
Chapter 5

Differential Evolution and MAES for

Power Flow Problem of Droop

Controlled Islanded Microgrids

5.1 Introduction

Conventional PF algorithms are not effective in analyzing the of islanded microgrid as

the system frequency and voltage of the slack bus is assumed to be constant. Such

assumptions are not applicable in the operation of islanded microgrid as DGs provide

the real and reactive power to adjust the load demands as well as maintain the voltage

magnitude and system frequency in the absense of the main grid. To solve the power

flow of islanded microgrid, a novel formulation as a constrained optimization problem is

proposed in this thesis.

A MG has been recognized as a collection of DGs which are interconnected with

thermal and electrical loads, and energy storage units. In addition, it functions as a

single small scale low-voltage distribution system. Due to the use of power electronic

controls and interfaces in MGs, system reliability, security, and power electronic controls

can be enhanced [177, 178]. An MG may run in islanded or grid-connected mode. In an

islanded mode, controllers of DGs are capable of voltage and frequency regulation along

with controlling active and reactive power. While in a grid-connected mode the frequency

and voltages of MGs are managed by the main grid.

In practice, different type of control strategies for MGs have been proposed such as

125



distributed, decentralized, and centralized; any hybrid structure of these models is also

feasible. Strategies based on centralized control need to transfer data using stable com-

munication environment. In the case of large MGs, these strategies are not suitable where

DGs are placed far from each other [179–181]. Large MGs are usually controlled using de-

centralized strategies, such as DCIMGs, where communication of significant information

is not needed [178]. In droop controller based strategies, local variables can be utilized

for effective sharing of loads of loads among DGs. Here, the frequency and magnitude of

the voltage of MGs are used as local variables [182].

In DCIMGs, DGs are connected to MGs using suitable control approach using power

electronic converters [183–186]. For designing the effective and efficient control strategy,

a power flow analysis model is required to calculate the steady-state variables, especially

for an islanded MGs. Design of droop control strategies use power flow solutions to test

its efficacy. This is more so in the case of MGs operated in islanded mode.

To address the characteristics of MGs and distribution systems, a number of methods

have been introduced for PF analysis. Some of such algorithms are derived from the

NR approach [23, 43], while others are based on the basic electric circuit laws [51]. In

[187], a modified algorithm, called BFS method, has been proposed for solving the power

mismatches equations of radial power systems. In [27], an implicit ZBus algorithm based

on the superposition principle of electric circuits is proposed to solve the power flow

problem.

In [56], a model of three-phase PF problem is proposed which adopt the real char-

acteristics of islanded MGs similar to three-phase distribution systems. In the model

proposed in [56], the problem is formulated as a non-linear optimization problem and this

problem is solved by NTR technique. But, it is highly sensitive to the initial solutions of

variables of the PF problem. In addition, a number of studies of PF analysis for droop

controlled islanded MGs based on a nature-inspired optimization algorithm have been

developed.

In general, Jacobian based PF algorithms, such as NR, and FD may not produce

PF solution for power mismatch equations of distribution systems having a high value of

R/X. To solve this problem, a number of methods [183–186] have been introduced. In

addition, to present an adequate platform for PF analysis, modeling of distributed slack

bus has also been studied [28,53,100].
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In current practices, DG having the highest capacity is considered as a slack bus

which operates like an infinite bus at a constant voltage to provide system frequency, and

other DGs are treated as either PV or PQ buses. However, this assumption cannot be

considered feasible in the case of islanded MGs. For example, the generation capacity

of DGs in MGs is not usually high enough to allow them to act as an infinite bus. In

addition, voltage swelling may occur in the buses of MG when a DG is acting as a slack

bus. In such a situation, slack bus (DGs) must provide power independently for the whole

power losses of MG which is not an effective state of operation for MG [43]. Therefore,

in an islanded MG, considering a DG as a slack bus is not appropriate for PF analysis.

In order to resolve this issue, one way is to consider that all DG units operate

using droop controllers where all DGs locally tune the voltage and frequency of islanded

MG [179]. In such operation, active power generation and voltage magnitude of each DG

is required to be fixed according to droop characteristics of controllers. This operation of

MG creates a new type of bus, called droop bus, in addition to PQ and PV buses in the

system. It is worth to note here that grid-connected MG behaves like a simple distribution

system having a slack bus operating as a infinite bus. Other problems related to power flow

analysis of islanded MGs can be outlined as dealing with the reactive power scheduling

of DGs, and singularity of the Jacobian matrix which causes failure in convergence of

PF [185].

In order to resolve these issues, this thesis proposes a new PF formulation for islanded

microgrids. This formulation is expressed in form of constrained optimization problem

which models different mode of operations of DGs (such as PV, PQ, and droops opera-

tions). In order to solve this constrained optimization problem, two novel optimization

algorithms are proposed.

The main contributions of this chapter are summarized as follows.

• It introduces a novel formulation as a constrained optimization problem for PF

analysis of islanded MGs.

• It proposes PF constraint based on the droop characteristics of distributed slack

buses to deal with the droop buses in power flow analysis. In addition, system

frequency is also considered as an extra variable of the PF problem.

• It provides an adequate method to share reactive and active power among DGs
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based on the droop characteristics in the PF analysis.

• It provides the PF solutions for the islanded MGs using the proposed optimization

algorithms.

This chapter is organized as follows. In the second section, the microgrid system and

load are modeled. This is followed by formulating the constrained optimization problem

for power flow analysis of islanded MGs. In the fourth section, the main steps of the

optimization algorithm are proposed. Finally, the validation of the proposed algorithm

on the power flow problem of islanded MGs is discussed.

5.2 Modelling of Droop Controlled Microgrid

5.2.1 Modeling of Frequency and Voltage Dependent Loads

Generally, loads are assumed to be independent of the value of voltage and therefore, the

active and reactive power demands of loads are treated as constant parameters. However,

such premises are not true in practice, especially in MGs where power demand of some

loads are depended on the values of frequency and voltages. Mathematically, voltage-

dependent loads can be defined as

Pl = Pl,0

(
V

V0

)α
, (5.1)

and

Ql = Ql,0

(
V

V0

)β
(5.2)

where Ql,0 and Pl,0 represent the reactive and active power, respectively, at nominal

voltage; Ql and Pl represent reactive and active power respectively, at operating voltage; V

and V0 represent the magnitude of voltage and nominal voltage, respectively, at load buses;

β and α represent the exponent parameters for reactive and active powers, respectively,

for the model [188].

In similar way, frequency dependent load can be defined as

Pl = Pl,0

(
V

V0

)α
(1 + kpf4f) (5.3)

and

Ql = Ql,0

(
V

V0

)β
(1 + kqf4f) (5.4)
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where 4f is the deviation in system frequency with respect to the nominal frequency;

kqf and kpf represent frequency dependent parameter, where their values are defined in

range (−2, 0) and (0, 3), respectively [189].

5.2.2 Modeling of Lines in Islanded MGs

Line impedance of islanded MGs can be defined as, z = r+jx(w) where, r and x represent

the resistance and reactance of the line, respectively. Here, the value of reactance, x,

depends on the operating frequency. Therefore, small deviation in frequency can change

the reactance of the lines.

5.2.3 Modeling of DGs in Islanded MGs

In grid-connected MGs, DGs can operate to provide pre-specified active and reactive

generation to satisfy the power demands of system loads. In such operation, the difference

in total load demand and power generated by DGs are supplied or absorbed by the

main grid to keep the system frequency and voltages of the buses constant. Similar to

conventional power systems, in grid-connected MGs, DGs can be modeled as a PV and

PQ bus [190, 191]. However, this cannot be valid in the case of islanded MGs, as shown

below:

1. There is no slack bus in islanded MGs.

2. System frequency is not consant.

3. Reference voltage does not exist in islanded MGs to calculate the voltage of all

system buses.

4. In an islanded mode, the deviation between power generation and demands may be

fixed by changing the system frequency and magnitude of the voltage using droop

controllers.

Therefore, the power flow problem of islanded MGs will be solved without considering

the slack bus in the system. In order to formulate the PF problem of islanded MGs, in

place of a slack bus, multiple droop buses are modeled based on the droop characteristics

to share the power demand among the DGs. According to the droop characteristics of
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the controllers, an increment in reactive power and active power demand follows from a

decrement in magnitude of the voltage and operating frequency, respectively. So, in the

case of droop bus, reactive and active power generation of a DG can be calculated using

the following equations.

Pi =
1

npi
(w∗i − w) (5.5)

Qi =
1

mqi
(V ∗i − Vi) (5.6)

where V ∗i and w∗i represent the nominal values of voltage magnitude and frequency, respec-

tively; mqi and npi represent the reactive and active power static droop gains, respectively.

Based on the IEEE Standard 1547.7 [184], equations (5.5) and (5.6) are valid for

islanded MGs where the output impedance of converter is assumed inductive. Figures

(5.2) and (5.4) show the sharing of active and reactive power among the DGs.

5.3 Power Flow Formulation

In general, four variables are involved in a conventional power flow viz. active power,

reactive power, voltage magnitude, and voltage angle. In the case of PQ bus, the value of

voltage angle and voltage magnitude are unknown. In case of PV bus, voltage magnitude

and reactive power are unknown. But, in the case of droop bus, all these variables are un-

known. Conventional techniques cannot be applied to the power flow problem of islanded

MGs as a frequency is not considered constant. In islanded MGs, the operating frequency

is also an unknown variable for the power flow problem. Therefore, new equations should

be derived for the PV, PQ, and droop buses are presented in the following section.

5.3.1 Modeling of Droop Bus

The value of active and reactive power injection of bus i can be defined as

Pi = Pi,dg − Pi,l (5.7)

Qi = Qi,dg −Qi,l (5.8)

where, Pi,dg and Qi,dg are calculated using equations (5.5) and (5.6). Here, Pi and Qi can

be calculated using following equations.

