
Chapter 3

Spherical Search and Butterfly

Constrained Optimizer for Power

Flow of Unbalanced Distribution

System

3.1 Introduction

In this chapter, general-purpose PF tools are developed which are handy and robust for

all possible applications of power system analysis. Recently, evolutionary algorithms have

emerged as robust optimization tools because of their potentials and versatile qualities.

These search techniques are adequate to deal with a large collection of problems of various

characteristics because they do not constrain the variable types and search-space.

In the traditional Jacobian based methods of PF, the solution proceeds as per the

direction gradient (Jacobian or partial derivative). This direction gradient is a kind of

static formulation to decide the step direction and step size. In this gradient direction

procedure, the step direction and the step size can not be decided as per quality of solution

achieved so far. In fact, during the iterations, we do not evaluate any metric related to

the quality of solution.

In any optimization based formulation, this is not the case. In general, in an opti-

mization based formulation, step direction and step size are decided based on the quality

of the solution. There are two broad classifications of optimization: Conventional Opti-
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mization, and Evolutionary (population based) optimization. Conventional optimization

proceeds with one solution whereas evolutionaly optimization proceeds, iteration by it-

eration, with multiple solutions. This population of solution enhances the procedure of

evaluation of the quality of solutions and consequently step direction and step size in a

better way. This results in a dynamic formulation to decide the step direction and step

size. Due to the above fundamental difference in the procedure to evaluate solutions,

evolutionary optimization based PF formulation does not succumb to the ill-conditioning

of the Jacobian matrix and is able to keep sailing in the search of solution and ultimately

provides PF solution.

Traditional Jacobian based correction of solution does not consider the quality of

solution in terms of present solution and solution expected in the next iteration. Whereas,

conventional optimization based correction of solution considers the quality of solution

in terms of present solution and the solution expected in the next iteration considering

active and reactive power mismatch as objective function.

Almost all conventional (Jacobian and optimization based) PF algorithms reported

in the literature utilize the following structure. The first iteration starts with the initial

seed, and mismatches in reactive and active power at all buses are evaluated. Power

injection equations or current injection equations at buses with their derivatives are used

to calculate a correction for the variables to update the system variables. PF algorithms

diverge when the required corrections are determined incorrectly. Thus, the cause of

divergence exists in the procedures of an algorithm applied to determine the solutions.

To address this issue, two robust algorithms are developed in this chapter. In these al-

gorithms, rather than determining the corrections vectors, a population of solutions is

perturbed around the distribution of population on search-space. Only those perturba-

tions are utilized which facilitates the population to converge on the optimum solution.

This step-by-step scheme avoids divergence, however, this makes the algorithm slower.

Consequently, these proposed algorithms are only valuable when the conventional meth-

ods are not able to produce a solution for the PF problem.

The need and rationale of using optimization techniques for solving power flow prob-

lem can be appreciated in the following two ways.

• The optimization techniques have advantages of finding all the possible multiple

solution accurately required in power system analysis. The optimization algorithm
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(especially search based) inherently have high chance of convergence due to their

formulations and techniques.

• The optimization techniques have also over the times resolved in several theoreti-

cal bottlenecks thereby easing out their implementation but also improving perfor-

mance.

• The above advantages though were obvious at all times, however their practical

implementation were subject to contemporary computational advancements. In

the present times the computational resources have improved quite significantly

(or exponentially increased). This has lead to several successful implementations

of computationally demanding algorithms as apparent from literature. Thus it is

imperative to revisit and explore the performance of algorithmss vis-a-vis contem-

porary computational resource scenario.

With advent of new technologies, the modern distribution systems and tools to examine

them are updating themselves. Conventional algorithms of power flow problems fail to

provide a solution. As an alternative, optimization algorithms are becoming popular in

this area.

In this chapter, two different optimization methods are designed to deal with the PF

problem of ill-conditional test systems. The first one, referred to as Butterfly Constrained

Optimizer (BCO), is a constrained optimization algorithm which employs the multi-order

LM based mutation with υ-constrained handling routine to deal with the constraints of

PF problems. The other one, named as Spherical Search (SS), is a bound-constrained

optimization algorithm which can be utilized to calculate initial seed for conventional PF

algorithms.

The major contributions of this work are summarized as follows:

1. It introduces two novel evolutionary-based PF algorithms, SS and BCO, to address

the PF problem of ill-conditioned test systems.

2. It includes an evolutionary-based method to determine the initial seed for the con-

ventional PF algorithm whose performance is dependent on the initial seed.

3. It presents a powerful methods to determine the maximum loadability limit for

distribution test systems. This can be applied to investigate the voltage stability of
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the system buses of distribution test systems.

4. It provides an authentic PF algorithm for the distribution test systems by estab-

lishing two optimization algorithms which diminish the active and reactive power

discrepancies. The optimization algorithms have been validated on the distribution

test systems to establish that these algorithms can reduce the active and reactive

power mismatch.

3.2 Power Flow Formulation as a Constrained Opti-

mization Problem

In this section, the PF problem is formulated as Constrained Optimization Problem

(COP) based on power injection.

3.2.1 Formulation based on Power Injection.

The PF problem can be represented by the power balance equation at each bus. Reactive

and active power are specified at each PQ buses (load buses) and active power is only

specified at PV buses (generator buses). These active and reactive powers can also be

calculated using bus voltages and Ybus, which are termed as calculated power. The

solution to this PF problem is bus voltages where the difference of specified power and

calculated power at each bus becomes zero or within the tolerance limit. Consequently,

the main objective of PF is to calculate the voltage magnitude and angles of the system

buses which reduce the differences between the specified power and the calculated power

at each bus of the system. Hence, the PF problem can be treated as a system of non-linear

equations.

In polar co-ordinates, the power balance equation at k-th bus can be represented by

the following equations.

Pk −
N∑
i=1

|Vk||Vi||Yki|cos(δk − δi − θki) = 0, (3.1)

Qk −
N∑
i=1

|Vk||Vi||Yki|sin(δk − δi − θki) = 0, (3.2)
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where Pk(= Pg,k−Pl,k) andQk(= Qg,k−Ql,k) are total active and reactive power injected at

k-th bus, respectively, Vk(|Vk|6 δk) represents the bus voltage at k-th bus, and Yki(|Yki|6 θki)

represents the ki-th element of admittance matrix. Here, Pg,k and Qg,k are total generated

active and reactive power at k-th bus, respectively, Pl,k and Ql,k represent total active

and reactive load at k-th bus.

3.2.2 Formulation as a Constrained Optimization Problem

In this section, PF problem of ill-conditioned test system has been formulated as a COP

which is proposed to be solved using the evolutionary algorithms.

