, v, $(¥9), and o using Eqns. (5.37), (5.39), (5.40), and (5.45) respectively ;
FO 04 a0 . (o),

zd, « B wiz;. according to FO;

bestx «+ m?:)\, and bestf + f{’»\;

bestc + 3, max(g?,,,0) + > max(|h9,, |—ey,0) ;

k <+ 0;

while FEs < FEpnqr do

k< k+1;

M~1 < Pseudolnverse(M*);

for i< 1: ) do

28 <+ N(0,I), d¥ < MF2F and 7 + zF + okdF;

szrl < KeepRange(Z);
Evaluate f;, g;, and h; at x?“;
FEs <+ FEs+1;

Calculate d)iv) using Eqn. (5.40);

if (mod(k, D) == 0)||(U(0,1) < 6,) then
[z"T!, FE] « BBM(zFt1);
FFEs+ FEs+ FE

end

if £ # xf+1 then

k+1

x; —T

k i T _k —1 k.
die s 7zieM di7

Calculate ¢§v) using Eqn. (5.40);

end

end

Calculate o using Eqn. (5.45);

Fk — fk 4ok . ¢(“k);

et ak 4 oR Y w;d¥ | according to F;

Update PE+L pF+1 gk+1 and v*+1 using Eqns. (5.56), (6.48), (5.58), and (5.37);
Update bestz, bestf, and bestc using Deb’s rule [201];

end

The main steps of YMA-ESbm are described as follows.

e Step 1 (Line 1-3): Firstly, parameters of algorithm are set to their default values

and an initial population X° of X solutions are randomly generated within the

bounds of the search space using following equation.

:L'O = l] -+ (U] — l]) . U(O, 1), fOT 'l = 1, 2..... )\, (554)
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Table 5.1: Default value of parameters of MA-ES [1]

o In(p+0.5)—In(7) .
L Wi = 7 nturos-ingyy 107 1€ L ik
_ 1 _ Hefft2
2. ,U,eff = 725:1 wiz, 3. Cc = Dtpies +5°
_ 2 i o 2(pess—2+1/pieyr)
4. ¢, = STy R 5. c;=min|l —c, D4, |-

where, z; ; represents j—th element of 2 and U(0, 1) a uniformly distributed random

number in (0, 1).

Step 2 (Line 4-12): The initial population is used to determine the vy and 7. Then,
the initial recombinant, 22 is obtained using weighted recombination of the top u

individuals of population X°.

Step 3 (Line 17-21): By using o and M*, new solutions are generated for each \
solutions in the mutation operation. If a new solution is sampled outside the bounds
of the search space, then that solution is reflected back to search space using Eqn.

(5.55) (Line 18, KeepRange function).

2 X l] — Ty — L—lj;?i’jJUi7 Zle,J i lJ

Tig = g — 2] i fxLjou (5.55)

T else

where v; = (I; — u;).

Step 4 (Line 22-25): If the iteration count, k, becomes multiple of dimension D,
BBM operator is used with probability 6, to generate the feasible solutions to replace

the infeasible ones.

Step 5 (Line 26-29): The corresponding vectors d¥ and zF of the readjusted z¥ are

recalculated to the correct value. Inverse of M* is required for this process.

Step 6 (Line 31-34): Calculates the penalty factor o by using Eqn. (5.45). Vector
P*+1is updated using Eqn. (5.56) and matrix M**! is updated using P!, M* 2*
as shown in Eqn (6.48), and other parameters. Finally, the mutation step-size o**!
is updated using the value of P**! as shown in Eqn. (5.58).
n
PMY = (1 = ¢)PF 4+ /c(2 — ) piess Zwizf:)\, (5.56)

i=1
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M = MY ZMEPEN P - ).

M
+ c2_sz (Z wiziy (25T — I) : (5.57)
=1

Pk+1 2
"t = min <0kexp E (% — 1> ] 7amax) ; (5.58)

where ¢, ¢,, and c, are learning rate parameters of MA-ES which are set to their

default values.

e Step 7 (Line 35): Best solution with its objective function and constraint violation

value are updated using Deb’s rule [201] of selection of solution.

e Step 8 (Line 15): If the inverse of M is ill-conditioned then M is reinitialized to

Identity matrix.

e Step 9 (Line 13): Go to Step 3, if the FEs is less than the maximum allowed

number of function evaluation.

e Step 10 (Line 36): Return the best solution with its objective function and con-

straint violation value.

The performance of vMAESIm has been validated on benchmark problems and reported

in Appendix-III.

5.6 Performance of Proposed Algorithm

Two novel algorithms, eDE-GN, and vMAESbm, have been implemented to optimize the
objective function corresponding to power flow problem. eDE-GN algorithm uses DE as
a search algorithm with a Gauss-Newton mutation operator. vMAESbm uses MAES as
a search algorithm with Broyden mutation operator.

To analyze the accuracy of the obtained results from the proposed algorithms, a
comparison of voltages obtained from the proposed algorithms and PSCAD/EMTDC
is performed on the 6-bus system. The results obtained from PSCAD, eDE-GN, and
vMAESbm are depicted in Table-5.2. It is clearly seen from Table-5.2 that the maxi-
mum errors in voltage magnitude and angle are 0.0081% and 0.26% respectively. This

good agreement within the obtained results validates the accuracy of the eDE-GN, and
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Table 5.2: Validation of obtained result of the six-bus test system

vMAESbm in solving the power flow of droop control based islanded MG. Moreover,
PSCAD requires approximately 172s to attain the steady-state, while the eDE-GN, and

Table 5.3: Comparison of results on 33-bus system

Methods Mean Stdev CT
GA 1.48 x 107 1.02 x 107 4.3s
PSO 2.04 x 1079 1.83 x107% 2.2s

Newton-trust 1.73 x 1079 1.07 x 107% 1.7s
eDE-GN 158 x 1079 143 x 107" 0.8s
vMAESbm  1.25 x 10719 1.08 x 1071% 1.1s

vMAESbm require 0.4s and 0.9s respectively.