Pi = Vri

N∑
j=1

(VrjGij − VmjBij) + Vmi

N∑
j=1

(VrjBij + VmjGij) (5.9)
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Figure 5.1: Sharing of active power among DGs using droop based controller
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Figure 5.2: Sharing of reactive power among DGs using droop based controller
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Qi = Vmi

N∑
j=1

(VrjGij − VmjBij)− Vri
N∑
j=1

(VrjBij + VmjGij) (5.10)

Power flow equations for droop bus can be derived using equations (5.5), (5.6), (5.7),

(5.8), (5.9), and (5.10), which are given below.

1

npi
(w∗i − w)− Pi,l = Vri

N∑
j=1

(VrjGij − VmjBij) + Vmi

N∑
j=1

(VrjBij + VmjGij) (5.11)

1

mqi
(V ∗i − Vi)−Qi,l = Vmi

N∑
j=1

(VrjGij − VmjBij)− Vri
N∑
j=1

(VrjBij + VmjGij) (5.12)

5.3.2 Modeling of PQ Bus

The active and reactive power injection are known in PQ buses, so PQ buses can be

defined by following equations

Pk = Vrk

N∑
j=1

(VrjGkj − VmjBkj) + Vmk

N∑
j=1

(VrjBkj + VmjGkj) (5.13)

Qk = Vmk

N∑
j=1

(VrjGkj − VmjBkj)− Vrk
N∑
j=1

(VrjBkj + VmjGkj) (5.14)

5.3.3 Modeling of PV bus

The active power and voltage magnitude are known in PV buses, so PV buses can be

defined as given below

Pk = Vrk

N∑
j=1

(VrjGkj − VmjBkj) + Vmk

N∑
j=1

(VrjBkj + VmjGkj) (5.15)

V 2
k = V 2

rk + V 2
mk (5.16)

To solve this proposed power flow formulation, a constrained optimization problem shall

be discussed later in the chapter to optimize objective function corresponding to power

flow.

5.3.4 Objective Function

The objective function can be formulated as the sum of square error of mismatch equations

of droop bus (equations (5.11) and (5.12)) i.e.

Minimize, f =
∑
kεSdr

(4P 2
k +4Q2

k) (5.17)
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where

4Pi =
1

npi
(w∗i − w)− Pi,l − Vri

N∑
j=1

(VrjGij − VmjBij)− Vmi
N∑
j=1

(VrjBij + VmjGij) (5.18)

and

4Qi =
1

mqi
(V ∗i −Vi)−Qi,l−Vmi

N∑
j=1

(VrjGij −VmjBij) +Vri

N∑
j=1

(VrjBij +VmjGij) (5.19)

The objective function, defined in equation 5.17, has (2×N +1) variables. This objective

function is to be optimized subject to following constraints.

1. Equality constraints related to k-th PQ bus:

Pk − Vrk
N∑
j=1

(VrjGkj − VmjBkj)− Vmk
N∑
j=1

(VrjBkj + VmjGkj) = 0 (5.20)

and

Qk − Vmk
N∑
j=1

(VrjGkj − VmjBkj) + Vrk

N∑
j=1

(VrjBkj + VmjGkj) = 0 (5.21)

2. Equality constraints related to k-th PV bus:

Pk − Vrk
N∑
j=1

(VrjGkj − VmjBkj)− Vmk
N∑
j=1

(VrjBkj + VmjGkj) = 0 (5.22)

and

V 2
k − V 2

rk − V 2
mk = 0 (5.23)

3. Bound constraints:

Vk,min ≤ Vk ≤ Vk,max (5.24)

and

wmin ≤ w ≤ wmax (5.25)

In the later sections, two novel constrained optimization algorithms are discussed which

have been used to solve the above-mentioned objective for corresponding to power flow

problem.
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5.4 Differential Evolution with Gauss-Newton based

Mutation

The DE [132] algorithm is a popular global optimization technique used in different prob-

lems of the power system. The DE relatively more robust and efficient technique as

compared with other evolutionary algorithms. Several latest variants of DE have been

judged as top-ranked algorithms in recent IEEE congress on evolutionary computation

competitions [122, 192]. However, DE may not be directly applied to the constrained

optimization problem. A constraint handling technique is required to evaluate the fitness

of the solutions on the basis of feasibility and objective function value. In this chapter,

epsilon-based constraint handling technique [146] has been employed with the operators

of DE to solve the constrained optimization problems. In addition, it is also challenging

for EAs to determine a feasible solution for a constrained problem with many equality

constraints. For handling the equality constraints, most of the EAs convert equality con-

straints into relaxed inequality constraints. As a result, the feasibility of the obtained

solutions is inadequate. In order to address this issue, this thesis introduces an algorithm

to solve the problem with many equality constraints by introducing a Gauss-Newton (GN)

based mutation operator that finds a feasible solution from an infeasible solution using the

GN [193] algorithm. The proposed algorithm is named as εDE-GN and main operators

of εDE-GN are summarized in the following sub-sections.

5.4.1 Differential Evolution

DE is a search-based global optimization algorithm proposed by Storn and Price [132].

DE can be applied to different type of optimization problems viz. Non-convex, non-

differentiable, non-linear and multi-modal problems. In literature, it is shown that DE

is robust and efficient on these types of problems. In DE, initial solutions are generated

randomly within the lower and upper bound of search space and these solutions form

an initial population. Each solution consists of n elements as decision parameters of

the problem. At each iteration, all solutions of the population are selected as parents.

Offspring generation for each parent is done as follows. The mutation process begins

with the random selection of 3 solutions (different from the parent) from the population.

The first solution out of 3 is considered as base vector. Other two solutions are utilized
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to generate a difference vector. The difference vectors are weighted using parameter sF

and added to the base vector. The resulting solution is then passed through a process of

crossover with parent solution. The probability of crossover is guided using a parameter

CR (Crossover Rate). The crossover scheme returns a trial solution. Finally, for selection

of solution for the next iteration, the trail solution is accepted if the trail vector is better

than the parent. In algorithm εDE-GN, an exponential crossover is implemented. Another

variant of crossover, Binomial Crossover, has been studied well in literature. However,

exponential crossover performs better in constrained optimization problem as compared

to binomial crossover. Hence, the exponential crossover is adopted in this work.

5.4.2 Gauss-Newton Mutation

The GN mutation is an operator used to calculate a feasible solution for an infeasible

solution using gradient information of constraints, ∇C(x). The constraint vector, C(x),

the constraint violation vector, 4C(x), and increment expected in point x, 4x, to satisfy

constraints are related in the following manner [193]:

4x = −∇C(x)T4C(x)

∇C(x)T∇C(x)
(5.26)

where,

4C(x) = [4g1(x)...4gn(x),4hn+1(x)...4hm(x)]T ,4gi(x) = max{0, gj(x)} (5.27)

The relation 5.26 is utilized whenever an infeasible solution, xinfea, is encountered. This

mutation operation, xfea = xinfea +4x, is executed where xinfea is an infeasible solution.

5.4.3 ε-Constrained Handling Technique

In ε-constraint handling technique establishes an ε-level comparison to compare the solu-

tions [146]. The ε-level comparison is defined using lexicographic order in which constraint

violation, φ(x)(=
∑m

i=14Ci(x)), precedes objective function value, f(x) as described in

following paragraph [146].

Let {φ1, φ2} and {f1, f2} be the constraint violation value and the function values

at points {x1, x2} respectively. Then, the ε level comparisons are defined as follows:

(f2, φ2) <ε (f1, φ1)⇔

f2 < f1, if (φ1, φ2 ≤ ε) or (φ1 == φ2)

φ2 < φ1, otherwise

(5.28)
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(f2, φ2) ≤ε (f1, φ1)⇔

f2 ≤ f1, if (φ1, φ2 ≤ ε) or (φ1 == φ2)

φ2 ≤ φ1, otherwise

(5.29)

Generally, ε level may not be controlled for most of the constrained optimization problems.

However, constrained problems with equality constraints should be solved using controlled

ε level. A simple way to control the ε-level is proposed in [146], which is defined using

following equations.

ε(t) =

φ(xθ)(1− t
Tc

)cp, 0 < t < Tc

0, Tc ≤ t

(5.30)

where xθ represents the top θ−th individuals and cp represent parameter to control the

speed of reduction of the ε-level.

5.4.4 The Algorithm: εDE-GN

The algorithm εDE-GN is based on DE/rand/1/exp [146]. The main steps of algorithm

εDE-GN are as follows.

• Step 1: Initialization- In this step, initial population, P 0, of Np solutions is initial-

ized within the bound of search-space using following equation.

x0
i = (xU − xL)rand + xL, i = 1, 2, ...N (5.31)

where xU and xL are the upper and lower bounds of search space respectively and

rand represents the random number from uniform distribution within the range

(0, 1). An initial value of ε−level, ε(0), is calculated using equation (7.18).

• Step 2: Mutation- For each solution xki , three different solution xkr1, xkr2, and xkr3

are selected from population, P k, at k-th iteration. A new mutant solution, vki , is

calculated using xkr1, xkr2, and xkr3 as follows.

vki = xkr1 + sF (xkr2 − xkr3), where (r1 6= r2 6= r3 6= i) (5.32)

where sF is a parameter called scaling factor.

• Step 3: Crossover- The mutant solution vki , is used as a donor solution in crossover

operation for solution xki to generate a trial solution, uki . A crossover point, l, is ran-

domly selected from 1 to D, where D is the dimension of the problem. The element
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corresponding l − th dimension of the trail solution uki is taken from the element

corresponding to l− th dimension of donor solution vki . Subsequent elements of trial

solution uki are taken from donor solution vki with exponentially decreasing proba-

bility (calculated using crossover rate CR). Rest of the elements of trial solution uki

are taken from the elements of solution xki .

• Step 4: Gauss-Newton Mutation- If the generated trial solution uki is infeasible (does

not satisfy the all constraint), uki is updated using GN. This process is repeated until

the number of trials of GN reaches to Ngn or solution uki becomes feasible solution.

If after Ngn number of trials, infeasible trail solution does not become feasible the

trial infeasible solutions is discarded in favor of previous feasible solution.