A PF problem can be formulated as a COP:

Minimize f =
∑

(i∈Spq∪Spv)

(Pi − Pi,g)2 +
∑

(j∈Spq)

(Qi −Qi,l)
2 +

∑
(k∈Spv)

(
|Vk|−

√
V 2
rk + V 2

mk

)2

(3.3)

subject to.

Vri

N∑
j=1

(VrjGij − VmjBij) + Vmi

N∑
j=1

(VrjBij + VmjGij)− Pi = 0,

Vmi

N∑
j=1

(VrjGij − VmjBij)− Vri
N∑
j=1

(VrjBij + VmjGij)−Qi = 0, (3.4)

V rlb < Vrj < V rub, V mlb < Vmj < Vmub

Plb < Pi < Pub, Qlb < Qi < Qub,

where, Spq and Spv are set of PQ and PV buses, respectively. Pi,g and Qi,g are generated

real and reactive power at i-th bus and Pi,l and Qi,l are real and reactive load at i-th bus.

Gij and Bij are active and reactive part of ijth element of Ybus matrix and N is the total

number of buses in the system. In this problem, the variables are Vrj, Vmj, Pj, and Qj

where j = 2, ..., N . Therefore, total number of variables are 4× (N − 1).

3.3 Spherical Search

In this section, the mathematical modeling of the SS algorithm is discussed and developed.

SS algorithm is a swarm based meta-heuristics proposed to solve the non-linear

bound-constrained global optimization problems. It shows some properties similar to
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other popular meta-heuristics, particularly PSO and DE. In the SS algorithm, the search

space is represented in the form of vector space where the location of each individual in

space is a position vector representing a candidate solution to the problem.

In a D-dimension search space, for each individual, (D − 1)-spherical boundary is

prepared towards the target direction in every iteration before generating the trial location

of the individual. Here the target direction is the main axis of the spherical boundary

and the individual lies on the surface of the spherical boundary. Trial solutions appear on

the 1-spherical boundary. Thus, in every iteration, the trial location for each individual

is generated on the surface of (D − 1)-spherical boundary. An objective function value

determines the fitness value of a location. On the basis of the fitness value of the trial

locations, better locations pass on into the next iteration as individual locations.

In the SS algorithm, solution update procedure and spherical search movement bal-

ance the ability of exploration and exploitation. When the (D− 1)-spherical boundary is

small, exploitation of search-space is emphasized in the algorithm. On the other hand, in

case of larger (D− 1)-spherical boundary, exploration of the space gets emphasized. It is

evident that when the target location of a respective individual is far-off, the individual

has a tendency to explore, as the spherical boundary is large. This is advantageous as

in such conditions it is better to explore the larger search space. On the contrary, when

the target locations of a respective individual are nearby, the individual has a tendency

to exploit as the spherical boundary becomes small. This is advantageous as in such

situations it is better to exploit in a small search space.

At the end of every iteration, the location having the best fitness value is saved as

the best solution. Stopping criteria is achieved when the number of function evaluations

reaches to a specified number or when the value of the best solution reaches near to the

predefined solution within a specified tolerance. For the reported experimental work of

this chapter, both the stopping criteria have been used.

3.3.1 Initialization of Population

At the kth iteration, population Px is represented as follows.

P (k)
x = [x̄1

(k), x̄2
(k), .....x̄N

(k)] (3.5)
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where

x̄i
(k) = [x

(k)
i1 , x

(k)
i2 , .....x

(k)
iD ]T (3.6)

here, xij is the value of jth element (parameter) of ith solution and D is the total number of

elements (parameters). So, x̄i is actually representing a point on D−dimensional search

space. Here, x0
ij is initialized using random uniform distribution between pre-specified

lower and upper bounds of jth element as follows:

x0
ij = (xhj − xlj) ∗ rand(0, 1] + xlj, (3.7)

where xhj and xlj represent the upper and lower bounds of jth element respectively. Also,

rand(0, 1] generates random number from uniform distribution within the limit (0, 1].

3.3.2 Spherical Surface and Trial Solutions

In the case of population-based optimization algorithms, in every iteration, there will be

a need to calculate potential new solutions that compete with the old solution to become

a part of the population for the next iteration. In this algorithm, the name, trial solution,

is used to represent these potential new solutions. In SS algorithm, for each solution, a

(D−1)-spherical boundary is prepared where the search direction passes through the main

axis of boundary i.e. search direction crosses the center of (D − 1)-spherical boundary.

In SS algorithm, following equation is used to generate a trial solutions for i−th

solution.

ȳi
(k) = x̄i

(k) + c
(k)
i P

(k)
i z̄i

(k), (3.8)

where, Pi is a projection matrix, which decides the value of ȳi
k on the (D − 1)-spherical

boundary. For a particular solution,
¯
x

(k)
i , different possible values of P

(k)
i yield different

values of ȳ
(k)
i . Locus of ȳ

(k)
i gives (D − 1) spherical boundary.

To define all the iterative steps of the SS algorithm, the calculation procedure of

z̄i
(k), c

(k)
i and P

(k)
i are discussed in following sections.

Calculation of search direction, z̄i
(k)

In optimization algorithms, quality of new solution highly depends upon the balance be-

tween exploration and exploitation of search space. Emphasis on exploration of search

space increases the diversity of candidate solutions but slows the optimization process
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resulting in delayed or no convergence. Whereas, emphasis on exploitation may acceler-

ate the optimization process which may lead to premature convergence trapped in local

minima.

Search direction, z̄i
(k), should be generated in such a way that it guides the i−th

solution towards the better solutions. Points x̄t, r1 and r2 are needed to calculate the

search direction as follows.

z̄i
(k) = (x̄t

(k) + r
(k)
1 − r

(k)
2 )− x̄i(k), (3.9)

where, x̄t is the target point. In equation (3.9), two random solutions r1 and r2 are

selected from the current set of solutions (population). So, the actual search direction

deviates by some angle from target direction.

In this chapter, two methods are introduced to calculate the search direction, namely

towards-rand and towards-best. Method towards-rand has a better exploration capability

and towards-best improves the exploitation capability. So, to provide a good balance

between the exploration and exploitation of search space, for the half population of better

solution, calculation of search direction can be done by towards-rand and for the rest half

of the population, towards-best is used to calculate the search direction thereby forcing

diversity in the set of better solutions and forcing the inferior solutions to strive for

improved fitness.

In towards-rand, the search direction, z̄i
(k), for ith solution at kth iteration is calcu-

lated using following equation.

z̄
(k)
i = x̄(k)

pi
+ x̄(k)

qi
− x̄(k)

ri
− x̄(k)

i , (3.10)

where

pi, qi, and ri are randomly selected indices from among 1 to N such that pi 6= qi 6= ri 6= i.