Further, a comparison among different optimization algorithms, GA, PSO, Newton-
trust region, eDE-GN, and vMAESbm has also been done for a 33-bus test system. The
values of the means and standard deviations of the objective function with computation
time are depicted for each of the algorithms in Table 5.3. This Table shows that the pro-

posed algorithms outperform the other contenders in terms of accuracy and computation

time.
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Voltage magnitude (V) Angle (rad)

Bus PSCAD | eDE-GN | yMAESbm PSCAD | eDE-GN | vMAESbm
1 121.92 121.92 121.92 0.0078 | 0.0078 0.0078
2 123.51 123.51 123.51 -0.0013 | -0.0013 -0.0013
3 122.42 122.42 122.42 -0.0388 | -0.0389 -0.0389
4 125.37 125.37 125.37 0.0065 0.0065 0.0065
5 125.74 125.74 125.74 0* 0* 0*

6 123.11 123.10 123.10 -0.0420 | -0.0421 -0.0426
err 0.0081% 0.0081% 0.26% 0.26%
freq | 376.6645 | 376.6645 | 376.6645
Time 172s 0.4s 0.9s




5.7 Case Studies

In this section, four case studies were carried out to validate the load flow flow algorithms

on different test systems. The framework of these cases studies are as follows:

e Case study I: In this case, CASEG test system was adopted to validate the proposed
load flow algorithms. Fig. 5.4 shows topology of CASEG test system as an islanded
microgrid. The load data and line connectivity data used in test systems are reported
in Appendix-II. This system consist of three similar droop controlled DGs on buses
4, 5 and 6 and the system is operated in islanded mode. The detailed specifications
of droop controls are depicted in Table. 5.4. The effectuation of the proposed load
flow algorithms as well as a comparative analysis using PSCAD software [40], the

PSO method [23] are depicted in Table 5.4. Following are the observations:

1. The steady state frequency obtained by proposed algorithms are 0.99924 p.u.

2. The comparative analysis of the maximum magnitude and maximum phase
errors of above specified methods against the proposed methods are 0.0008

and 0.007, respectively .

Based on the above comparative analysis, it can be concluded that the proposed
algorithms perform with acceptable accuracy on droop controlled microgrids in is-

landed mode of operation.

Table 5.4: Droop control settings of DGs in CASEG test system [56]

DG Location my ng W V" Spar Qmas
1 4 1.1439 x 10~2 0.0591 1 1.01 1 0.7
2 ) 1.1439 x 107% 0.0591 1 1.01 1 0.7
3 6 1.1439 x 1072 0.0591 1 1.01 1 0.7

e Case study II: The IEEE CASEG9 distribution system shown in Fig.5.5 has been
considered for this case study as an islanded microgrid. This system is having total
active and reactive loads of 3.772 MW and 2.694 MVAr respectively. Bus numbers
50, 27, 35, 46 and 65 are considered for DGs installation. The detailed droop control
setting of DGs for the CASEG9 distribution system reported in Table 5.6 are adopted
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Figure 5.4: Topology of CASEG test system operated as an islanded microgrid.

Load,

152



Table 5.5: Outcomes of proposed load flow algorithm for a CASEG test system compared
with other methods.

Time domain Model eDE-GN vMAESbm PSO Newton-trust
Sy Ly R T
1 0.9605 0 0.9606 0 0.9606 0 0.9607 0 0.9601 0
2 09730  -0.537  0.9729 -0.5201 0.9730 -0.5269 0.9728 -0.5292 0.9725  -0.5262
3 09643  -2.685  0.9647 -2.6837 0.9646 -2.6828 0.9645 2.6765 0.9638  -2.6822
4 09877  -0.0725  0.9875 -0.0726 0.9877 -0.0716 0.9884 -0.0727 0.9873  -0.0722
5 09906  -0.452  0.9903 -0.4516 0.9905 -0.4522 0.9883 -0.0454 0.9901 -0.45101
6 09698  -2.869  0.9680 -2.8668 0.9698 -2.8659 0.9701 -2.8608 0.9694  -2.8653

3637 38 39 40 41 42 43 44 45 46

47 48 49 50
66 67

51 52
68 69

<

2 3/4/5 6 7/8 9 10 11/12/13 14 15 16 17 18 1920 21 22 23 24 25 26 27 @

53 54 55 56 57 58 59 60 61 62 63 64 65

28 29 30 3132 33 34 35 @

Figure 5.5: Topology of CASEG9 test system operated as an islanded microgrid.

for analyses purpose. Tables 5.7 and 5.8 present the detailed voltage profile obtained
using eDE-GN and vMAESbm, respectively. Following are the observations.

1. The steady state frequency obtained by eDE-GN and vMAESbm are 0.9977
p-u and 0.9977 p.u., respectively.

2. The total active power and reactive power load demand on the distribution sys-
tem are 3.7722 MW and 2.6941 MVAr respectively whereas active and reactive
power losses are 0.0868 MW and 0.0424 MVAR.

e Case study III: A CASE33 distribution system with bus voltage of 12.66 kV is used

in this case study for demonstration of proposed load flow algorithm. The single
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Table 5.6: Droop control settings of DGs in CASE69 test system [2]

DG Location m, Ng w VT Snar @mas
1 60 1.501 x 107% 0.03333 1 1.04 2.0 1.4
2 27 4.504 x 1073 0.01 1 1.04 1.0 0.65
3 35 2.308 x 1073 0.05 1 1.04 1.2 0.6
4 46 2.308 x 1073 0.05 1 1.04 1 0.6
) 65 1.501 x 107® 0.03333 1 1.04 1.5 0.9

Table 5.7: Voltage profile obtained from eDE-GN for CASEG9 distribution system oper-

ated as an islanded microgrid.