• Step 5: Selection- If the trial solution uki is better than solution xki on the basis

of ε− level comparison, the trial solution uki replaces the solution xki for the next

iteration.

• Step 6: ε− level control- The value of ε− level is updated using equation (7.18).

• Step 7: Termination Condition- If the total number of iteration becomes greater

than maximum allowed iteration (Tmax), the algorithm is terminated. Otherwise go

to Step 2.

The performance of εDE-GN has been validated on benchmark problems and reported in

Appendix-III.

5.5 Matrix Adaptation Evolution Strategy

The performance of Evolutionary Algorithms (EAs) can be heavily undermined in case

of COPs where several constraints limit the feasible regions. For example, CMA-ES,

one of the most efficient algorithms for unconstrained optimization, cannot readily be

extended to solve COPs. Although some attempts of adopting CMA-ES for COPs have

been made [156, 157], it is not yet competitive on these types of problems as compared

to other popular algorithms like DE, GA, and PSO. There are two main reasons behind

the relatively bleaker performance of CMA-ES on COPs: (i) conventional recombination

approach of the algorithm cannot be suitable for the search space of COPs due to the
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ranking of solutions based on the objective function value and (ii) the self-adaptation of

the parameters of the algorithm is not suitable for COPs due to lower volume of the feasible

region in search space especially in case of COPs involving several equality constraints.

To overcome these limitations of CMA-ES, we introduce here (i) a constraint han-

dling technique, called υ-level penalty function to modify the fitness value of solutions

while ranking the solutions in the algorithm and (ii) a solution repair scheme, called

Broyden-based mutation, to handle the feasibility issue of solutions during the optimiza-

tion process.

Firstly we introduce the υ-level penalty function and Broyden based mutation, then

the main steps and framework of the proposed algorithm are discussed.

To solve the COPs, a new constraint handling technique called υ-level penalty func-

tion, is proposed in this section.

5.5.1 υ-level Modification in Constraints

Although, ε-level comparison of ε-constrained method shows good performance as a con-

straint handling technique with several EAs on COPs [1,146,194], its capability of relaxing

infeasible solutions is more prominent in case the solutions violate a lower number of con-

straints as compared to the situation when several constraints are violated (as illustrated

in Figure 5.3). The relaxed feasible region can be represented using Eqn. 5.33.

φ(x) ≤ ε =⇒ φ(x)− ε ≤ 0, (5.33)

where φ(x) represents the value of constraint violation at solution x and it can be calcu-

lated as follows.

φ(x) =

q∑
j=1

(max{0, gj(x)}) +
m∑

j=q+1

(max{0, |hj(x)|}) (5.34)

It is seen from Eqn. (5.33), a fixed value of ε is used to modify the feasible region for each

constraint violation without considering the number of violated constraints. This ε value is

shared among the violated constraints. Therefore, the infeasible region with a low number

of violated constraints is getting more sharing of ε as compared to the infeasible region with

a higher number of violated constraints. This may strongly degrade the performance on

COPs with a higher number of constraints with the optimum solution at active constraints.
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To demonstrate this issue, a pictorial representation of a simple COP having five linear

constraints are shown in figure 5.3. It can be seen from figure 5.3 that the ε-level feasible

region has a very low volume of relaxed feasible region nearer to the optimum value as

compared to the volume of the relaxed feasible region of other areas. Since the main

function of this relaxed feasible region is to facilitate the population to search solutions

at the boundary of the feasible region then the very low volume of relaxed feasible region

nearer to the optimum solution cannot be the best situation. In [195] and [196], relaxed

equality and inequality constraint functions are used to create separate surrogate models

for all constraints. Further, these surrogate models are utilized to generate new solutions

for expansive COPs. The performance of these surrogate assisted algorithms is highly

improved after using relaxed equality and inequality constraint functions in place of actual

constraint functions [195].

To sum up, the separate relaxation of constraints can provide a sufficient volume of

the relaxed feasible region, which is beneficial to explore the optimum solutions nearer

to the boundaries of feasible regions. Nevertheless, this approach has been discovered

in surrogate modeling but has not been utilized in constrained handling techniques by

existing constrained optimizations EAs. To overcome the limitation of ε-level modification

without losing its core properties and to utilize the features of separate relaxation of

constraints, a υ-level modification is proposed in this study.

In υ-level modification, the boundaries of all the feasible regions are modified. It is

done by subtracting υ from all the constraints of the problem as shown below:

g
(υ)
i (x) ≤ 0 =⇒ gi(x)− υ ≤ 0, (5.35)

where υ represents the υ-level and its value must be a non-negative number. Usually,

there is no need to have υ-level modification in constraints and many problems can be

solved where the value of υ-level is set to 0 during the optimization process. However,

in case of problems with smaller feasible regions, a high number of active inequality

and equality constraints, the υ-level modification in constraint with proper controlling

of υ-level would be required to obtain the better quality solutions. The calculation and

controlling procedure of υ-level is discussed in the later section.

It is worth noting here that the υ-level modification is applicable to inequality con-

straints only. As an equality constraint, hi(x) = 0 can be replaced with two inequality
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Figure 5.3: Graphical representation of main feature of υ-level modification as compared

to ε-level comparison on a simple 2-D search space. Green solid line and blue dotted line

represent the boundaries of υ-level and ε-level feasible regions respectively, at ε = υ = 5.

Numbers within the circle represent the number of violated constraints in their respective

area of search space.
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constraints hi(x) ≤ εv and −hi(x) ≤ εv, where εv is set to 10−4. Thus, equality constraints

can also be modified by υ-level modification as shown below.

|h(υ)
i (x)|≤ εv =⇒ |hi(x)|−υ ≤ εv. (5.36)

Moreover, we propose a simple procedure to control the υ-level at each iteration.

The υ-level is only controlled for the first T iterations. After that, the υ-level is set to 0.

The υ-level for each iteration is calculated as follows.

υ0 =

∑θλ
i=1 φi:θλ
θλ

,

υk =

υ0

(
1− k

T

)γ
, 0 < k ≤ T,

0 , k > T,

(5.37)

where φi:θNp represents the constraint violation of top ith individual, θ = 0.9, γ

represents a parameter to control decay of the υ-level, and λ represents the population

size. In this approach, it is presumed that the υ-level is equal to 10−5 (very small) at

k = 0.95T . Now from Eqn. (5.37), this assumption can be reflected in the following way.

υ0.95T = υ0

(
1− 0.95T

T

)γ
= 10−5. (5.38)

Thus, parameter γ can be tuned according to Eqn. (5.38) and this can be done as shown

below:

γ = max

{
3,

(−5− log(υ0))

log(0.05)

}
, (5.39)

where the minimum value of γ is set to 3 to avoid too small a value for γ.

It is worth noting here that the value of T is problem dependent. The value of T

can be fixed by using the sensitivity analysis over the wide variety of problems. From

sensitivity analysis, it was found that the value of T can be set between 20% to 50% of

the maximum allowed number of iterations.

Constraint violation and υ-level penalty function

In the υ-level penalty function, a υ-level constraint violation φ(υ)(x) is calculated by the

sum of all the modified constraints:

(5.40)φ(υ)(x) =

q∑
j=1

(max{0, g(υ)
j (x)}) +

m∑
j=q+1

(max{0, |h(υ)
j (x)|−εv}).
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A υ-level penalty function is defined as follows.

F (x) = f(x) + α · φ(v)(x), (5.41)

where f(x) and F (x) denote the objective function value and fitness value at x respec-

tively, and α is the penalty factor.

Calculation of the penalty factor α

Solving COPs with population-based EAs requires a balance between the minimization

of the objective function and the constraint violation(s) during the optimization process.

In [197], the correlation between constraint violation and objective function is calculated

to guide the population for finding the feasible region. Although this approach performs

well on COPs, a learning stage is required to calculate the correlation between the objec-

tive function and constrained violation. However, the correlation gained from the learning

stage provides global correlation information and this correlation is not uniform over the

search space. During the optimization process, it is more beneficial to use a local corre-

lation between the objective function and constraints. In addition, no learning stage is

required to calculate the local correlation between objective function and constraint which

reduces the computational overhead. Here, we propose a simple approach to calculate the

local correlation between the objective function and constraint violation to update the

penalty factor.

Two kinds of relationship exist between constraints and the objective function.

1. The objective function f(x) decreases as the degree of constraint violation φ(v)(x)

decreases.

2. The objective function f(x) does not decreases as the degree of constraint violation

φ(v)(x) decreases.

For case (1), the objective function and constraint violation correlate with each other. In

this situation, searching for a solution using constraint violation can easily stagnate the

population in the feasible region. Therefore, the objective function value can help the

solution to jump from the infeasible region to a feasible region. In such cases, the value

of α should be equal to zero.
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In the second type of relationship, objective function and constraint violation are

not correlated to each other. Under this situation, too much weight to objective function

or constraint violation may prevent the solution from stagnating the population. In such

cases, the value of α should be tuned to provide proper weight to the objective function

and constraint violation in fitness value.

To sum up, the value of α needs to tune according to the correlation between con-

straints and the objective function to guide the solutions to find the feasible region.

However, this correlation information has not been utilized in the existing penalty func-

tions. Hence a new self-adaptive technique is proposed in this chapter to auto-tune the

value of α by using the correlation information.

At each iteration, the fitness value of the best solution should be lower than the

fitness value of the other solution of the population of current or past iterations (in

case of minimization problem). Mathematically, this relation can be represented in the

following way:

f(y) + α · φ(v)(y) > f(x∗) + α · φ(v)(x∗), (5.42)

where y represents a solution of population of the current or past generation and x∗

represents the best solution found so far. Further, Eqn. (5.42) can be reduced to

α >
f(x∗)− f(y)

φ(υ)(y)− φ(υ)(x∗)
. (5.43)

The right hand side of Eqn. (5.43) indicate the relative variation of objective function

value with respect to opposite variation of the constraint violation between the best

solution and other solutions. When we mine this variation for all solutions of population,

it provides the local correlation information between objective function and constraint in

terms of relative variation from best solution.