In towards-best, the search direction, z̄i
(k), for ith solution at kth iteration is calculated

using following equation.

z̄
(k)
i = x̄

(k)
pbesti

+ x̄(k)
qi
− x̄(k)

ri
− x̄(k)

i , (3.11)

where x
(k)
pbesti

represents the randomly selected individual from among the top p solutions

searched so far.

Here, x̄pi and x̄pbesti represent the target points in towards-rand and towards-best

respectively. Difference term (x̄q − x̄r) is common in both towards-rand and towards-

best which represents r̄1 − r̄2 (equation 3.9), which is an approximation of distribution of
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difference of solutions in a population. In calculation of new search direction, difference

term (x̄q−x̄r) makes the population to evolve maintaining the diversity of solution thereby

avoiding convergence to local minima.

Projection matrix, P is a symmetrical matrix which is used for linear transformation

from search space to itself such that P 2 = P i.e. whenever P transforms a point twice, it

provides the same point. Projection matrix, P = A′diag(b̄i)A, has been used in equation

(3.8) to linearly transform ciz̄i+x̄i to generate trial solution ȳi on the circular (1-spherical)

boundary. Here, A and b̄i are the orthogonal matrix and binary vector respectively. The

total number of combinations of possible binary vectors is finite but in case of orthogonal

matrix, A, the possible combinations are infinite. Therefore, all the possible projections

of ciz̄i + x̄i create a (D − 1)-spherical boundary on search space.

Method to compute elements of P along with c has been illustrated as follows.

Orthogonal matrix, A

At the start of kth iteration, an orthogonal matrix, A, is generated randomly such that

AA′ = I. (3.12)

Binary diagonal matrix, diag(b̄i)

Binary diagonal matrix, diag(b̄i), are calculated randomly in such a way that,

0 < rank(diag(b̄i)) < D (3.13)

Step-size control vector, c̄

A step-size control vector, c̄(k) = [c
(k)
1 , c

(k)
2 , ....c

(k)
N ], consists of step-size control parameter

used for generation of all the possible trial-solutions where c
(k)
i represents the step-size

control parameter for ith trial-solution at kth iteration.

At the start of kth iteration, the elements of c̄(k) are calculated randomly in range of

[0.5 0.7], arrived by experiments.
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3.3.3 Selection of New Population for Next Iteration

Greedy selection procedure is applied to select new set of population for next iteration.

To update the ith solution of the population, following criteria is applied. If the objective

function value of trial solution, f(ȳi
(k)), is lower than the objective function value of

solution, f(x̄i
(k)) then yi replaces xi.

Mathematically,

x̄i
(k+1) =

ȳi
(k), if f(ȳi

(k)) ≤ f(x̄i
(k))

x̄i
(k), otherwise

(3.14)

3.3.4 Stopping Criteria

Termination of iterations depends upon two criteria: i) the maximum number of function

evaluations and ii) convergence of solution i.e solution is not getting updated for specified

number of consecutive iterations.

3.3.5 Steps of Spherical Search Algorithm

The main steps of the proposed algorithm are summarized as follows:

• Step 1: Initialize the population P .

• Step 2: Calculate the objective function of each solution of P .

• Step 3: The best solution of population is selected as best solution.

• Step 4: Calculate the search direction for each solution of population P .

• Step 5: Calculate the orthogonal matrix, A.

• Step 6: Calculate parameters: ci and rank of projection matrix.

• Step 7: Calculate trial solution for each solution of population P .

• Step 8: Update the population using greedy selection operator.

• Step 9: If the stopping criterion is satisfied then the algorithm will be stopped,

otherwise it will return to Step 3.

• Step 10: Return the best optimal solutions, after stopping criteria is satisfied.
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3.3.6 Validation of Spherical Search on Benchmark Problems

In this section, to analyze the performance, SS are benchmarked on 30 real-parameter

single objective bound-constrained optimization problems used in a special session of

IEEE CEC-2014 [122]. Detailed information and characteristics of these problems are

available in [122]. To evaluate the performance of SS on the CEC 2014 problem suite, the

results are compared with other state-of-the-art algorithms. State-of-the-art algorithms

are divided into four groups:

1. Group-I:- Variants of PSO: Basic PSO [123], BB-PSO [124], CLPSO [125], APSO

[126], OLPSO [127].

2. Group-II:- Variants of DE: CoBiDE [128], FCDE [129], RSDE [130], POBLADE

[131], DE-best [132].

3. Group-III:- Variants of CMA-ES: Basic CMA-ES [133], I-POP-CMAES [134], LS-

CMAES [135], CMSAES [136], (1+1)cholesky-CMAES [137].

4. Group-IV:- Recently proposed optimization algorithms: GWO [138], GOA [139],

MVO [140], SCA [141], SHO [142], SSA [143], SOA [144], WOA [145].

PSO, DE, and CMA-ES are the popular classical Meta-heuristics. Popular variants

of classical algorithms are also taken from the literature to show the effectiveness of the

SS.

In this experiment, the population size, N, is set to 80, the dimension of search space

for all problems, D, is fixed to 30, and allowed maximum function evaluation, MaxFES,

is fixed to 300,000 for 51 independent runs. The parameters of other algorithms are set

to their default values as reported in their referred paper.

Tables 3.1-3.9 summarize the mean and standard deviation (SD) of the error values

obtained by the algorithms over 51 independent runs for each problem. We also performed

the Wilcoxon Signed Ranks Test in this experiment. The statistical results are also

summarized in Tables 3.1-3.9, where ‘+’ denotes the performance of the SS is better

than other algorithms, ‘-’ denotes the performance of other method is better than the

SS, and ‘=’ denotes that there is no significant difference in performance. We also rank

all algorithms along with the SS using Friedman ranking test based on the mean of error
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values obtained by the algorithms over 51 independent runs. The statistical results of the

Friedman test are reported in Table 3.10.

1. SS vs Group-I’s algorithms: Table 3.1 summarizes the results obtained by algorithms

SS, and Group-I’s algorithms: PSO, BB-PSO, CLPSO, APSO, and OLPSO on the

CEC-2014 problem suite. It is seen from Table 3.1 that the SS is showing better

performance than PSO, BB-PSO, CLPSO, APSO and OLPSO on 23, 21, 20, 23,

and 18 problems out of 30, respectively, performance of SS worse than PSO, BB-

PSO, CLPSO, APSO and OLPSO on five, eight, eight, seven, and seven problems

respectively, and SS is significantly equal to the PSO, BB-PSO, CLPSO, and OLPSO

for 2, 1, 2, and 5 problems of CEC-2014 problem suite respectively.