Bus | |V] Ly P Q |7] Ly Bus | |V] Ly P Q |7] Ly Bus | |V] Ly P Q |7] Ly
1 24 109711 | -0.1277 | -0.0280 | -0.0200 | 0.0208 | 2.2516 | 47 | 0.9712 | -0.0001 | 0.0000 | 0.0000 | 0.0061 | -0.7545
2 1 0.9710 | 0.0000 | 0.0000 | 0.0000 | 0.0033 | -0.5378 | 25 | 0.9870 | -0.1356 | 0.0000 | 0.0000 | 0.0032 | 0.5156 | 48 | 0.9730 | 0.0039 | -0.0790 | -0.0564 | 0.0592 | 2.5486
3 1 0.9710 | 0.0000 | 0.0000 | 0.0000 | 0.0063 | -0.8331 | 26 | 0.9936 | -0.1388 | -0.0140 | -0.0100 | 0.0105 | 2.2647 | 49 | 0.9815 | 0.0190 | -0.3847 | -0.2745 | 0.2893 | 2.5477
4 1 0.9712 | -0.0003 | 0.0000 | 0.0000 | 0.0057 | -0.8002 | 27 | 0.9974 | -0.1407 | 0.4940 | 0.6374 | 0.3698 | -0.9093 | 50 | 0.9872 | 0.0254 | -0.3847 | -0.2745 | 0.6281 | -0.3321
5 | 0.9711 | -0.0037 | 0.0000 | 0.0000 | 0.0150 | -0.9815 | 28 | 0.9706 | 0.0005 | -0.0260 | -0.0186 | 0.0275 | 2.5083 | 51 | 0.9401 | -0.0825 | -0.0405 | -0.0283 | 0.0292 | 2.4537
6 | 0.9571 | -0.0377 | -0.0026 | -0.0022 | 0.0225 | -1.2498 | 29 | 0.9648 | 0.0073 | -0.0260 | -0.0186 | 0.0234 | 2.3300 | 52 | 0.9400 | -0.0825 | -0.0036 | -0.0027 | 0.0029 | 2.4250
7 10.9433 | -0.0737 | -0.0404 | -0.0300 | 0.0183 | 2.8487 | 30 | 0.9688 | 0.0293 | 0.0000 | 0.0000 | 0.0050 | -0.6933 | 53 | 0.9373 | -0.1039 | -0.0043 | -0.0035 | 0.0068 | -0.8428
8 | 0.9403 | -0.0826 | -0.0750 | -0.0540 | 0.0612 | 2.4732 | 31 | 0.9695 | 0.0332 | 0.0000 | 0.0000 | 0.0047 | -0.7149 | 54 | 0.9356 | -0.1232 | -0.0264 | -0.0190 | 0.0095 | 2.4035
9 {0.9390 | -0.0874 | -0.0300 | -0.0220 | 0.0128 | 2.4806 | 32 | 0.9732 | 0.0526 | 0.0000 | 0.0000 | 0.0130 | -0.6912 | 55 | 0.9340 | -0.1504 | -0.0240 | -0.0172 | 2.1961 | -1.3162
10 | 0.9279 | -0.0876 | -0.0280 | -0.0190 | 0.0189 | 2.5090 | 33 | 0.9828 | 0.0986 | -0.0140 | -0.0100 | 0.0178 | -0.7815 | 56 | 0.8995 | -0.1475 | 0.0000 | 0.0000 | 0.0503 | 1.0580
11 1 0.9256 | -0.0877 | -0.1450 | -0.1040 | 0.1145 | 2.4455 | 34 | 1.0074 | 0.1901 | -0.0195 | -0.0140 | 0.0215 | -0.8037 | 57 | 0.7209 | -0.0983 | 0.0000 | 0.0000 | 0.0691 | 1.0531
12 | 0.9231 | -0.0901 | -0.1450 | -0.1040 | 0.1109 | 2.4370 | 35 | 1.0335 | 0.2664 | 1.0099 | -0.9140 | 0.8479 | 1.1568 | 58 | 0.6334 | -0.0694 | 0.0000 | 0.0000 | 0.0415 | 1.1028
13 1 0.9295 | -0.0969 | -0.0080 | -0.0055 | 0.0041 | 2.1597 | 36 | 0.9710 | 0.0003 | -0.0260 | -0.0186 | 0.0275 | 2.5237 | 59 | 0.5996 | -0.0571 | -0.1000 | -0.0720 | 0.1140 | 2.2052
14 | 0.9362 | -0.1038 | -0.0080 | -0.0055 | 0.0043 | 2.1304 | 37 | 0.9715 | 0.0051 | -0.0260 | -0.0186 | 0.0212 | 2.5374 | 60 | 0.5598 | -0.0405 | 0.4486 | 1.3111 | 0.0548 | -1.5506
15 10.9434 | -0.1109 | 0.0000 | 0.0000 | 0.0018 | -0.2209 | 38 | 0.9736 | 0.0094 | 0.0000 | 0.0000 | 0.0038 | -0.8084 | 61 | 0.5012 | -0.0292 | -1.2440 | -0.8880 | 1.3428 | 2.5328
16 | 0.9447 | -0.1122 | -0.0455 | -0.0300 | 0.0338 | 2.4396 | 39 | 0.9741 | 0.0106 | -0.0240 | -0.0170 | 0.0187 | 2.6245 | 62 | 0.4991 | -0.0287 | -0.0320 | -0.0230 | 0.0022 | 1.2631
17 1 0.9480 | -0.1150 | -0.0600 | -0.0350 | 0.0429 | 2.4945 | 40 | 0.9742 | 0.0107 | -0.0240 | -0.0170 | 0.0185 | 2.6275 | 63 | 0.4959 | -0.0281 | 0.0000 | 0.0000 | 0.0073 | 2.4883
18 | 0.9481 | -0.1150 | -0.0600 | -0.0350 | 0.0431 | 2.4941 | 41 | 0.9911 | 0.0405 | -0.0012 | -0.0010 | 0.0051 | -1.8529 | 64 | 0.4807 | -0.0251 | -0.2270 | -0.1620 | 0.2435 | 2.5459
19 10.9528 | -0.1178 | 0.0000 | 0.0000 | 0.0011 | 0.2747 | 42 | 0.9985 | 0.0531 | 0.0000 | 0.0000 | 0.0018 | -1.5648 | 65 | 0.4761 | -0.0242 | 1.4649 | 0.0565 | 0.0633 | 2.5506
20 | 0.9558 | -0.1196 | -0.0010 | -0.0006 | 0.0010 | 0.2978 | 43 | 0.9995 | 0.0547 | -0.0060 | -0.0043 | 0.0058 | 2.6485 | 66 | 0.9252 | -0.0875 | -0.0180 | -0.0130 | 0.0130 | 2.4392
21 | 0.9607 | -0.1224 | -0.1140 | -0.0810 | 0.1141 | 2.3989 | 44 | 0.9997 | 0.0551 | 0.0000 | 0.0000 | 0.0019 | -0.9064 | 67 | 0.9252 | -0.0875 | -0.0180 | -0.0130 | 0.0138 | 2.4378
22 | 0.9610 | -0.1226 | -0.0053 | -0.0035 | 0.0239 | -0.7357 | 45 | 1.0023 | 0.0598 | -0.0392 | -0.0263 | 0.0442 | 2.8316 | 68 | 0.9210 | -0.0894 | -0.0280 | -0.0200 | 0.0216 | 2.4428
23 1 0.9642 | -0.1242 | 0.0000 | 0.0000 | 0.0013 | 0.7907 | 46 | 1.0023 | 0.0598 | 0.9767 | 0.1198 | 0.5296 | 0.1773 | 69 | 0.9210 | -0.0894 | -0.0280 | -0.0200 | 0.0218 | 2.4425
w | 0.9977