In order to provide better mining of the correlation, an archive of solutions Ar of

fixed size is formed which contains the solutions generated in past generations. When the

size of this archive exceeds the fixed size, randomly selected solutions are discarded from

the archive to maintain the size. From Eqn. (5.43),

αk >
f(x∗)− f(yki )

φ(v)(yki )− φ(v)(x∗)
, (5.44)

where yki represents the i−th individual of archive Ar and NAr represents the size of Ar.

This information can be utilized to tune the value of penalty factor (α) in each iteration.
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In υ-level penalty function, we use the following equation to tune the value of α.

αk = max

{
f(x∗)− f(yki )

φ(v)(yki )− φ(v)(x∗)
, 0

}
, (5.45)

where i = 1, 2, ....NAr .

5.5.2 Broyden-based Mutation

In this subsection, Broyden-based Mutation is discussed.

Motivation

COPs with non-linear equality constraints can be hard to solve using COEAs. Most

of constrained optimization EAs transform equality constraints into relaxed inequality

constraints to solve these COPs. Feasible region of the search-space becomes very low due

to the involvement of a large number of equality constraints. As a result, the performance

of MA-ES (or CMA-ES) has been mediocre on these COPs as compared to other class of

EAs. To address this issue, a gradient-based repair method is utilized in [1]. In literature,

this repair method has also been utilized with other class of EAs such as in [198] with

GA, and in [146] with DE. However, this repair method requires a large number of FEs

(multiple of the number of decision variables) to repair a single infeasible solution. The

main reason for the requirement of high function evaluations is the evaluation of gradient

information (Jacobian matrix) of constraint space in each iteration of the repair process.

In order to resolve this issue, a Broyden-based Mutation (BBM) technique is proposed in

this chapter that requires only one FE in each iteration except for the first iteration to

repair the infeasible solution. For the first iteration of the repairing process, the steps are

similar to reported in [1].

Broyden’s method

To solve a system of non-linear equations, F (x) = [f1(x), f2(x)....fn(x)]T = 0, where n

is the total number of non-linear equations and x = [x1, x2, . . . .xn]T , Newton’s method

is the computationaly inefficient due to the requirement of partial derivative of F (x) at

x (Jacobian matrix) during each iteration. This method cannot facilitate the reusing

of information gained from previous iterations and in some situations determination of
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the partial derivatives can be very costly. Finite-difference based calculation of partial

derivatives of F (x) at x requires n function evaluations (FEs) per iteration.

To overcome this issue of Newton’s method, approximate partial derivatives can be

used alternatively, since it provides slightly slower convergence due to approximation but

it improves the efficiency overall. A simple and robust way to approximate the partial

derivatives is proposed by C. G. Broyden in his seminal work on finding the solution of

system of non-linear simultaneous equations [199]. In [199], the following equations are

proposed to solve the simultaneous equations.

x(k+1) = x(k) −B−1(k)F (x(k)), (5.46)

where

B−1(k) = B−1(k−1) +
(s(k) −B−1(k−1)y(k))(s(k))TB−1(k)

(s(k))TB−1(k−1)y(k)
, (5.47)

s(k) = x(k) − x(k−1), and (5.48)

y(k) = F (x(k))− F (x(k−1)). (5.49)

It can be seen from the above equations that an approximation of the inverse of the matrix

of partial derivatives requires only one FE.

Proposed Scheme

Our proposed BBM to repair the infeasible solution is inspired by Broyden’s method. The

main steps of BBM are as follows:

1. First of all, all the constraints (Inequality, equality and bound constraints) of the

COP are transformed into a system of simultaneous equations using slack variables,

i.e.

gj(x) + s2
j = 0, j = 1, ...., q, (5.50)

hj(x) = 0, j = q + 1, .....,m, (5.51)

xi − li − lb2
i = 0, i = 1, ...., n, (5.52)

xi − ui + ub2
i = 0, i = 1, ...., n, (5.53)

where, sj, lbi, and ubi are the slack variables used to transform inequality, lower-

bound, and upper-bound constraints into non-linear equations.
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2. In second step, above mentioned system of simultaneous equations is solved using

BBM (shown in Algorithm 4).

Algorithm 4: BBM(x)

Result: x, FE

1 Set MaxFE ← (3D + 1), and TolF ← 10−15;

2 Define sj ← 0, j = 1, ..., q, lbi ←
√
xi − li, , i = 1, ...., D, and

ubi ←
√
ui − xi, , i = 1, ...., D;

3 Initialize x̂(0) ← [xT , s1, ..sq, lb1, ..lbD, ub1, ..ubD]T ;

4 J ← Calculate Jacobian using Finite-difference approximation;

5 FE ← D;

6 B−1(0) ← PsuedoInverse(J);

7 F (0) ← F (x̂(0));

8 FEs← FEs+ 1;

9 k ← 0;

10 while (FEs < MaxFE)||(‖F (k)‖> TolF ) do

11 k ← k + 1;

12 x̂(k+1) ← x̂(k) −B−1(k)F (k);

13 F (k+1) ← F (x̂(k+1));

14 FE ← FE + 1;

15 s(k+1) ← x̂(k+1) − x̂(k);

16 y(k+1) ← F (k+1)−F (k)
;

17 B−1(k+1) ← B−1(k) + (s(k+1)−B−1(k)y(k+1))(s(k+1))TB−1(k)

(s(k+1))TB−1(k)y(k+1) ;

18 end

19 x← x̂
(k)
1:D;

5.5.3 Proposed Algorithm: υMA-ESbm

The proposed algorithm, named υMA-ESbm, is described. MA-ES [200] is used as the core

optimizer. In order to deal with the constraints of the problem, υ-level penalty function

based constraint handling technique with Broyden-based mutation is consolidated in the

framework of MA-ES described in [200]. The pseudo code of υMA-ESbm is shown in

Algorithm 5.
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Algorithm 5: υMA-ESbm
Result: bestx, bestf , and bestc

1 Set λ, µ, σ0, σmax, T , kr, and θr;

2 Initialize the parameters of MA-ES at their default values as shown in Table 5.1;

3 Initialize M0 ← I, Pc ← 0, and X0 ← {x0
1, x

0
2....x

0
λ};

4 Evaluate f0, g0, and h0 at each individual of X0;

5 FEs← λ;

6 φ
(0)
i ←

∑
j max(g0

i,j , 0) +
∑
j max(|h0

i,j |−ev , 0), i ∈ {1, 2..λ};

7 Calculate υ0, γ, φ(υ0), and α0 using Eqns. (5.37), (5.39), (5.40), and (5.45) respectively ;

8 F 0 ← f0 + α0 · φ(υ0);

9 x0
m ←

∑µ
i=1 wixi:λ according to F 0;

10 bestx← x0
1:λ, and bestf ← f0

1:λ;

11 bestc←
∑
j max(g0

1:λ, 0) +
∑
j max(|h0

1:λ|−ev , 0) ;

12 k ← 0;

13 while FEs ≤ FEmax do

14 k ← k + 1;

15 M−1 ← PseudoInverse(Mk);

16 for i← 1 : λ do

17 zki ← N(0, I), dki ←Mkzki and x̄← xki + σkdki ;

18 xk+1
i ← KeepRange(x̄);

19 Evaluate fi, gi, and hi at xk+1
i ;

20 FEs← FEs+ 1;

21 Calculate φ
(υ)
i using Eqn. (5.40);

22 if (mod(k,D) == 0)||(U(0, 1) < θr) then

23 [xk+1
i , FE] ← BBM(xk+1

i );

24 FEs← FEs+ FE

25 end

26 if x̄ 6= xk+1
i then

27 dki ←
xk+1
i −x̄
σk , zki ←M−1dki ;

28 Calculate φ
(υ)
i using Eqn. (5.40);

29 end

30 end

31 Calculate α using Eqn. (5.45);

32 Fk ← fk + αk · φ(υk);

33 xk+1
m ← xkm + σk

∑µ
i=1 wid

k
1:λ according to F ;

34 Update Pk+1
c , Mk+1, σk+1, and υk+1 using Eqns. (5.56), (6.48), (5.58), and (5.37);

35 Update bestx, bestf , and bestc using Deb’s rule [201];

36 end

The main steps of υMA-ESbm are described as follows.

• Step 1 (Line 1-3): Firstly, parameters of algorithm are set to their default values

and an initial population X0 of λ solutions are randomly generated within the

bounds of the search space using following equation.

x0
i,j = lj + (uj − lj) · U(0, 1), for i = 1, 2.....λ, (5.54)
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Table 5.1: Default value of parameters of MA-ES [1]

1. wi = ln(µ+0.5)−ln(i)∑µ
j=1(ln(µ+0.5)−ln(j))

, for i ∈ {1, .., µ},

2. µeff = 1∑µ
i=1 w

2
i
, 3. c =

µeff+2

D+µeff+5
,

4. cp = 2
(D+1.3)2+µeff

, 5. cz = min

[
1− cp, 2(µeff−2+1/µeff )

(D+1)2+µeff

]
.

where, xi,j represents j−th element of x0
i and U(0, 1) a uniformly distributed random

number in (0, 1).

• Step 2 (Line 4-12): The initial population is used to determine the υ0 and γ. Then,

the initial recombinant, x0
m, is obtained using weighted recombination of the top µ

individuals of population X0.

• Step 3 (Line 17-21): By using σk and Mk, new solutions are generated for each λ

solutions in the mutation operation. If a new solution is sampled outside the bounds

of the search space, then that solution is reflected back to search space using Eqn.

(5.55) (Line 18, KeepRange function).

xi,j =


2× lj − xi,j −

⌊
lj−xi,j
vi

⌋
vi, ifx˙i,j ¡ l˙j

xi,j −
⌊
xi,j−vj
vi

⌋
i
, ifx˙i,j¿u˙j

xi,j else

(5.55)

where vi = (lj − uj).