2. SS vs Group-II’s algorithms: Table 3.2 summarizes the results of the algorithms

SS, and Group-II’s algorithms: CoBiDE, FCDE, RSDE, POBL ADE, and DE best.

As shown in Table 3.2, SS have better performance than CoBiDE, FCDE, RSDE,

POBL ADE, and DE best on 14, 23, 15, 19, and 21 problems out of 30 respectively,

performance of SS worse than CoBiDE, FCDE, RSDE, POBL ADE, and DE best

on 14, five, 10, nine, and five problems respectively, and SS provides performance

similar to the CoBiDE, FCDE, RSDE, POBL ADE, and DE best for two, two, five,

two and seven problems of CEC-2014 problem suite respectively.

3. SS vs Group-III’s algorithms: Table 3.3 presents the results of the algorithms SS,

and Group-III’s algorithms: CMA-ES, I-POP-CMAES, LS-CMAES, CMSAES, and

(1+1)cholesky-CMAES. when examined the last column of Table 3.3, SS shows bet-

ter performs then CMA-ES, I-POP-CMAES, LS-CMAES, CMSAES, and (1+1)Cholesky-

CMAES on 25, 18, 22, 30, and 23 problems out of 30 respectively, performance

of SSO worse than CMA-ES, I-POP-CMAES, LS-CMAES, and (1+1)Cholesky-

CMAES on five, nine, eight, and six problems respectively, and SSO is significantly

similar to the I-POP-CMAES, and (1+1)Cholesky-CMAES for three, and one prob-

lems of CEC-2014 problem suite respectively.

4. SS vs Group-IV’s algorithms: In Tables 3.4 and 3.9, the outcomes of SS and Group-

IV’s algorithms are presented. The last rows of Tables 3.4 and 3.9 summarizes the

results of WT. It is seen from Tables 3.4 and 3.9 that the performance of SS is
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better than GWO, GOA, MVO, SCA, SHO, SSA, SOA, and WOA on 22, 28, 21,

23, 22, 21, 21, and 23 out of 30 problems, respectively. The performance of SS is

outperformed by GWO, GOA, MVO, SCA, SHO, SSA, SOA, and WOA on seven,

zero, eight, three, six, eight, seven, and seven out of 30 problems , respectively.

In addition, the Friedman Test (FT) is also used to detect the significant differences

between SS and the other 23 algorithms on all 30 problems of CEC-2014 problem suite.

The detailed results of the FT for all 24 algorithms are shown in Table 3.10. From Table

3.10, it can be found that SS is ranked first by FT among all 24 algorithms. Variants

of PSO: BB-PSO, CLPSO, OLPSO, and Variants of DE: CoBiDE, RSDE, POBL-ADE,

and DE-best are very competitive with the SS but the performance of SS is slightly

better than them. Similarly, variants of CMA-ES: I-POP-CMAES and LS-CMAES are

also well performed on the CEC-2014 problem suite, but they could not outperforms the

performance of SS. In the case of recently proposed algorithms, MVO, SOA, WOA, SSA,

and GWO perform very well, but the performance of SS is significantly better than them.

Compared with the rest of other algorithms, SS is significantly outperformed them.

3.3.7 Application of SS Algorithm for Initial Seed for Power

Flow

SS Algorithm can be utilized (by minimizing the objective function described in Equation

3.3) to calculate the initial seed for conventional PF algorithm. In ill-conditioned test

systems or heavily loaded systems, the steady-state PF solution is far from flat start.

Consequently, the conventional algorithms diverges or converges at a very low rate on

these problems because of flat start.

In this section, SS algorithm is used to calculate the initial seed for conventional

NR algorithm. This approach is named as Spherical Search with Three Phase Current

Injection Method (SSTCIM) for further reference. Test systems and algorithms described

in Chapter 2 are considered for analyzing the performance of SSTCIM.

Validation of Algorithm

CASE25 is considered to validate the accuracy of the algorithm. The loading condition

of this test system is increased to a level (700%) where TCIM diverges.
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Table 3.5: Initial seed obtained by SS for CASE25 test system

Bus |Va| 6 a |Vb| 6 b |Vc| 6 c

1 1.0000 0.0000 1.0000 -120.0000 1.0000 120.0000

2 0.9627 -0.2581 0.9634 -120.2113 0.9617 119.7596

3 0.9510 -0.2880 0.9503 -120.2504 0.9503 119.7224

4 0.9454 -0.2769 0.9440 -120.2889 0.9454 119.7125

5 0.9440 -0.2422 0.9421 -120.2575 0.9440 119.7595

6 0.9492 -0.1879 0.9519 -120.1742 0.9465 119.8961

7 0.9382 -0.1416 0.9430 -120.1587 0.9333 119.9966

8 0.9468 -0.1644 0.9495 -120.1403 0.9443 119.9356

9 0.9346 -0.1146 0.9402 -120.1761 0.9285 120.0467

10 0.9328 -0.0914 0.9384 -120.2034 0.9250 120.0902

11 0.9318 -0.0814 0.9375 -120.2194 0.9235 120.1141

12 0.9311 -0.0763 0.9364 -120.2247 0.9225 120.1296

13 0.9318 -0.0741 0.9371 -120.2304 0.9230 120.1223

14 0.9298 -0.1317 0.9356 -120.1310 0.9243 120.0071

15 0.9258 -0.1250 0.9319 -120.1207 0.9207 120.0080

16 0.9374 -0.1362 0.9425 -120.1518 0.9323 120.0185

17 0.9291 -0.1279 0.9354 -120.1407 0.9232 120.0141

18 0.9413 -0.1632 0.9397 -120.0547 0.9404 119.9511

19 0.9326 -0.0640 0.9318 -119.9427 0.9327 120.1612

20 0.9370 -0.1131 0.9355 -119.9851 0.9363 120.0538

21 0.9355 -0.0805 0.9325 -119.9294 0.9336 120.1154

22 0.9322 -0.0403 0.9277 -119.8592 0.9299 120.2074

23 0.9405 -0.1736 0.9386 -120.2086 0.9409 119.8227

24 0.9377 -0.1045 0.9352 -120.1619 0.9380 119.9003

25 0.9340 -0.0334 0.9318 -120.1282 0.9346 119.9908
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Table 3.6: Power Flow solution obtained using SSTCIM for CASE25 test system