line diagram of distribution system shown in Fig. 5.6 with four DGs on bus number
26, 22, 25 and 9 and this test system is operated in islanded mode. The static droop
coefficient of DGs along with relevant specification are depicted in Table. 5.9. The
coefficients k,r and k,s (equations 5.3 and 5.4) for all DGs were assumed as 1 and
-1 respectively. In this case, analysis have been performed assuming DG1 operates
in PV mode, whereas other DGs are operating in droop controlled mode. Often
constant power load modeling is taken into load flow formulation, whereas in this
work loads are modeled to mimic real scenario in form of commercial, residential and

industrial load models which were obtained by using equations 5.3 and 5.4. The
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Table 5.8: Voltage profile obtained from vMAESbm for CASE69 distribution system

operated as

an islanded microgrid.

are 0.9984 p.u and 0.9984 p.u, respectively.

presented in Table. 5.11.

Bus | |V] Ly P Q |1] Ly Bus | |V] Ly P Q |7] Ly Bus | |V]| Ly P Q |7] L5
1 - - - - - - 24 | 0.9711 | -0.1277 | -0.0280 | -0.0200 | 0.0208 | 2.2516 | 47 | 0.9712 | -0.0001 | 0.0000 | 0.0000 | 0.0061 | -0.7545
2 1 0.9710 | 0.0000 | 0.0000 | 0.0000 | 0.0033 | -0.5378 | 25 | 0.9870 | -0.1356 | 0.0000 | 0.0000 | 0.0032 | 0.5156 | 48 | 0.9730 | 0.0039 | -0.0790 | -0.0564 | 0.0592 | 2.5486
3 | 0.9710 | 0.0000 | 0.0000 | 0.0000 | 0.0063 | -0.8331 | 26 | 0.9936 | -0.1388 | -0.0140 | -0.0100 | 0.0105 | 2.2647 | 49 | 0.9815 | 0.0190 | -0.3847 | -0.2745 | 0.2893 | 2.5477
4 1 0.9712 | -0.0003 | 0.0000 | 0.0000 | 0.0057 |-0.8002 | 27 | 0.9974 | -0.1407 | 0.4940 | 0.6374 | 0.3698 | -0.9093 | 50 | 0.9872 | 0.0254 | -0.3847 | -0.2745 | 0.6281 | -0.3321
5 0.9711 | -0.0037 | 0.0000 | 0.0000 | 0.0150 | -0.9815 | 28 | 0.9706 | 0.0005 | -0.0260 | -0.0186 | 0.0275 | 2.5083 | 51 | 0.9401 | -0.0825 | -0.0405 | -0.0283 | 0.0292 | 2.4537
6 | 0.9571 | -0.0377 | -0.0026 | -0.0022 | 0.0225 | -1.2498 | 29 | 0.9648 | 0.0073 | -0.0260 | -0.0186 | 0.0234 | 2.3300 | 52 | 0.9400 | -0.0825 | -0.0036 | -0.0027 | 0.0029 | 2.4250
7 10.9433 | -0.0737 | -0.0404 | -0.0300 | 0.0183 | 2.8487 | 30 | 0.9688 | 0.0293 | 0.0000 | 0.0000 | 0.0050 | -0.6933 | 53 | 0.9373 | -0.1039 | -0.0043 | -0.0035 | 0.0068 | -0.8428
8 1 0.9403 | -0.0826 | -0.0750 | -0.0540 | 0.0612 | 2.4732 | 31 | 0.9695 | 0.0332 | 0.0000 | 0.0000 | 0.0047 | -0.7149 | 54 | 0.9356 | -0.1232 | -0.0264 | -0.0190 | 0.0095 | 2.4035
9 1 0.9390 | -0.0874 | -0.0300 | -0.0220 | 0.0128 | 2.4806 | 32 | 0.9732 | 0.0526 | 0.0000 | 0.0000 | 0.0130 | -0.6912 | 55 | 0.9340 | -0.1504 | -0.0240 | -0.0172 | 2.1961 | -1.3162
10 | 0.9279 | -0.0876 | -0.0280 | -0.0190 | 0.0189 | 2.5090 | 33 | 0.9828 | 0.0986 | -0.0140 | -0.0100 | 0.0178 | -0.7815 | 56 | 0.8995 | -0.1475 | 0.0000 | 0.0000 | 0.0503 | 1.0580
11 | 0.9256 | -0.0877 | -0.1450 | -0.1040 | 0.1145 | 2.4455 | 34 | 1.0074 | 0.1901 | -0.0195 | -0.0140 | 0.0215 | -0.8037 | 57 | 0.7209 | -0.0983 | 0.0000 | 0.0000 | 0.0691 | 1.0531
12 1 0.9231 | -0.0901 | -0.1450 | -0.1040 | 0.1109 | 2.4370 | 35 | 1.0335 | 0.2664 | 1.0099 | -0.9140 | 0.8479 | 1.1568 | 58 | 0.6334 | -0.0694 | 0.0000 | 0.0000 | 0.0415 | 1.1028
13 1 0.9295 | -0.0969 | -0.0080 | -0.0055 | 0.0041 | 2.1597 | 36 | 0.9710 | 0.0003 | -0.0260 | -0.0186 | 0.0275 | 2.5237 | 59 | 0.5996 | -0.0571 | -0.1000 | -0.0720 | 0.1140 | 2.2052
14 | 0.9362 | -0.1038 | -0.0080 | -0.0055 | 0.0043 | 2.1304 | 37 | 0.9715 | 0.0051 | -0.0260 | -0.0186 | 0.0212 | 2.5374 | 60 | 0.5598 | -0.0405 | 0.4486 | 1.3111 | 0.0548 | -1.5506
15 | 0.9434 | -0.1109 | 0.0000 | 0.0000 | 0.0018 | -0.2209 | 38 | 0.9736 | 0.0094 | 0.0000 | 0.0000 | 0.0038 | -0.8084 | 61 | 0.5012 | -0.0292 | -1.2440 | -0.8880 | 1.3428 | 2.5328
16 | 0.9447 | -0.1122 | -0.0455 | -0.0300 | 0.0338 | 2.4396 | 39 | 0.9741 | 0.0106 | -0.0240 | -0.0170 | 0.0187 | 2.6245 | 62 | 0.4991 | -0.0287 | -0.0320 | -0.0230 | 0.0022 | 1.2631
17 1 0.9480 | -0.1150 | -0.0600 | -0.0350 | 0.0429 | 2.4945 | 40 | 0.9742 | 0.0107 | -0.0240 | -0.0170 | 0.0185 | 2.6275 | 63 | 0.4959 | -0.0281 | 0.0000 | 0.0000 | 0.0073 | 2.4883
18 | 0.9481 | -0.1150 | -0.0600 | -0.0350 | 0.0431 | 2.4941 | 41 | 0.9911 | 0.0405 | -0.0012 | -0.0010 | 0.0051 | -1.8529 | 64 | 0.4807 | -0.0251 | -0.2270 | -0.1620 | 0.2435 | 2.5459
19 | 0.9528 | -0.1178 | 0.0000 | 0.0000 | 0.0011 | 0.2747 | 42 | 0.9985 | 0.0531 | 0.0000 | 0.0000 | 0.0018 | -1.5648 | 65 | 0.4761 | -0.0242 | 1.4649 | 0.0565 | 0.0633 | 2.5506
20 | 0.9558 | -0.1196 | -0.0010 | -0.0006 | 0.0010 | 0.2978 | 43 | 0.9995 | 0.0547 | -0.0060 | -0.0043 | 0.0058 | 2.6485 | 66 | 0.9252 | -0.0875 | -0.0180 | -0.0130 | 0.0130 | 2.4392
21 | 0.9607 | -0.1224 | -0.1140 | -0.0810 | 0.1141 | 2.3989 | 44 | 0.9997 | 0.0551 | 0.0000 | 0.0000 | 0.0019 | -0.9064 | 67 | 0.9252 | -0.0875 | -0.0180 | -0.0130 | 0.0138 | 2.4378
22 | 0.9610 | -0.1226 | -0.0053 | -0.0035 | 0.0239 | -0.7357 | 45 | 1.0023 | 0.0598 | -0.0392 | -0.0263 | 0.0442 | 2.8316 | 68 | 0.9210 | -0.0894 | -0.0280 | -0.0200 | 0.0216 | 2.4428
23 | 0.9642 | -0.1242 | 0.0000 | 0.0000 | 0.0013 | 0.7907 | 46 | 1.0023 | 0.0598 | 0.9767 | 0.1198 | 0.5296 | 0.1773 | 69 | 0.9210 | -0.0894 | -0.0280 | -0.0200 | 0.0218 | 2.4425
w | 0.9977
load exponents for commercial, residential and industrial load are given in Table
5.10. Following are the observations:
1. The steady state frequency obtained by eDE-GN and vMAESbm for this case