• Step 4 (Line 22-25): If the iteration count, k, becomes multiple of dimension D,

BBM operator is used with probability θr to generate the feasible solutions to replace

the infeasible ones.

• Step 5 (Line 26-29): The corresponding vectors dki and zki of the readjusted xki are

recalculated to the correct value. Inverse of Mk is required for this process.

• Step 6 (Line 31-34): Calculates the penalty factor α by using Eqn. (5.45). Vector

P k+1
c is updated using Eqn. (5.56) and matrix Mk+1 is updated using P k+1

c , Mk, zk

as shown in Eqn (6.48), and other parameters. Finally, the mutation step-size σk+1

is updated using the value of P k+1
c as shown in Eqn. (5.58).

P k+1
c = (1− c)P k

c +
√
c(2− c)µeff

µ∑
i=1

wiz
k
i:λ, (5.56)
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Mk+1 = Mk +
cp
2
Mk(P k+1

c (P k+1
c )T − I)...

+
cz
2
Mk

(
µ∑
i=1

wiz
k
i:λ(z

k
i:λ)

T − I

)
, (5.57)

σk+1 = min

(
σkexp

[
c

2

(
||P k+1

c ||2

D
− 1

)]
, σmax

)
, (5.58)

where c, cp, and cz are learning rate parameters of MA-ES which are set to their

default values.

• Step 7 (Line 35): Best solution with its objective function and constraint violation

value are updated using Deb’s rule [201] of selection of solution.

• Step 8 (Line 15): If the inverse of M is ill-conditioned then M is reinitialized to

Identity matrix.

• Step 9 (Line 13): Go to Step 3, if the FEs is less than the maximum allowed

number of function evaluation.

• Step 10 (Line 36): Return the best solution with its objective function and con-

straint violation value.

The performance of υMAESlm has been validated on benchmark problems and reported

in Appendix-III.

5.6 Performance of Proposed Algorithm

Two novel algorithms, εDE-GN, and υMAESbm, have been implemented to optimize the

objective function corresponding to power flow problem. εDE-GN algorithm uses DE as

a search algorithm with a Gauss-Newton mutation operator. υMAESbm uses MAES as

a search algorithm with Broyden mutation operator.

To analyze the accuracy of the obtained results from the proposed algorithms, a

comparison of voltages obtained from the proposed algorithms and PSCAD/EMTDC

is performed on the 6-bus system. The results obtained from PSCAD, εDE-GN, and

υMAESbm are depicted in Table-5.2. It is clearly seen from Table-5.2 that the maxi-

mum errors in voltage magnitude and angle are 0.0081% and 0.26% respectively. This

good agreement within the obtained results validates the accuracy of the εDE-GN, and
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Table 5.2: Validation of obtained result of the six-bus test system

Bus
Voltage magnitude (V) Angle (rad)

PSCAD εDE-GN υMAESbm PSCAD εDE-GN υMAESbm

1 121.92 121.92 121.92 0.0078 0.0078 0.0078

2 123.51 123.51 123.51 -0.0013 -0.0013 -0.0013

3 122.42 122.42 122.42 -0.0388 -0.0389 -0.0389

4 125.37 125.37 125.37 0.0065 0.0065 0.0065

5 125.74 125.74 125.74 0∗ 0∗ 0∗

6 123.11 123.10 123.10 -0.0420 -0.0421 -0.0426

err 0.0081% 0.0081% 0.26% 0.26%

freq 376.6645 376.6645 376.6645

Time 172s 0.4s 0.9s

Table 5.3: Comparison of results on 33-bus system

Methods Mean Stdev CT

GA 1.48× 10−04 1.02× 10−04 4.3s

PSO 2.04× 10−06 1.83× 10−06 2.2s

Newton-trust 1.73× 10−06 1.07× 10−06 1.7s

εDE-GN 1.58× 10−09 1.43× 10−09 0.8s

υMAESbm 1.25× 10−10 1.08× 10−10 1.1s

υMAESbm in solving the power flow of droop control based islanded MG. Moreover,

PSCAD requires approximately 172s to attain the steady-state, while the εDE-GN, and

υMAESbm require 0.4s and 0.9s respectively.

Further, a comparison among different optimization algorithms, GA, PSO, Newton-

trust region, εDE-GN, and υMAESbm has also been done for a 33-bus test system. The

values of the means and standard deviations of the objective function with computation

time are depicted for each of the algorithms in Table 5.3. This Table shows that the pro-

posed algorithms outperform the other contenders in terms of accuracy and computation

time.
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5.7 Case Studies

In this section, four case studies were carried out to validate the load flow flow algorithms

on different test systems. The framework of these cases studies are as follows:

• Case study I: In this case, CASE6 test system was adopted to validate the proposed

load flow algorithms. Fig. 5.4 shows topology of CASE6 test system as an islanded

microgrid. The load data and line connectivity data used in test systems are reported

in Appendix-II. This system consist of three similar droop controlled DGs on buses

4, 5 and 6 and the system is operated in islanded mode. The detailed specifications

of droop controls are depicted in Table. 5.4. The effectuation of the proposed load

flow algorithms as well as a comparative analysis using PSCAD software [40], the

PSO method [23] are depicted in Table 5.4. Following are the observations:

1. The steady state frequency obtained by proposed algorithms are 0.99924 p.u.

2. The comparative analysis of the maximum magnitude and maximum phase

errors of above specified methods against the proposed methods are 0.0008

and 0.007, respectively .

Based on the above comparative analysis, it can be concluded that the proposed

algorithms perform with acceptable accuracy on droop controlled microgrids in is-

landed mode of operation.

Table 5.4: Droop control settings of DGs in CASE6 test system [56]

DG Location mp nq ω∗ V ∗ Smax Qmax

1 4 1.1439× 10−3 0.0591 1 1.01 1 0.7

2 5 1.1439× 10−3 0.0591 1 1.01 1 0.7

3 6 1.1439× 10−3 0.0591 1 1.01 1 0.7

• Case study II: The IEEE CASE69 distribution system shown in Fig.5.5 has been

considered for this case study as an islanded microgrid. This system is having total

active and reactive loads of 3.772 MW and 2.694 MVAr respectively. Bus numbers

50, 27, 35, 46 and 65 are considered for DGs installation. The detailed droop control

setting of DGs for the CASE69 distribution system reported in Table 5.6 are adopted
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Figure 5.4: Topology of CASE6 test system operated as an islanded microgrid.
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Table 5.5: Outcomes of proposed load flow algorithm for a CASE6 test system compared

with other methods.

Bus
Time domain Model εDE-GN υMAESbm PSO Newton-trust

|V | 6 V |V | 6 V |V | 6 V |V | 6 V |V | 6 V

1 0.9605 0 0.9606 0 0.9606 0 0.9607 0 0.9601 0

2 0.9730 -0.537 0.9729 -0.5291 0.9730 -0.5269 0.9728 -0.5292 0.9725 -0.5262

3 0.9643 -2.685 0.9647 -2.6837 0.9646 -2.6828 0.9645 2.6765 0.9638 -2.6822

4 0.9877 -0.0725 0.9875 -0.0726 0.9877 -0.0716 0.9884 -0.0727 0.9873 -0.0722

5 0.9906 -0.452 0.9903 -0.4516 0.9905 -0.4522 0.9883 -0.0454 0.9901 -0.45101

6 0.9698 -2.869 0.9689 -2.8668 0.9698 -2.8659 0.9701 -2.8608 0.9694 -2.8653

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35

DG3

36 37 38 39 40 41 42 43 44 45 46

DG4

DG1

47 48 49 50

51 52

DG5

53 54 55 56 57 58 59 60 61 62 63 64 65

66 67

68 69

DG1

Figure 5.5: Topology of CASE69 test system operated as an islanded microgrid.

for analyses purpose. Tables 5.7 and 5.8 present the detailed voltage profile obtained

using εDE-GN and υMAESbm, respectively. Following are the observations.

1. The steady state frequency obtained by εDE-GN and υMAESbm are 0.9977

p.u and 0.9977 p.u., respectively.

2. The total active power and reactive power load demand on the distribution sys-

tem are 3.7722 MW and 2.6941 MVAr respectively whereas active and reactive

power losses are 0.0868 MW and 0.0424 MVAR.

• Case study III: A CASE33 distribution system with bus voltage of 12.66 kV is used

in this case study for demonstration of proposed load flow algorithm. The single
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Table 5.6: Droop control settings of DGs in CASE69 test system [2]

DG Location mp nq ω∗ V ∗ Smax Qmax

1 60 1.501× 10−3 0.03333 1 1.04 2.0 1.4

2 27 4.504× 10−3 0.01 1 1.04 1.0 0.65

3 35 2.308× 10−3 0.05 1 1.04 1.2 0.6

4 46 2.308× 10−3 0.05 1 1.04 1 0.6

5 65 1.501× 10−3 0.03333 1 1.04 1.5 0.9

Table 5.7: Voltage profile obtained from εDE-GN for CASE69 distribution system oper-

ated as an islanded microgrid.

Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I

1 – – – – – – 24 0.9711 -0.1277 -0.0280 -0.0200 0.0208 2.2516 47 0.9712 -0.0001 0.0000 0.0000 0.0061 -0.7545

2 0.9710 0.0000 0.0000 0.0000 0.0033 -0.5378 25 0.9870 -0.1356 0.0000 0.0000 0.0032 0.5156 48 0.9730 0.0039 -0.0790 -0.0564 0.0592 2.5486

3 0.9710 0.0000 0.0000 0.0000 0.0063 -0.8331 26 0.9936 -0.1388 -0.0140 -0.0100 0.0105 2.2647 49 0.9815 0.0190 -0.3847 -0.2745 0.2893 2.5477

4 0.9712 -0.0003 0.0000 0.0000 0.0057 -0.8002 27 0.9974 -0.1407 0.4940 0.6374 0.3698 -0.9093 50 0.9872 0.0254 -0.3847 -0.2745 0.6281 -0.3321

5 0.9711 -0.0037 0.0000 0.0000 0.0150 -0.9815 28 0.9706 0.0005 -0.0260 -0.0186 0.0275 2.5083 51 0.9401 -0.0825 -0.0405 -0.0283 0.0292 2.4537

6 0.9571 -0.0377 -0.0026 -0.0022 0.0225 -1.2498 29 0.9648 0.0073 -0.0260 -0.0186 0.0234 2.3300 52 0.9400 -0.0825 -0.0036 -0.0027 0.0029 2.4250

7 0.9433 -0.0737 -0.0404 -0.0300 0.0183 2.8487 30 0.9688 0.0293 0.0000 0.0000 0.0050 -0.6933 53 0.9373 -0.1039 -0.0043 -0.0035 0.0068 -0.8428

8 0.9403 -0.0826 -0.0750 -0.0540 0.0612 2.4732 31 0.9695 0.0332 0.0000 0.0000 0.0047 -0.7149 54 0.9356 -0.1232 -0.0264 -0.0190 0.0095 2.4035

9 0.9390 -0.0874 -0.0300 -0.0220 0.0128 2.4806 32 0.9732 0.0526 0.0000 0.0000 0.0130 -0.6912 55 0.9340 -0.1504 -0.0240 -0.0172 2.1961 -1.3162

10 0.9279 -0.0876 -0.0280 -0.0190 0.0189 2.5090 33 0.9828 0.0986 -0.0140 -0.0100 0.0178 -0.7815 56 0.8995 -0.1475 0.0000 0.0000 0.0503 1.0580

11 0.9256 -0.0877 -0.1450 -0.1040 0.1145 2.4455 34 1.0074 0.1901 -0.0195 -0.0140 0.0215 -0.8037 57 0.7209 -0.0983 0.0000 0.0000 0.0691 1.0531

12 0.9231 -0.0901 -0.1450 -0.1040 0.1109 2.4370 35 1.0335 0.2664 1.0099 -0.9140 0.8479 1.1568 58 0.6334 -0.0694 0.0000 0.0000 0.0415 1.1028

13 0.9295 -0.0969 -0.0080 -0.0055 0.0041 2.1597 36 0.9710 0.0003 -0.0260 -0.0186 0.0275 2.5237 59 0.5996 -0.0571 -0.1000 -0.0720 0.1140 2.2052

14 0.9362 -0.1038 -0.0080 -0.0055 0.0043 2.1304 37 0.9715 0.0051 -0.0260 -0.0186 0.0212 2.5374 60 0.5598 -0.0405 0.4486 1.3111 0.0548 -1.5506

15 0.9434 -0.1109 0.0000 0.0000 0.0018 -0.2209 38 0.9736 0.0094 0.0000 0.0000 0.0038 -0.8084 61 0.5012 -0.0292 -1.2440 -0.8880 1.3428 2.5328

16 0.9447 -0.1122 -0.0455 -0.0300 0.0338 2.4396 39 0.9741 0.0106 -0.0240 -0.0170 0.0187 2.6245 62 0.4991 -0.0287 -0.0320 -0.0230 0.0022 1.2631

17 0.9480 -0.1150 -0.0600 -0.0350 0.0429 2.4945 40 0.9742 0.0107 -0.0240 -0.0170 0.0185 2.6275 63 0.4959 -0.0281 0.0000 0.0000 0.0073 2.4883

18 0.9481 -0.1150 -0.0600 -0.0350 0.0431 2.4941 41 0.9911 0.0405 -0.0012 -0.0010 0.0051 -1.8529 64 0.4807 -0.0251 -0.2270 -0.1620 0.2435 2.5459

19 0.9528 -0.1178 0.0000 0.0000 0.0011 0.2747 42 0.9985 0.0531 0.0000 0.0000 0.0018 -1.5648 65 0.4761 -0.0242 1.4649 0.0565 0.0633 2.5506

20 0.9558 -0.1196 -0.0010 -0.0006 0.0010 0.2978 43 0.9995 0.0547 -0.0060 -0.0043 0.0058 2.6485 66 0.9252 -0.0875 -0.0180 -0.0130 0.0130 2.4392

21 0.9607 -0.1224 -0.1140 -0.0810 0.1141 2.3989 44 0.9997 0.0551 0.0000 0.0000 0.0019 -0.9064 67 0.9252 -0.0875 -0.0180 -0.0130 0.0138 2.4378

22 0.9610 -0.1226 -0.0053 -0.0035 0.0239 -0.7357 45 1.0023 0.0598 -0.0392 -0.0263 0.0442 2.8316 68 0.9210 -0.0894 -0.0280 -0.0200 0.0216 2.4428

23 0.9642 -0.1242 0.0000 0.0000 0.0013 0.7907 46 1.0023 0.0598 0.9767 0.1198 0.5296 0.1773 69 0.9210 -0.0894 -0.0280 -0.0200 0.0218 2.4425

w 0.9977

line diagram of distribution system shown in Fig. 5.6 with four DGs on bus number

26, 22, 25 and 9 and this test system is operated in islanded mode. The static droop

coefficient of DGs along with relevant specification are depicted in Table. 5.9. The

coefficients kpf and kqf (equations 5.3 and 5.4) for all DGs were assumed as 1 and

-1 respectively. In this case, analysis have been performed assuming DG1 operates

in PV mode, whereas other DGs are operating in droop controlled mode. Often

constant power load modeling is taken into load flow formulation, whereas in this

work loads are modeled to mimic real scenario in form of commercial, residential and

industrial load models which were obtained by using equations 5.3 and 5.4. The
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Table 5.8: Voltage profile obtained from υMAESbm for CASE69 distribution system

operated as an islanded microgrid.

Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I

1 – – – – – – 24 0.9711 -0.1277 -0.0280 -0.0200 0.0208 2.2516 47 0.9712 -0.0001 0.0000 0.0000 0.0061 -0.7545

2 0.9710 0.0000 0.0000 0.0000 0.0033 -0.5378 25 0.9870 -0.1356 0.0000 0.0000 0.0032 0.5156 48 0.9730 0.0039 -0.0790 -0.0564 0.0592 2.5486

3 0.9710 0.0000 0.0000 0.0000 0.0063 -0.8331 26 0.9936 -0.1388 -0.0140 -0.0100 0.0105 2.2647 49 0.9815 0.0190 -0.3847 -0.2745 0.2893 2.5477

4 0.9712 -0.0003 0.0000 0.0000 0.0057 -0.8002 27 0.9974 -0.1407 0.4940 0.6374 0.3698 -0.9093 50 0.9872 0.0254 -0.3847 -0.2745 0.6281 -0.3321

5 0.9711 -0.0037 0.0000 0.0000 0.0150 -0.9815 28 0.9706 0.0005 -0.0260 -0.0186 0.0275 2.5083 51 0.9401 -0.0825 -0.0405 -0.0283 0.0292 2.4537

6 0.9571 -0.0377 -0.0026 -0.0022 0.0225 -1.2498 29 0.9648 0.0073 -0.0260 -0.0186 0.0234 2.3300 52 0.9400 -0.0825 -0.0036 -0.0027 0.0029 2.4250

7 0.9433 -0.0737 -0.0404 -0.0300 0.0183 2.8487 30 0.9688 0.0293 0.0000 0.0000 0.0050 -0.6933 53 0.9373 -0.1039 -0.0043 -0.0035 0.0068 -0.8428

8 0.9403 -0.0826 -0.0750 -0.0540 0.0612 2.4732 31 0.9695 0.0332 0.0000 0.0000 0.0047 -0.7149 54 0.9356 -0.1232 -0.0264 -0.0190 0.0095 2.4035

9 0.9390 -0.0874 -0.0300 -0.0220 0.0128 2.4806 32 0.9732 0.0526 0.0000 0.0000 0.0130 -0.6912 55 0.9340 -0.1504 -0.0240 -0.0172 2.1961 -1.3162

10 0.9279 -0.0876 -0.0280 -0.0190 0.0189 2.5090 33 0.9828 0.0986 -0.0140 -0.0100 0.0178 -0.7815 56 0.8995 -0.1475 0.0000 0.0000 0.0503 1.0580

11 0.9256 -0.0877 -0.1450 -0.1040 0.1145 2.4455 34 1.0074 0.1901 -0.0195 -0.0140 0.0215 -0.8037 57 0.7209 -0.0983 0.0000 0.0000 0.0691 1.0531

12 0.9231 -0.0901 -0.1450 -0.1040 0.1109 2.4370 35 1.0335 0.2664 1.0099 -0.9140 0.8479 1.1568 58 0.6334 -0.0694 0.0000 0.0000 0.0415 1.1028

13 0.9295 -0.0969 -0.0080 -0.0055 0.0041 2.1597 36 0.9710 0.0003 -0.0260 -0.0186 0.0275 2.5237 59 0.5996 -0.0571 -0.1000 -0.0720 0.1140 2.2052

14 0.9362 -0.1038 -0.0080 -0.0055 0.0043 2.1304 37 0.9715 0.0051 -0.0260 -0.0186 0.0212 2.5374 60 0.5598 -0.0405 0.4486 1.3111 0.0548 -1.5506

15 0.9434 -0.1109 0.0000 0.0000 0.0018 -0.2209 38 0.9736 0.0094 0.0000 0.0000 0.0038 -0.8084 61 0.5012 -0.0292 -1.2440 -0.8880 1.3428 2.5328

16 0.9447 -0.1122 -0.0455 -0.0300 0.0338 2.4396 39 0.9741 0.0106 -0.0240 -0.0170 0.0187 2.6245 62 0.4991 -0.0287 -0.0320 -0.0230 0.0022 1.2631

17 0.9480 -0.1150 -0.0600 -0.0350 0.0429 2.4945 40 0.9742 0.0107 -0.0240 -0.0170 0.0185 2.6275 63 0.4959 -0.0281 0.0000 0.0000 0.0073 2.4883