Bus |Va| 6 a |Vb| 6 b |Vc| 6 c

1 1.0000 0.0000 1.0000 -120.0000 1.0000 120.0000

2 0.9227 -1.4532 0.9262 -121.0821 0.9378 118.3006

3 0.9051 -1.8118 0.9096 -121.3556 0.9240 117.8898

4 0.8964 -1.9860 0.9017 -121.5027 0.9179 117.7016

5 0.8937 -1.9832 0.8992 -121.4928 0.9156 117.6988

6 0.8827 -1.4361 0.8865 -120.9406 0.9020 118.2451

7 0.8481 -1.4268 0.8523 -120.7969 0.8704 118.1928

8 0.8773 -1.4304 0.8813 -120.9200 0.8972 118.2392

9 0.8321 -1.4260 0.8361 -120.7363 0.8563 118.1686

10 0.8204 -1.4268 0.8234 -120.6928 0.8453 118.1519

11 0.8148 -1.4282 0.8175 -120.6759 0.8403 118.1495

12 0.8121 -1.4243 0.8142 -120.6664 0.8376 118.1635

13 0.8129 -1.4239 0.8150 -120.6730 0.8382 118.1554

14 0.8324 -1.4208 0.8371 -120.7164 0.8553 118.1648

15 0.8266 -1.4144 0.8316 -120.6936 0.8503 118.1588

16 0.8453 -1.4237 0.8496 -120.7859 0.8679 118.1898

17 0.8292 -1.4124 0.8344 -120.7105 0.8518 118.1695

18 0.8902 -1.8089 0.8950 -121.3038 0.9103 117.8768

19 0.8777 -1.7954 0.8844 -121.2805 0.8995 117.9027

20 0.8838 -1.8098 0.8893 -121.2838 0.9045 117.8736

21 0.8812 -1.7924 0.8855 -121.2807 0.9008 117.9060

22 0.8763 -1.7857 0.8794 -121.2644 0.8958 117.9301

23 0.8880 -1.9842 0.8945 -121.4938 0.9115 117.6906

24 0.8829 -1.9836 0.8898 -121.4983 0.9073 117.6852

25 0.8768 -1.9690 0.8852 -121.5176 0.9025 117.6946

The obtained initial seed using SS is reported in Table 3.5. TCIM algorithm uses

this initial seed to solve the PF problem of CASE25. Consequently, TCIM converges

within 4 iterations. The obtained PF solution is reported in Table 3.6.

From the outcomes, it can be concluded that the proposed approach improves the

performance of conventional algorithms. For further analysis, this approach is also an-

alyzed on the test systems with different loading condition with different R/X ratio of

lines.

Test systems with high loading conditions

In this section, the stability of the proposed approach is evaluated on various test systems

with different loading conditions. The loading level at the buses of the different test

systems is gradually increased to their maximum loading limit. Two test systems, CASE37
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Table 3.7: Total Number of iterations required for different Power Flow algorithms in

heavily loaded ill-conditioned systems.(LF: Loading Factor, NC: Not Converged)

CASE37

LF(%) CINR LMPF RK4PF SSTCIM TCIM iTCIM

200 2 3 16 3 3 3

600 2 3 17 3 3 3

1000 2 3 18 3 3 3

1400 3 4 18 3 4 4

1800 4 21 59 4 NC NC

2200 4 24 87 4 NC NC

2400 NC 26 88 4 NC NC

2500 NC 37 91 4 NC NC

CASE84

LF(%) CINR LMPF RK4PF SSTCIM TCIM iTCIM

100 3 2 26 3 6 4

200 4 4 28 3 13 7

300 6 5 29 3 20 9

400 9 6 29 3 33 11

500 17 9 29 4 69 15

600 NC 40 43 4 NC NC

700 99 38 63 4 NC NC

800 31 35 87 4 NC NC

and CASE84, are considered for this analysis. A total number of iterations required by

different algorithms for CASE37 and CASE84 are reported in Table 3.7.

It is observed from this table that the proposed approach improves the performance

of TCIM. In CASE37, the performance of SSTCIM is better or at least competitive with

the algorithms discussed in chapter 2.

Test systems with high R/X ratio

The sensitivity of the proposed approach is validated for different R/X ratios of the lines

of test systems and the performance of the proposed approach is compared with other

algorithms. In this study, CASE37 and CASE84 are considered with different R/X ratios.

Number of iterations required to converge by proposed algorithms with other algo-

rithms are reported in Table 3.8. It can be observed that the proposed approach improves

the performance of TCIM.
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Table 3.8: Total Number of iterations required for different Power Flow algorithms in

ill-conditioned systems with high R/X ratios.(NC: Not Converged)

CASE37

R/X CINR LMPF RK4PF SSTCIM TCIM iTCIM

2 2 3 15 3 3 3

6 2 4 15 3 3 3

10 2 5 15 3 3 3

14 3 6 15 4 4 4

18 3 18 50 4 NC NC

22 3 29 77 4 NC NC

24 4 22 78 4 NC NC

25 8 38 77 4 NC NC

CASE84

R/X CINR LMPF RK4PF SSTCIM TCIM iTCIM

1 3 2 26 3 6 4

4 4 4 28 3 14 6

7 5 5 27 4 26 8

10 6 7 27 4 48 10

13 16 16 27 3 NC 20

14 21 43 59 4 NC NC

15 21 57 87 4 NC NC

16 21 39 94 4 NC NC
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3.4 Butterfly Constrained Optimizer

BCO is a dual population based method for solving constrained optimization problems.

BCO uses υ-Constrained method for handling constraints of the problem. In this section,

details of different processes of BCO are described. Afterwards, the complete process of

BCO is presented.

3.4.1 Dual-population of BCO

In BCO, there are two populations based on their feasibility. First population, Type-I,

contains solutions to minimize the constraint violation and second population, Type-II,

contains solution to minimize the constraint violation and optimize the objective function

value. Type-I population is defined as a N , D-dimensional vector. If k denotes the

iteration, the type-I population, P1, at kth iteration consist of :

P k
1 = [x̄k1, x̄

k
2....x̄

k
N ] (3.15)

x̄ki = [xki1, x
k
i2, x

k
i3....x

k
iD]T , i = 1, 2, ...N (3.16)

The Type-II population is defined as N , D-dimensional vector. If k denotes the iteration,

the Type-II population, P2 at kth iteration consist of :

P k
2 = [m̄xk1, m̄x

k
2....m̄x

k
N ] (3.17)

m̄xki = [mxki1,mx
k
i2,mx

k
i3....mx

k
iD]T , i = 1, 2, ...N (3.18)

where N is the size of population.