The detailed voltage and load profile of the CASE33 distribution system are

Reactive power generation reaches maximum when the voltage of bus 22 equals

1.0075 p.u. whereas reactive power generation is fixed at its maximum value,

when the voltage of bus 22 equals to 1.01 p.u. keeping the value of reactive

power of droop controlled DGs within in their permissible range.

e Case study IV: The CASE25, a three phase unbalanced distribution operating

in isolated mode, with the rated voltage of 12.66 KV has been adopted for this

study. Fig. 5.7 shows typical topology of 25-bus distribution system as an islanded

microgrid. The load data, line connectivity and impedances for different type of

conductor used in distribution system are given in ref. [202]. Three DGs are installed
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Figure 5.6: Topology of CASE33 system operating in islanded mode
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Table 5.9: Droop control settings of DGs in CASE33 system [2]

DG Location my ng w* V' Snee  Qmaz
26 0.705 x 107* 0.01667 1 1 3.5 1.8
22 2.252 x 1073 0.05 1 1 1.5 0.6
25 4.504 x 1072 0.01 1 1 15 1.3
9 3.003 x 107* 0.0667 1 1 1.5 1

=~ W N =

Table 5.10: Load exponents of different loads

Load « 6]

constant 0 0
industrial  0.18 6
residential 0.92 4.04

commercial 1.51 34

Table 5.11: Voltage profile obtained by eDE-GN for CASE33 distribution system operated

as an islanded microgrid.

Bus | [V] Ly P Q 1] 41 |Bus| V] Ly P Q 1| 41 | Bus| V] Ly P Q 1] L1
1 - - - - - - 12 | 0.9830 | 0.0003 | -0.1200 | -0.0700 | 0.1413 | 2.6138 | 23 | 0.9906 | -0.0015 | -0.1800 | -0.1000 | 0.2079 | 2.6330
2 10.9922 | 0.0000 |-0.2000 | -0.1200 | 0.2351 | 2.6012 | 13 | 0.9773 | -0.0011 | -0.1200 | -0.0700 | 0.1422 | 2.6124 | 24 | 0.9908 | -0.0043 | -0.8400 | -0.4000 | 0.9390 | 2.6929
3 10.9909 | -0.0001 | -0.1800 | -0.0800 | 0.1988 | 2.7233 | 14 | 0.9752 | -0.0023 | -0.2400 | -0.1600 | 0.2958 | 2.5513 | 25 | 0.9944 |-0.0064 | 0.4205 | 1.0644 | 1.1509 | -1.2010
4 10.9905 | 0.0009 |-0.2400 | -0.1600 | 0.2912 | 2.5545 | 15 | 0.9738 | -0.0029 | -0.1200 | -0.0200 | 0.1249 | 2.9736 | 26 | 0.9912 | 0.0051 | 3.0831 | 1.3764 | 3.4062 | -0.4148
5 10.9906 | 0.0018 | -0.1200 | -0.0600 | 0.1354 | 2.6798 | 16 | 0.9725 | -0.0033 | -0.1200 | -0.0400 | 0.1301 | 2.8166 | 27 | 0.9888 | 0.0060 | -0.1200 | -0.0500 | 0.1315 | 2.7528
6 | 0.9906 | 0.0043 |-0.1200 | -0.0400 | 0.1277 | 2.8241 | 17 | 0.9706 | -0.0044 | -0.1200 | -0.0400 | 0.1303 | 2.8154 | 28 | 0.9779 | 0.0073 | -0.1200 | -0.0400 | 0.1294 | 2.8271
7 0.9901 | 0.0029 | -0.4000 | -0.2000 | 0.4517 | 2.6808 18 | 0.9701 | -0.0046 | -0.1800 | -0.0800 | 0.2031 | 2.7188 | 29 | 0.9701 | 0.0085 | -0.2400 | -0.1400 | 0.2864 | 2.6220
8 | 0.9896 | 0.0022 |-0.4000 | -0.2000 | 0.4519 | 2.6801 | 19 | 0.9928 | 0.0002 | -0.1800 | -0.0800 | 0.1984 | 2.7236 | 30 | 0.9667 | 0.0102 | -0.4000 | -1.2000 | 1.3085 | 1.9027
9 | 0.9907 | 0.0010 | 1.3207 | 0.9988 | 1.6713 | -0.6465 | 20 | 1.0000 | 0.0024 | -0.1800 | -0.0800 | 0.1970 | 2.7258 | 31 | 0.9627 | 0.0089 | -0.3000 | -0.1400 | 0.3439 | 2.7138
10 | 0.9853 | 0.0000 | -0.1200 | -0.0400 | 0.1284 | 2.8199 | 21 | 1.0024 | 0.0036 | -0.1800 | -0.0800 | 0.1965 | 2.7269 | 32 | 0.9618 | 0.0085 | -0.4200 | -0.2000 | 0.4837 | 2.7057
11 1 0.9845 | 0.0001 | -0.0900 | -0.0600 | 0.1099 | 2.5537 | 22 1.01 0.0063 | 1.4410 0.6 1.5769 | -0.4285 | 33 | 0.9616 | 0.0084 | -0.1200 | -0.0800 | 0.1500 | 2.5620
wo | 0.9984