18 0.9481 -0.1150 -0.0600 -0.0350 0.0431 2.4941 41 0.9911 0.0405 -0.0012 -0.0010 0.0051 -1.8529 64 0.4807 -0.0251 -0.2270 -0.1620 0.2435 2.5459

19 0.9528 -0.1178 0.0000 0.0000 0.0011 0.2747 42 0.9985 0.0531 0.0000 0.0000 0.0018 -1.5648 65 0.4761 -0.0242 1.4649 0.0565 0.0633 2.5506

20 0.9558 -0.1196 -0.0010 -0.0006 0.0010 0.2978 43 0.9995 0.0547 -0.0060 -0.0043 0.0058 2.6485 66 0.9252 -0.0875 -0.0180 -0.0130 0.0130 2.4392

21 0.9607 -0.1224 -0.1140 -0.0810 0.1141 2.3989 44 0.9997 0.0551 0.0000 0.0000 0.0019 -0.9064 67 0.9252 -0.0875 -0.0180 -0.0130 0.0138 2.4378

22 0.9610 -0.1226 -0.0053 -0.0035 0.0239 -0.7357 45 1.0023 0.0598 -0.0392 -0.0263 0.0442 2.8316 68 0.9210 -0.0894 -0.0280 -0.0200 0.0216 2.4428

23 0.9642 -0.1242 0.0000 0.0000 0.0013 0.7907 46 1.0023 0.0598 0.9767 0.1198 0.5296 0.1773 69 0.9210 -0.0894 -0.0280 -0.0200 0.0218 2.4425

w 0.9977

load exponents for commercial, residential and industrial load are given in Table

5.10. Following are the observations:

1. The steady state frequency obtained by εDE-GN and υMAESbm for this case

are 0.9984 p.u and 0.9984 p.u, respectively.

2. The detailed voltage and load profile of the CASE33 distribution system are

presented in Table. 5.11.

3. Reactive power generation reaches maximum when the voltage of bus 22 equals

1.0075 p.u. whereas reactive power generation is fixed at its maximum value,

when the voltage of bus 22 equals to 1.01 p.u. keeping the value of reactive

power of droop controlled DGs within in their permissible range.

• Case study IV: The CASE25, a three phase unbalanced distribution operating

in isolated mode, with the rated voltage of 12.66 KV has been adopted for this

study. Fig. 5.7 shows typical topology of 25-bus distribution system as an islanded

microgrid. The load data, line connectivity and impedances for different type of

conductor used in distribution system are given in ref. [202]. Three DGs are installed
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Figure 5.6: Topology of CASE33 system operating in islanded mode
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Table 5.9: Droop control settings of DGs in CASE33 system [2]

DG Location mp nq ω∗ V ∗ Smax Qmax

1 26 0.705× 10−3 0.01667 1 1 3.5 1.8

2 22 2.252× 10−3 0.05 1 1 1.5 0.6

3 25 4.504× 10−3 0.01 1 1 1.5 1.3

4 9 3.003× 10−3 0.0667 1 1 1.5 1

Table 5.10: Load exponents of different loads

Load α β

constant 0 0

industrial 0.18 6

residential 0.92 4.04

commercial 1.51 3.4

Table 5.11: Voltage profile obtained by εDE-GN for CASE33 distribution system operated

as an islanded microgrid.

Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I

1 – – – – – - 12 0.9830 0.0003 -0.1200 -0.0700 0.1413 2.6138 23 0.9906 -0.0015 -0.1800 -0.1000 0.2079 2.6330

2 0.9922 0.0000 -0.2000 -0.1200 0.2351 2.6012 13 0.9773 -0.0011 -0.1200 -0.0700 0.1422 2.6124 24 0.9908 -0.0043 -0.8400 -0.4000 0.9390 2.6929

3 0.9909 -0.0001 -0.1800 -0.0800 0.1988 2.7233 14 0.9752 -0.0023 -0.2400 -0.1600 0.2958 2.5513 25 0.9944 -0.0064 0.4205 1.0644 1.1509 -1.2010

4 0.9905 0.0009 -0.2400 -0.1600 0.2912 2.5545 15 0.9738 -0.0029 -0.1200 -0.0200 0.1249 2.9736 26 0.9912 0.0051 3.0831 1.3764 3.4062 -0.4148

5 0.9906 0.0018 -0.1200 -0.0600 0.1354 2.6798 16 0.9725 -0.0033 -0.1200 -0.0400 0.1301 2.8166 27 0.9888 0.0060 -0.1200 -0.0500 0.1315 2.7528

6 0.9906 0.0043 -0.1200 -0.0400 0.1277 2.8241 17 0.9706 -0.0044 -0.1200 -0.0400 0.1303 2.8154 28 0.9779 0.0073 -0.1200 -0.0400 0.1294 2.8271

7 0.9901 0.0029 -0.4000 -0.2000 0.4517 2.6808 18 0.9701 -0.0046 -0.1800 -0.0800 0.2031 2.7188 29 0.9701 0.0085 -0.2400 -0.1400 0.2864 2.6220

8 0.9896 0.0022 -0.4000 -0.2000 0.4519 2.6801 19 0.9928 0.0002 -0.1800 -0.0800 0.1984 2.7236 30 0.9667 0.0102 -0.4000 -1.2000 1.3085 1.9027

9 0.9907 0.0010 1.3207 0.9988 1.6713 -0.6465 20 1.0000 0.0024 -0.1800 -0.0800 0.1970 2.7258 31 0.9627 0.0089 -0.3000 -0.1400 0.3439 2.7138

10 0.9853 0.0000 -0.1200 -0.0400 0.1284 2.8199 21 1.0024 0.0036 -0.1800 -0.0800 0.1965 2.7269 32 0.9618 0.0085 -0.4200 -0.2000 0.4837 2.7057

11 0.9845 0.0001 -0.0900 -0.0600 0.1099 2.5537 22 1.01 0.0063 1.4410 0.6 1.5769 -0.4285 33 0.9616 0.0084 -0.1200 -0.0800 0.1500 2.5620

w 0.9984

at bus number 13, 19 and 25. The static droop coefficient of DGs along with

relevant specification are depicted in Table. 5.13. Tables 5.14 and 5.15 show the

power flow solution for CASE25 three phase unbalanced distribution by εDE-GN

and υMAESbm, respectively. As shown in these tables, the voltage magnitudes and

angles obtained by εDE-GN and υMAESbm are identical.

In Tables 5.14 and 5.15, it is to be noted that for bus 1 and bus 2, voltages and angles

for all the phases are identical. This reason behind this as follows. When CASE25

system works in the grid connected mode, bus 1 acts as a root node connected to the
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Table 5.12: Voltage profile obtained by υMAESbm for CASE33 distribution system op-

erated as an islanded microgrid.

Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I Bus |V | 6 V P Q |I| 6 I

1 – – – – – - 12 0.9830 0.0003 -0.1200 -0.0700 0.1413 2.6138 23 0.9906 -0.0015 -0.1800 -0.1000 0.2079 2.6330

2 0.9922 0.0000 -0.2000 -0.1200 0.2351 2.6012 13 0.9773 -0.0011 -0.1200 -0.0700 0.1422 2.6124 24 0.9908 -0.0043 -0.8400 -0.4000 0.9390 2.6929

3 0.9909 -0.0001 -0.1800 -0.0800 0.1988 2.7233 14 0.9752 -0.0023 -0.2400 -0.1600 0.2958 2.5513 25 0.9944 -0.0064 0.4205 1.0644 1.1509 -1.2010

4 0.9905 0.0009 -0.2400 -0.1600 0.2912 2.5545 15 0.9738 -0.0029 -0.1200 -0.0200 0.1249 2.9736 26 0.9912 0.0051 3.0831 1.3764 3.4062 -0.4148

5 0.9906 0.0018 -0.1200 -0.0600 0.1354 2.6798 16 0.9725 -0.0033 -0.1200 -0.0400 0.1301 2.8166 27 0.9888 0.0060 -0.1200 -0.0500 0.1315 2.7528

6 0.9906 0.0043 -0.1200 -0.0400 0.1277 2.8241 17 0.9706 -0.0044 -0.1200 -0.0400 0.1303 2.8154 28 0.9779 0.0073 -0.1200 -0.0400 0.1294 2.8271

7 0.9901 0.0029 -0.4000 -0.2000 0.4517 2.6808 18 0.9701 -0.0046 -0.1800 -0.0800 0.2031 2.7188 29 0.9701 0.0085 -0.2400 -0.1400 0.2864 2.6220

8 0.9896 0.0022 -0.4000 -0.2000 0.4519 2.6801 19 0.9928 0.0002 -0.1800 -0.0800 0.1984 2.7236 30 0.9667 0.0102 -0.4000 -1.2000 1.3085 1.9027

9 0.9907 0.0010 1.3207 0.9988 1.6713 -0.6465 20 1.0000 0.0024 -0.1800 -0.0800 0.1970 2.7258 31 0.9627 0.0089 -0.3000 -0.1400 0.3439 2.7138

10 0.9853 0.0000 -0.1200 -0.0400 0.1284 2.8199 21 1.0024 0.0036 -0.1800 -0.0800 0.1965 2.7269 32 0.9618 0.0085 -0.4200 -0.2000 0.4837 2.7057

11 0.9845 0.0001 -0.0900 -0.0600 0.1099 2.5537 22 1.01 0.0063 1.4410 0.6 1.5769 -0.4285 33 0.9616 0.0084 -0.1200 -0.0800 0.1500 2.5620

w 0.9984

grid. However, when this system is working as an islanded microgrid, bus 1 becomes

leaf node (Fig. 5.7) where as per the data specified, there are no load on bus 1 and

bus 2. Hence no current flows between these buses in all the phases and due to this

voltage magnitudes and angles for all phases at these buses shall be identical..

From the above discussion, it can be concluded that the performance of εDE-GN

and υMAESbm is satisfactory on unbalanced islanded microgrids.

Table 5.13: Droop control settings of DGs in CASE25 test system.