The idea behind the BCO is to take advantage of perching and patrolling modes to

search new solution for each x̄ki and m̄xki . The set of solution m̄xki and x̄ki is associated

with ith individual at kth iteration. Initial dual solutions of each individual are randomly

generated with in the search space. At every iteration, before perching or patrolling, a

cris-cross neighbor vector c̄c of length N is calculated by reshuffling the integers from 1

to N . The vector c̄c consists of :

c̄c = {cc1, cc2, ....cci}, i = 1, 2, N (3.19)
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Table 3.10: Ranking of Algorithm according to Friedman ranking based on mean error

value. (FR: Friedman Ranking)

S.N. Algorithm FR Rank S.N. Algorithm FR Rank

1 SS 5.4667 1 13 I-POP-CMAES 11.4000 10

2 PSO 15.5667 19 14 LS-CMAES 10.6500 9

3 BB-PSO 8.4833 6 15 CMSAES 21.4333 23

4 CLPSO 7.4167 4 16 (1+1)cholesky CMAES 14.0167 18

5 APSO 18.2333 21 17 GWO 14.0000 16

6 OLPSO 7.1000 3 18 GOA 22.5500 24

7 CoBiDE 8.7833 7 19 MVO 12.4500 12

8 FCDE 11.6667 11 20 SCA 18.3167 22

9 RSDE 5.6500 2 21 SHO 14.0000 17

10 POBL ADE 7.4833 5 22 SSA 13.8333 15

11 DE best 9.7000 8 23 SOA 12.6500 13

12 CMA-ES 15.8333 20 24 WOA 13.3167 14

3.4.2 Perching

Perching can be explained by dividing its functions into five processes: Cris-cross Modi-

fication, Exponential Crossover, Solution Repair, Selection-I and Selection-II.

Cris-cross modification

Cris-cross modification process generates the initial form of perching trial positions vector,

¯txi
k+1.

¯txi
k+1 = ¯mxcci

k + F ( ¯mxqi
k −R(x̄ri

k, ¯mxri
k)) (3.20)

where F is the scaling factor which controls the amplitude of the search direction, cci is

the cris-cross neighbour of ith butterfly. Index qi and ri are randomly selected neighbour

for ith butterfly. Random selection of indices qi and ri are done in such a manner that it

satisfies equation 3.21

i 6= cci 6= qi 6= ri (3.21)

R(a, b) is random selection operator, where probability of selection of a and b is equal.

F ∈ [0, 1] is a real constant.

Exponential recombination

Exponential recombination process generates the final form of perching trial position vec-

tor, ¯txi
k+1. For exponential recombination, the starting recombination point is selected
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randomly from 1 to D, and l circular consecutive elements are not changed in ¯txi and

other elements are taken from m̄xi and replaced to ¯txi. The pseudo code to generate l is

l = 0

while((rand(0, 1) ≤ Cr)&&(l ≤ D))

Do{l = l + 1}

where Cr is recombination probability, D is the problem dimension rand(0, 1) is a uni-

formly distributed random number generator. Final form of ¯txi is generated as

¯txi
k+1 =

t̄x
k+1
i , for j = r, r + 1, r + 2.....r + l − 1

m̄xki , for otherjε[1, D]

(3.22)

Solution Repair

In solution repair, firstly the feasibility of the perching trial solution, t̄xi is checked. If

the solution, t̄xi, is feasible then solution repair is not required and it switches to next

process. If solution, t̄xi, is infeasible, then generate a random number in range of [0, 1]

and compare with pr. If random number is less than Pr, then this solution is repaired by

multi-order Levenberg Marquardt method. Otherwise, it switches to next process without

repairing the solution.

Selection-I

Selection-I process generates the Type-I population, P1, of next iteration. Selection of

¯txi
k in place of x̄i

k at kth iteration is decided by the constraint violation. In selection-I,

individual having lower constraint violation is selected for the next iteration. Procedure

of selection-I is given by equation 3.23

x̄k+1
i =

t̄x
k
i , if φ(v)(t̄xki ) ≤ φ(v)(x̄ki )

x̄ki , otherwise.

(3.23)

Selection-II

Selection-II is the last process of the perching. It generates the the type-II population,

P2, of next iteration. Selection of t̄xki in place of m̄xki at kth iteration is decided by v-level
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comparison. It is done by equation 3.24

m̄xk+1
i =

t̄x
k
i , if (f(t̄xki ), φ

(υ)(t̄xki )) ≤υ (f(x̄ki ), φ
(υ)(x̄ki ))

m̄xki , otherwise.

(3.24)

3.4.3 Patrolling

Patrolling can be explained by its function into four processes: Towards-best modifica-

tion, exponential recombination, Selection-I, Selection-III.

Exponential recombination and selection-I is same as perching. So, Towards-best modifi-

cation and Selection-III are discussed below.

Towards-best modification

This process generates initial form of patrolling trial position vectors, ūxk+1
i .

ūxk+1
i = m̄xki + F (m̄vki + m̄xkmaxuvi − m̄x

k
i ) (3.25)

where F is scaling factor, maxuvi is the most attractive neighbour of ith butterfly.

Selection-III

Selection-III is same as selection-II, but only difference is selection-III also update the

velocity vector, m̄vki . Velocity vector updating is done by equation 3.26

m̄vk+1
i =



ūxki − m̄xki ,

if (f(t̄xki ), φ
(υ)(t̄xki )) ≤υ (f(x̄ki ), φ

(υ)(x̄ki ))

F (m̄vki + m̄xcci − m̄xki ),

otherwise.

(3.26)

3.4.4 Selection of Perching and Patrolling Operator

Selection of Perching and Patrolling operator depends upon the probability vector of

operator selection, Prob.

Probk = [probk1, prob
k
2.........prob

k
N ] (3.27)
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where probki is the probability of operator selection of ith individual at kth iteration. it is

the ratio of total number of successful Selection-II run, suc1ki , and sum of total number

of successful selection-II run, suc1ki and selection-III run, suc2ki . It is given by:

probki =
suc1ki

suc1ki + suc2ki
(3.28)

For every individual, a uniformly distributed random number of range [0, 1] is generated.

If this number is less than probki , then ith individual selects Perching operator. Otherwise,

ith individual selects Patrolling operator.

3.4.5 Selection of Maximum Attractive Butterfly, maxuvi

Selection of max attractive butterfly, maxuvi is done in patrolling. Three different neigh-

bour is selected for every individual after every 10 patrolling attempts. Their ranking

is done by according to objective function values and constraint violation. Best rank of

them is selected as the maxuvi of ith iteration.

3.4.6 Controlling of the υ-level

A simple way of controlling of the ε-level is described in [146]. A similar procedure is used

in this study to control the υ-level. The initial υ-level is the ratio of constraint violation

of top θth individual and total number of constraint.