at bus number 13, 19 and 25. The static droop coefficient of DGs along with
relevant specification are depicted in Table. 5.13. Tables 5.14 and 5.15 show the
power flow solution for CASE25 three phase unbalanced distribution by eDE-GN
and vMAESbm, respectively. As shown in these tables, the voltage magnitudes and
angles obtained by eDE-GN and vMAESbm are identical.

In Tables 5.14 and 5.15, it is to be noted that for bus 1 and bus 2, voltages and angles
for all the phases are identical. This reason behind this as follows. When CASE25

system works in the grid connected mode, bus 1 acts as a root node connected to the
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Table 5.12: Voltage profile obtained by vMAESbm for CASE33 distribution system op-

erated as an islanded microgrid.

Bus | |V| Ly P Q 7| 4 | Bus| V| Iy P Q 1| 4 | Bus| |V Ly P Q 7| 4
1 - - - - - - 12 {0.9830 | 0.0003 | -0.1200 | -0.0700 | 0.1413 | 2.6138 | 23 | 0.9906 | -0.0015 | -0.1800 | -0.1000 | 0.2079 | 2.6330
13 [ 0.9773 | -0.0011 | -0.1200 | -0.0700 | 0.1422 | 2.6124 | 24 | 0.9908 | -0.0043 | -0.8400 | -0.4000 | 0.9390 | 2.6929
14| 0.9752 | -0.0023 | -0.2400 | -0.1600 | 0.2958 | 2.5513 | 25 | 0.9944 | -0.0064 | 0.4205 | 1.0644 | 1.1509 | -1.2010
15 | 0.9738 | -0.0029 | -0.1200 | -0.0200 | 0.1249 | 2.9736 | 26 | 0.9912 | 0.0051 | 3.0831 | 1.3764 | 3.4062 | -0.4148

2 10.9922 | 0.0000 | -0.2000 | -0.1200 | 0.2351
31 0.9909 | -0.0001 | -0.1800 | -0.0800 | 0.1988
4 1 0.9905 | 0.0009 | -0.2400 | -0.1600 | 0.2912

5 1 0.9906 | 0.0018 | -0.1200 | -0.0600 | 0.1354 | 2.6798 | 16 | 0.9725 | -0.0033 | -0.1200 | -0.0400 | 0.1301 | 2.8166 | 27 | 0.9888 | 0.0060 | -0.1200 | -0.0500 | 0.1315 | 2.7528
6 | 0.9906 | 0.0043 | -0.1200 | -0.0400 | 0.1277 | 2.8241 | 17 | 0.9706 | -0.0044 | -0.1200 | -0.0400 | 0.1303 | 2.8154 | 28 | 0.9779 | 0.0073 | -0.1200 | -0.0400 | 0.1294 | 2.8271
7 1 0.9901 | 0.0029 | -0.4000 | -0.2000 | 0.4517 | 2.6808 | 18 | 0.9701 | -0.0046 | -0.1800 | -0.0800 | 0.2031 | 2.7188 | 29 | 0.9701 | 0.0085 | -0.2400 | -0.1400 | 0.2864 | 2.6220
8 | 0.9896 | 0.0022 | -0.4000 | -0.2000 | 0.4519 | 2.6801 | 19 | 0.9928 | 0.0002 | -0.1800 | -0.0800 | 0.1984 | 2.7236 | 30 | 0.9667 | 0.0102 | -0.4000 | -1.2000 | 1.3085 | 1.9027
9 | 0.9907 | 0.0010 | 1.3207 | 0.9988 | 1.6713 | -0.6465 | 20 | 1.0000 | 0.0024 | -0.1800 | -0.0800 | 0.1970 | 2.7258 | 31 | 0.9627 | 0.0089 | -0.3000 | -0.1400 | 0.3439 | 2.7138
10 | 0.9853 | 0.0000 | -0.1200 | -0.0400 | 0.1284 | 2.8199 | 21 | 1.0024 | 0.0036 | -0.1800 | -0.0800 | 0.1965 | 2.7269 | 32 | 0.9618 | 0.0085 | -0.4200 | -0.2000 | 0.4837 | 2.7057
11 ] 0.9845 | 0.0001 | -0.0900 | -0.0600 | 0.1099 | 2.5537 | 22 1.01 | 0.0063 | 1.4410 0.6 1.5769 | -0.4285 | 33 | 0.9616 | 0.0084 | -0.1200 | -0.0800 | 0.1500 | 2.5620

w | 0.9984

grid. However, when this system is working as an islanded microgrid, bus 1 becomes
leaf node (Fig. 5.7) where as per the data specified, there are no load on bus 1 and
bus 2. Hence no current flows between these buses in all the phases and due to this

voltage magnitudes and angles for all phases at these buses shall be identical..