DG Location Sp Sq ω∗ V ∗ Smax Qmax

1 13 0.005 0.05 1 1.01 0.6 0.36

2 19 0.01 0.1 1 1.01 0.3 0.18

3 25 0.005 0.05 1 1.01 0.6 0.18

5.8 Summary

In this chapter, novel algorithms for the power flow problem of an islanded microgrid

are introduced. In proposed algorithms, the operating frequency is represented as an

additional power flow variable. Various modes of DGs, droop, PV and PQ, are modeled

as per the characteristics of islanded microgrids.

The proposed power flow problem is formulated as a constrained optimization prob-

lem which is solved by using two proposed algorithms, εDE-GN, and υMAESbm. The

proposed algorithms are applied to balanced test systems: CASE6, CASE33, CASE69,
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Figure 5.7: Topology of CASE25 test system operated as an islanded microgrid.
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Table 5.14: Power flow result obtained by εDE-GN for CASE25 unbalanced distribution

system operated as an islanded microgrid.

Bus
Phase a Phase b Phase c

|V | 6 V P Q |V | 6 V P Q |V | 6 V P Q

1 0.9894 0.0000 0.0000 0.0000 0.9893 -119.9860 0.0000 0.0000 0.9896 119.9868 0.0000 0.0000

2 0.9894 0.0000 0.0000 0.0000 0.9893 -119.9860 0.0000 0.0000 0.9896 119.9868 0.0000 0.0000

3 0.9901 0.0111 -0.0035 -0.0025 0.9899 -119.9791 -0.0040 -0.0030 0.9902 120.0002 -0.0045 -0.0032

4 0.9908 0.0320 -0.0050 -0.0040 0.9906 -119.9633 -0.0060 -0.0045 0.9908 120.0237 -0.0050 -0.0035

5 0.9904 0.0323 -0.0040 -0.0030 0.9902 -119.9621 -0.0040 -0.0030 0.9905 120.0233 -0.0040 -0.0030

6 0.9881 0.0039 -0.0040 -0.0030 0.9881 -119.9785 -0.0045 -0.0032 0.9885 119.9886 -0.0035 -0.0025

7 0.9876 0.0068 0.0000 0.0000 0.9876 -119.9723 0.0000 0.0000 0.9879 119.9913 0.0000 0.0000

8 0.9875 0.0046 -0.0040 -0.0030 0.9874 -119.9760 -0.0040 -0.0030 0.9879 119.9877 -0.0040 -0.0030

9 0.9892 0.0086 -0.0060 -0.0045 0.9893 -119.9762 -0.0050 -0.0040 0.9895 119.9981 -0.0050 -0.0035

10 0.9914 0.0101 -0.0035 -0.0025 0.9914 -119.9821 -0.0040 -0.0030 0.9914 120.0058 -0.0045 -0.0032

11 0.9929 0.0109 -0.0045 -0.0032 0.9929 -119.9867 -0.0035 -0.0025 0.9928 120.0112 -0.0040 -0.0030

12 0.9926 0.0113 -0.0050 -0.0035 0.9925 -119.9858 -0.0060 -0.0045 0.9925 120.0126 -0.0050 -0.0040

13 0.9953 0.0085 0.0393 0.0278 0.9953 -119.9915 0.0392 0.0286 0.9953 120.0085 0.0399 0.0284

14 0.9857 0.0076 -0.0050 -0.0035 0.9857 -119.9633 -0.0050 -0.0040 0.9860 119.9877 -0.0060 -0.0045

15 0.9850 0.0083 -0.0133 -0.0100 0.9850 -119.9608 -0.0133 -0.0100 0.9854 119.9869 -0.0133 -0.0100

16 0.9872 0.0072 -0.0040 -0.0030 0.9872 -119.9710 -0.0040 -0.0030 0.9876 119.9909 -0.0040 -0.0030

17 0.9853 0.0085 -0.0040 -0.0030 0.9854 -119.9627 -0.0035 -0.0025 0.9856 119.9882 -0.0045 -0.0032

18 0.9902 -0.0047 -0.0040 -0.0030 0.9900 -119.9959 -0.0040 -0.0030 0.9902 119.9881 -0.0040 -0.0030

19 0.9937 -0.0486 0.0159 0.0164 0.9937 -120.0486 0.0166 0.0178 0.9937 119.9514 0.0167 0.0168

20 0.9914 -0.0210 -0.0035 -0.0025 0.9913 -120.0168 -0.0040 -0.0030 0.9913 119.9774 -0.0045 -0.0032

21 0.9891 -0.0028 -0.0040 -0.0030 0.9888 -119.9932 -0.0035 -0.0025 0.9890 119.9915 -0.0045 -0.0032

22 0.9884 -0.0020 -0.0050 -0.0035 0.9880 -119.9912 -0.0060 -0.0045 0.9884 119.9943 -0.0050 -0.0040

23 0.9925 0.0394 -0.0060 -0.0045 0.9924 -119.9590 -0.0050 -0.0040 0.9925 120.0346 -0.0050 -0.0035

24 0.9947 0.0466 -0.0035 -0.0025 0.9945 -119.9563 -0.0045 -0.0032 0.9945 120.0462 -0.0040 -0.0030

25 0.9992 0.0527 0.0373 0.0241 0.9992 -119.9473 0.0387 0.0245 0.9992 120.0527 0.0384 0.0248

w 0.9993

and unbalanced test systems: CASE25 test systems to analyze the performance of the

algorithms. Moreover, the performance of the proposed algorithms is compared with the

performance of PSO, GA, NTR, and time-domain software. The obtained results reveal

that the performance of the proposed algorithm is superior to others.
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Table 5.15: Power flow result obtained by υMAESbm for CASE25 unbalanced distribution

system operated as an islanded microgrid.

Bus
Phase a Phase b Phase c

|V | 6 V P Q |V | 6 V P Q |V | 6 V P Q

1 0.9894 0.0000 0.0000 0.0000 0.9893 -119.9860 0.0000 0.0000 0.9896 119.9868 0.0000 0.0000

2 0.9894 0.0000 0.0000 0.0000 0.9893 -119.9860 0.0000 0.0000 0.9896 119.9868 0.0000 0.0000

3 0.9901 0.0111 -0.0035 -0.0025 0.9899 -119.9791 -0.0040 -0.0030 0.9902 120.0002 -0.0045 -0.0032

4 0.9908 0.0320 -0.0050 -0.0040 0.9906 -119.9633 -0.0060 -0.0045 0.9908 120.0237 -0.0050 -0.0035

5 0.9904 0.0323 -0.0040 -0.0030 0.9902 -119.9621 -0.0040 -0.0030 0.9905 120.0233 -0.0040 -0.0030

6 0.9881 0.0039 -0.0040 -0.0030 0.9881 -119.9785 -0.0045 -0.0032 0.9885 119.9886 -0.0035 -0.0025

7 0.9876 0.0068 0.0000 0.0000 0.9876 -119.9723 0.0000 0.0000 0.9879 119.9913 0.0000 0.0000

8 0.9875 0.0046 -0.0040 -0.0030 0.9874 -119.9760 -0.0040 -0.0030 0.9879 119.9877 -0.0040 -0.0030

9 0.9892 0.0086 -0.0060 -0.0045 0.9893 -119.9762 -0.0050 -0.0040 0.9895 119.9981 -0.0050 -0.0035

10 0.9914 0.0101 -0.0035 -0.0025 0.9914 -119.9821 -0.0040 -0.0030 0.9914 120.0058 -0.0045 -0.0032

11 0.9929 0.0109 -0.0045 -0.0032 0.9929 -119.9867 -0.0035 -0.0025 0.9928 120.0112 -0.0040 -0.0030

12 0.9926 0.0113 -0.0050 -0.0035 0.9925 -119.9858 -0.0060 -0.0045 0.9925 120.0126 -0.0050 -0.0040

13 0.9953 0.0085 0.0393 0.0278 0.9953 -119.9915 0.0392 0.0286 0.9953 120.0085 0.0399 0.0284

14 0.9857 0.0076 -0.0050 -0.0035 0.9857 -119.9633 -0.0050 -0.0040 0.9860 119.9877 -0.0060 -0.0045

15 0.9850 0.0083 -0.0133 -0.0100 0.9850 -119.9608 -0.0133 -0.0100 0.9854 119.9869 -0.0133 -0.0100

16 0.9872 0.0072 -0.0040 -0.0030 0.9872 -119.9710 -0.0040 -0.0030 0.9876 119.9909 -0.0040 -0.0030

17 0.9853 0.0085 -0.0040 -0.0030 0.9854 -119.9627 -0.0035 -0.0025 0.9856 119.9882 -0.0045 -0.0032

18 0.9902 -0.0047 -0.0040 -0.0030 0.9900 -119.9959 -0.0040 -0.0030 0.9902 119.9881 -0.0040 -0.0030

19 0.9937 -0.0486 0.0159 0.0164 0.9937 -120.0486 0.0166 0.0178 0.9937 119.9514 0.0167 0.0168

20 0.9914 -0.0210 -0.0035 -0.0025 0.9913 -120.0168 -0.0040 -0.0030 0.9913 119.9774 -0.0045 -0.0032

21 0.9891 -0.0028 -0.0040 -0.0030 0.9888 -119.9932 -0.0035 -0.0025 0.9890 119.9915 -0.0045 -0.0032

22 0.9884 -0.0020 -0.0050 -0.0035 0.9880 -119.9912 -0.0060 -0.0045 0.9884 119.9943 -0.0050 -0.0040

23 0.9925 0.0394 -0.0060 -0.0045 0.9924 -119.9590 -0.0050 -0.0040 0.9925 120.0346 -0.0050 -0.0035

24 0.9947 0.0466 -0.0035 -0.0025 0.9945 -119.9563 -0.0045 -0.0032 0.9945 120.0462 -0.0040 -0.0030

25 0.9992 0.0527 0.0373 0.0241 0.9992 -119.9473 0.0387 0.0245 0.9992 120.0527 0.0384 0.0248

w 0.9993
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