υ(0) =
φ(m̄xθ)

nh + ng
(3.29)

where nh and ng are total number of equality and inequality constraint of problem re-

spectively.

The υ-level is decreasing with increase of the iterations and become zero after current

iteration Tc. The υ-level updating is done by equation 3.30

υ(k) =

υ(0)(1− k
Tc

)cp, if 0 ≤ k ≤ Tc

0, otherwise.

(3.30)

where θ = 0.2N , cp is the parameter to control the speed of decreasing of value, υ(k).
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3.4.7 Reflecting Back and Cutting-off

If an individual moves outside the search space, there is need to apply operations like

reflecting back and cutting off. Reflecting back and cutting off generate new solution

inside the search space. In this study both methods are used.

Reflecting back operation

xkij =


lj + (lj − xkij)− b

lj−xkij
uj−lj c(uj − lj), if xkij ≤ lj

uj + (xkij − uj) + bx
k
ij−uj
uj−lj c(uj − lj), if xij ≥ uj

xkij, otherwise.

(3.31)

where bzc is a floor function. Reflecting back operations used in Perching.

Cutting off

xkij =


lj, if xkij ≤ lj

uj, if xkij ≥ uj

xkij, otherwise.

(3.32)

This operation is applied to Patrolling.

3.4.8 Validation of Butterfly Constrained Optimizer on Bench-

mark Problems

In this section, BCO is used to solve the problems presented in CEC 2006 [147] to verify

the performance of BCO on different type of constrained problems. Results obtained from

experiments are compared with the results of other state of arts constrained optimization

techniques for comparative analysis. Constrained variant of other meta-heuristics are

grouped based on their underlying techniques: PSO, GA, ES, CMA-ES, and DE etc.

In the experiments, parameter tuning of BCO is done by preliminary parameter

analysis and parameter setting of BCO is given in Discussion section.

Experimental Settings

The properties of the benchmark problems given in CEC 2006 are given in Table 3.11.

Table 3.11 shows that the benchmark problems containing different types of problems:
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g10, g20, g21, g22, g23, and g24 are linear, g02, g08, g13, g14, g16, g17, and g19 are non-

linear, g03, and g09 are polynomial, g05, and g06 are cubic, and g01, g04, g07, g11, g12, g15,

and g18 are quadratic. In the Table 3.11, ρ represent the estimated feasible region in

search space and it is calculated by the 1000000 solution samples. Most of the bench-

mark problems have very low feasible region and also hard to locate the even feasible

region. Benchmark problems have different type of constraints which includes linear in-

equality(LI), non-linear inequality(NI), linear equality(LE), and non-linear equality(NE)

constraint. The number of constraint is also very from 1 to 38.

For test function g20, an improved best known infeasible solution has been reported

in this paper. The best known infeasible solution reported in [147] for test function g20

is x∗ = [1.285823e − 18, 4.834603e − 34, 0, 0, 6.304599e − 18, 7.571925e − 34, 5.033507e −

34, 9.282681e−34, 0, 1.767234e−17, 3.556861e−34, 2.994139e−34, 0.158143, 2.296018e−

19, 1.061069e18, 1.319683e−18, 0.530903, 0, 2.891483e−18, 3.348921e−18, 0, 0.311000, 5.412446e−

05, 4.849931e− 16] with f(x∗) = 0.2049794002. This solution violates the 11 (10 equality

and 1 inequality) constraints with total constraint violation 3.975737e14. The improved

solution found in this paper for test function g20 is x∗ = [1.29089e − 01, 6.009131e −

14, 1.448197e−11, 1.856528e−12, 1.512278e−01, 3.056017e−11, 3.664426e−12, 8.944519e−

13, 4.294914e−13, 3.773682e−12, 1.367320e−11, 1.085285e−11, 3.992256e−01, 2.428499e−

05, 2.428468e−05, 5.741080e−05, 3.202754e−01, 7.140807e−05, 2.611374e−05, 1.1993356e−

10, 1.426029e−11, 3.447475e−05, 1.925004e−05, 2.511113e−05] with f(x∗) = 0.1592683574.

This solution violates only 1 inequality constraint with total constraint violation 0.481498.

General performance of BCO

Twenty five independent runs were performed for each test problems using 5×105 FES at

most, and the tolerance value δ for the equality constraint was set to 0.0001 as suggested

by Liang [147]. The best, median, worst, mean and standard deviation of the error value

(f(x)− f(x∗)) for the best so far solution after 5× 103, 5× 104, and 5× 105 FEs in each

run are recorded in Tables 4.7-3.15.

Tables 4.7-3.15 show that the 3 out of 24 test problems (i.e.g08, g12, and g24) are

converged on the feasible optimum solution in every independent run by using 5 × 103

FEs. In 5 × 104 FEs, 12 out of 24 test problems (i.e. g01, g04, g06, g08, g10, g11, g12,

g13, g15, g16, g17, and g24) are converged on the feasible optimum solution in every run.
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Table 3.11: Properties of benchmark problems given in

CEC 2006 [147]

prob D Type of Problem ρ(%) LI NI LE NE a

g01 13 quadratic 0.0111 9 0 0 0 6

g02 20 nonlinear 99.9971 0 2 0 0 1

g03 10 polynomial 0.0000 0 0 0 1 1

g04 5 quadratic 51.1230 0 6 0 0 2

g05 4 cubic 0.0000 2 0 0 3 3

g06 2 cubic 0.0066 0 2 0 0 2

g07 10 quadratic 0.0003 3 5 0 0 6

g08 2 nonlinear 0.8560 0 2 0 0 0

g09 7 polynomial 0.5121 0 4 0 0 2

g10 8 linear 0.0010 3 3 0 0 0

g11 2 quadratic 0.0000 0 0 0 1 1

g12 3 quadratic 4.7713 0 1 0 0 0

g13 5 nonlinear 0.0000 0 0 0 3 3

g14 10 nonlinear 0.0000 0 0 3 0 3

g15 3 quadratic 0.0000 0 0 1 1 2

g16 5 nonlinear 0.0204 4 34 0 0 4

g17 6 nonlinear 0.0000 0 0 0 4 4

g18 9 quadratic 0.0000 0 13 0 0 0

g19 15 nonlinear 33.4761 0 5 0 0 0

g20 24 linear 0.0000 0 6 2 12 16

g21 7 linear 0.0000 0 1 0 5 6

g22 22 linear 0.0000 0 1 8 11 19

g23 9 linear 0.0000 0 2 3 1 6

g24 2 linear 79.6556 0 2 0 0 2

prob: Benchmark Problem.

D: Number of dimension of problem.