From the above discussion, it can be concluded that the performance of eDE-GN

and vMAESbm is satisfactory on unbalanced islanded microgrids.

Table 5.13: Droop control settings of DGs in CASE25 test system.

DG Location S, Sq W VY Snar Qmas
1 13 0.0065 0.05 1 1.01 06 0.36
2 19 0.01 0.1 1 1.01 0.3 0.18
3 25 0.006 0.0 1 1.01 0.6 0.18

5.8 Summary

In this chapter, novel algorithms for the power flow problem of an islanded microgrid
are introduced. In proposed algorithms, the operating frequency is represented as an
additional power flow variable. Various modes of DGs, droop, PV and PQ, are modeled
as per the characteristics of islanded microgrids.

The proposed power flow problem is formulated as a constrained optimization prob-
lem which is solved by using two proposed algorithms, eDE-GN, and vMAESbm. The
proposed algorithms are applied to balanced test systems: CASE6, CASE33, CASE69,
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Figure 5.7: Topology of CASE25 test system operated as an islanded microgrid.
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Table 5.14: Power flow result obtained by eDE-GN for CASE25 unbalanced distribution

system operated as an islanded microgrid.

Phase a Phase b Phase ¢
Bus
14 Ly P Q 14 Ly I Q 14 Ly p Q
1 0.9894 | 0.0000 | 0.0000 | 0.0000 | 0.9893 | -119.9860 | 0.0000 | 0.0000 | 0.9896 | 119.9868 | 0.0000 | 0.0000
2 1 0.9894 | 0.0000 | 0.0000 | 0.0000 | 0.9893 | -119.9860 | 0.0000 | 0.0000 | 0.9896 | 119.9868 | 0.0000 | 0.0000
3 1 0.9901 | 0.0111 | -0.0035 | -0.0025 | 0.9899 | -119.9791 | -0.0040 | -0.0030 | 0.9902 | 120.0002 | -0.0045 | -0.0032
4 10.9908 | 0.0320 | -0.0050 | -0.0040 | 0.9906 | -119.9633 | -0.0060 | -0.0045 | 0.9908 | 120.0237 | -0.0050 | -0.0035
5 10.9904 | 0.0323 | -0.0040 | -0.0030 | 0.9902 | -119.9621 | -0.0040 | -0.0030 | 0.9905 | 120.0233 | -0.0040 | -0.0030
6 |0.9881 | 0.0039 |-0.0040 | -0.0030 | 0.9881 | -119.9785 | -0.0045 | -0.0032 | 0.9885 | 119.9886 | -0.0035 | -0.0025
7 10.9876 | 0.0068 | 0.0000 | 0.0000 | 0.9876 | -119.9723 | 0.0000 | 0.0000 | 0.9879 | 119.9913 | 0.0000 | 0.0000
8 10.9875 | 0.0046 | -0.0040 | -0.0030 | 0.9874 | -119.9760 | -0.0040 | -0.0030 | 0.9879 | 119.9877 | -0.0040 | -0.0030
9 10.9892 | 0.0086 | -0.0060 | -0.0045 | 0.9893 | -119.9762 | -0.0050 | -0.0040 | 0.9895 | 119.9981 | -0.0050 | -0.0035
10 | 0.9914 | 0.0101 | -0.0035 | -0.0025 | 0.9914 | -119.9821 | -0.0040 | -0.0030 | 0.9914 | 120.0058 | -0.0045 | -0.0032
11 | 0.9929 | 0.0109 | -0.0045 | -0.0032 | 0.9929 | -119.9867 | -0.0035 | -0.0025 | 0.9928 | 120.0112 | -0.0040 | -0.0030
12 | 0.9926 | 0.0113 | -0.0050 | -0.0035 | 0.9925 | -119.9858 | -0.0060 | -0.0045 | 0.9925 | 120.0126 | -0.0050 | -0.0040
13 1 0.9953 | 0.0085 | 0.0393 | 0.0278 | 0.9953 | -119.9915 | 0.0392 | 0.0286 | 0.9953 | 120.0085 | 0.0399 | 0.0284
14 | 0.9857 | 0.0076 | -0.0050 | -0.0035 | 0.9857 | -119.9633 | -0.0050 | -0.0040 | 0.9860 | 119.9877 | -0.0060 | -0.0045
15 | 0.9850 | 0.0083 | -0.0133 | -0.0100 | 0.9850 | -119.9608 | -0.0133 | -0.0100 | 0.9854 | 119.9869 | -0.0133 | -0.0100
16 | 0.9872 | 0.0072 | -0.0040 | -0.0030 | 0.9872 | -119.9710 | -0.0040 | -0.0030 | 0.9876 | 119.9909 | -0.0040 | -0.0030
17 10.9853 | 0.0085 | -0.0040 | -0.0030 | 0.9854 | -119.9627 | -0.0035 | -0.0025 | 0.9856 | 119.9882 | -0.0045 | -0.0032
18 | 0.9902 | -0.0047 | -0.0040 | -0.0030 | 0.9900 | -119.9959 | -0.0040 | -0.0030 | 0.9902 | 119.9881 | -0.0040 | -0.0030
19 | 0.9937 | -0.0486 | 0.0159 | 0.0164 | 0.9937 | -120.0486 | 0.0166 | 0.0178 | 0.9937 | 119.9514 | 0.0167 | 0.0168
20 | 0.9914 | -0.0210 | -0.0035 | -0.0025 | 0.9913 | -120.0168 | -0.0040 | -0.0030 | 0.9913 | 119.9774 | -0.0045 | -0.0032
21 | 0.9891 | -0.0028 | -0.0040 | -0.0030 | 0.9888 | -119.9932 | -0.0035 | -0.0025 | 0.9890 | 119.9915 | -0.0045 | -0.0032
22 | 0.9884 | -0.0020 | -0.0050 | -0.0035 | 0.9880 | -119.9912 | -0.0060 | -0.0045 | 0.9884 | 119.9943 | -0.0050 | -0.0040
23 1 0.9925 | 0.0394 | -0.0060 | -0.0045 | 0.9924 | -119.9590 | -0.0050 | -0.0040 | 0.9925 | 120.0346 | -0.0050 | -0.0035
24 1 0.9947 | 0.0466 | -0.0035 | -0.0025 | 0.9945 | -119.9563 | -0.0045 | -0.0032 | 0.9945 | 120.0462 | -0.0040 | -0.0030
25 10.9992 | 0.0527 | 0.0373 | 0.0241 | 0.9992 | -119.9473 | 0.0387 | 0.0245 | 0.9992 | 120.0527 | 0.0384 | 0.0248
w | 0.9993

and unbalanced test systems: CASE25 test systems to analyze the performance of the
algorithms. Moreover, the performance of the proposed algorithms is compared with the
performance of PSO, GA, NTR, and time-domain software. The obtained results reveal

that the performance of the proposed algorithm is superior to others.
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Table 5.15: Power flow result obtained by vMAESbm for CASE25 unbalanced distribution

system operated as an islanded microgrid.

Phase a Phase b Phase ¢
Bus
Vi Ly P Q Vi Ly P Q Vi Ly P Q
1 10.9894 | 0.0000 | 0.0000 | 0.0000 | 0.9893 | -119.9860 | 0.0000 | 0.0000 | 0.9896 | 119.9868 | 0.0000 | 0.0000
2 1 0.9894 | 0.0000 | 0.0000 | 0.0000 | 0.9893 |-119.9860 | 0.0000 | 0.0000 | 0.9896 | 119.9868 | 0.0000 | 0.0000
3 10.9901 | 0.0111 | -0.0035 | -0.0025 | 0.9899 | -119.9791 | -0.0040 | -0.0030 | 0.9902 | 120.0002 | -0.0045 | -0.0032
4 10.9908 | 0.0320 | -0.0050 | -0.0040 | 0.9906 | -119.9633 | -0.0060 | -0.0045 | 0.9908 | 120.0237 | -0.0050 | -0.0035
5 10.9904 | 0.0323 | -0.0040 | -0.0030 | 0.9902 | -119.9621 | -0.0040 | -0.0030 | 0.9905 | 120.0233 | -0.0040 | -0.0030
6 | 0.9881 | 0.0039 |-0.0040 | -0.0030 | 0.9881 | -119.9785 | -0.0045 | -0.0032 | 0.9885 | 119.9886 | -0.0035 | -0.0025
7 1 0.9876 | 0.0068 | 0.0000 | 0.0000 | 0.9876 |-119.9723 | 0.0000 | 0.0000 | 0.9879 | 119.9913 | 0.0000 | 0.0000
8 | 0.9875 | 0.0046 | -0.0040 | -0.0030 | 0.9874 | -119.9760 | -0.0040 | -0.0030 | 0.9879 | 119.9877 | -0.0040 | -0.0030
9 10.9892 | 0.0086 |-0.0060 |-0.0045 | 0.9893 | -119.9762 | -0.0050 | -0.0040 | 0.9895 | 119.9981 | -0.0050 | -0.0035

10 | 0.9914 | 0.0101 | -0.0035 | -0.0025 | 0.9914 | -119.9821 | -0.0040 | -0.0030 | 0.9914 | 120.0058 | -0.0045 | -0.0032
11 1 0.9929 | 0.0109 | -0.0045 | -0.0032 | 0.9929 | -119.9867 | -0.0035 | -0.0025 | 0.9928 | 120.0112 | -0.0040 | -0.0030
12 1 0.9926 | 0.0113 | -0.0050 | -0.0035 | 0.9925 | -119.9858 | -0.0060 | -0.0045 | 0.9925 | 120.0126 | -0.0050 | -0.0040
13 1 0.9953 | 0.0085 | 0.0393 | 0.0278 | 0.9953 | -119.9915 | 0.0392 | 0.0286 | 0.9953 | 120.0085 | 0.0399 | 0.0284
14 | 0.9857 | 0.0076 | -0.0050 | -0.0035 | 0.9857 | -119.9633 | -0.0050 | -0.0040 | 0.9860 | 119.9877 | -0.0060 | -0.0045
15 | 0.9850 | 0.0083 |-0.0133 | -0.0100 | 0.9850 | -119.9608 | -0.0133 | -0.0100 | 0.9854 | 119.9869 | -0.0133 | -0.0100
16 | 0.9872 | 0.0072 | -0.0040 | -0.0030 | 0.9872 | -119.9710 | -0.0040 | -0.0030 | 0.9876 | 119.9909 | -0.0040 | -0.0030
17 1 0.9853 | 0.0085 | -0.0040 | -0.0030 | 0.9854 | -119.9627 | -0.0035 | -0.0025 | 0.9856 | 119.9882 | -0.0045 | -0.0032
18 | 0.9902 | -0.0047 | -0.0040 | -0.0030 | 0.9900 | -119.9959 | -0.0040 | -0.0030 | 0.9902 | 119.9881 | -0.0040 | -0.0030
19 1 0.9937 | -0.0486 | 0.0159 | 0.0164 | 0.9937 | -120.0486 | 0.0166 | 0.0178 | 0.9937 | 119.9514 | 0.0167 | 0.0168
20 | 0.9914 | -0.0210 | -0.0035 | -0.0025 | 0.9913 | -120.0168 | -0.0040 | -0.0030 | 0.9913 | 119.9774 | -0.0045 | -0.0032
21 | 0.9891 | -0.0028 | -0.0040 | -0.0030 | 0.9888 | -119.9932 | -0.0035 | -0.0025 | 0.9890 | 119.9915 | -0.0045 | -0.0032
22 | 0.9884 | -0.0020 | -0.0050 | -0.0035 | 0.9880 | -119.9912 | -0.0060 | -0.0045 | 0.9884 | 119.9943 | -0.0050 | -0.0040
23 10.9925 | 0.0394 | -0.0060 | -0.0045 | 0.9924 | -119.9590 | -0.0050 | -0.0040 | 0.9925 | 120.0346 | -0.0050 | -0.0035
24 | 0.9947 | 0.0466 | -0.0035 | -0.0025 | 0.9945 | -119.9563 | -0.0045 | -0.0032 | 0.9945 | 120.0462 | -0.0040 | -0.0030
25 10.9992 | 0.0527 | 0.0373 | 0.0241 | 0.9992 | -119.9473 | 0.0387 | 0.0245 | 0.9992 | 120.0527 | 0.0384 | 0.0248
w | 0.9993
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