ρ: Feasibility ratio.

LI: Number of linear inequality constraint.

NI: Number of non-linear inequality constraint.

LE: Number of linear equality constraint.

NE: Number of non-linear equality constraint.

a: Number of active inequality constarint.

Rest of the problems are converged on feasible optimum solution with in 5× 105 FEs for

every independent run except g20 and g22.

To test problem g20, the best known solution is slightly infeasible i.e. feasible opti-

mum solution is not available. Proposed method, BCO, is converged on improved solution.

For test problem g22, 3 runs out of 25 converged on the best known feasible solution by
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Table 3.12: Error Values achieved when FEs are 5000, 50000, and 500000 for test function

g01− g06

FES g01 g02 g03 g04 g05 g06

5.0E+03

Min 1.9674E+00 2.0521E-01 4.3547E-01 3.5106E+01 5.1546E+00 9.0900E-13

Median 5.7809E+00 3.1561E-01 7.8524E-01 1.1499E+02 7.6736E+01 7.2760E-12

Worst 8.7350E+00 3.8456E-01 1.0004E+00 2.0169E+02 6.1227E+02 5.7557E+03

Mean 5.9698E+00 3.0886E-01 7.5429E-01 1.1587E+02 1.3059E+02 1.0047E+03

Std 1.7661E+00 3.7480E-02 1.7647E-01 4.5865E+01 1.6333E+02 2.1447E+03

5.0E+04

Min 9.2000E-14 1.4730E-02 4.5313E-03 8.4971E-07 2.1418E-04 9.0900E-13

Median 9.8400E-13 3.1546E-02 1.0079E-02 1.5282E-05 1.1020E-03 5.4570E-12

Worst 1.7494E-11 9.5223E-02 4.0296E-02 2.3949E-04 2.2037E+01 1.9099E-11

Mean 3.4191E-12 3.6746E-02 1.2963E-02 3.6582E-05 1.3000E+00 4.6564E-12

Std 4.9143E-12 2.1116E-02 7.8858E-03 5.5316E-05 4.7936E+00 3.9673E-12

5.0E+05

Min 0.0000E+00 3.7372E-09 0.0000E+00 0.0000E+00 0.0000E+00 9.0900E-13

Median 0.0000E+00 1.9797E-08 0.0000E+00 0.0000E+00 0.0000E+00 5.4570E-12

Worst 0.0000E+00 6.4743E-08 0.0000E+00 0.0000E+00 0.0000E+00 1.9099E-11

Mean 0.0000E+00 2.6136E-08 0.0000E+00 0.0000E+00 0.0000E+00 4.6564E-12

Std 0.0000E+00 1.7600E-08 0.0000E+00 0.0000E+00 0.0000E+00 3.9673E-12

Table 3.13: Error Values achieved when FEs are 5000, 50000, and 500000 for test function

g07− g12

FES g07 g08 g09 g10— g11— g12—

5.0E+03

Min 3.0814E+01 3.4510E-12 1.4601E+01 4.1756E+01 3.3075E-05 1.9717E-08

Median 8.5137E+01 3.9054E-07 1.2292E+02 2.6334E+03 2.0188E-04 6.4211E-07

Worst 5.6623E+02 7.5612E-04 5.5246E+04 9.8834E+03 1.2911E-01 4.6084E-06

Mean 1.3221E+02 4.6842E-05 2.3881E+03 3.2797E+03 8.6365E-03 9.8570E-07

Std 1.2725E+02 1.6050E-04 1.1014E+04 2.9060E+03 2.8965E-02 1.0977E-06

5.0E+04

Min 9.1488E-02 0.0000E+00 1.1040E-03 3.5108E-08 0.0000E+00 0.0000E+00

Median 3.4234E-01 0.0000E+00 4.3227E-03 1.5823E-05 0.0000E+00 0.0000E+00

Worst 6.5021E-01 0.0000E+00 7.9238E-03 1.2318E-02 2.0000E-15 0.0000E+00

Mean 3.6243E-01 0.0000E+00 4.1607E-03 6.2102E-04 1.6000E-16 0.0000E+00

Std 1.2355E-01 0.0000E+00 1.9215E-03 2.4589E-03 4.7258E-16 0.0000E+00

5.0E+05

Min 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Median 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.0000E-15 0.0000E+00

Mean 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.6000E-16 0.0000E+00

Std 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.7258E-16 0.0000E+00

using 5× 105 FEs.

The result achived by the BCO are very close to or even equal to feasible optimal
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Table 3.14: Error Values achieved when FEs are 5000, 50000, and 500000 for test function

g13− g18

FES g13 g14 g15 g16 g17 g18

5.0E+03

Min 1.0850E-02 2.0450E+00 5.9225E-04 8.1472E-02 4.0694E+00 1.1620E-01

Median 1.2786E-01 5.8555E+00 4.4350E-02 3.0432E-01 5.3215E+01 4.1838E-01

Worst 9.4729E-01 7.7918E+00 2.2955E+00 7.8726E-01 2.7754E+02 8.5155E-01

Mean 3.9709E-01 5.6844E+00 3.0686E-01 3.4297E-01 7.4573E+01 4.5509E-01

Std 3.7967E-01 1.5406E+00 6.3742E-01 2.1835E-01 6.9016E+01 2.3651E-01

5.0E+04

Min 4.1100E-13 2.7052E-04 0.0000E+00 3.4311E-06 5.2751E-11 3.2056E-03

Median 3.9797E-11 8.0241E-04 0.0000E+00 1.1654E-05 8.5856E-10 9.3977E-03

Worst 2.2570E-08 2.5207E-03 9.0900E-13 3.7942E-05 8.4520E-07 4.7111E-01

Mean 1.3131E-09 9.1837E-04 1.4540E-13 1.5270E-05 5.3349E-08 2.9085E-02

Std 4.6360E-09 5.8709E-04 2.2128E-13 1.0031E-05 1.8432E-07 9.2273E-02

5.0E+05

Min 0.0000E+00 1.4000E-14 0.0000E+00 4.0000E-15 3.6380E-12 0.0000E+00

Median 0.0000E+00 1.4000E-14 0.0000E+00 4.0000E-15 3.6380E-12 0.0000E+00

Worst 0.0000E+00 7.1000E-14 9.0900E-13 4.0000E-15 3.6380E-12 0.0000E+00

Mean 0.0000E+00 1.8240E-14 1.4540E-13 4.0000E-15 3.6380E-12 0.0000E+00

Std 0.0000E+00 1.1443E-14 2.2128E-13 1.6103E-30 8.2445E-28 0.0000E+00

Table 3.15: Error Values achieved when FEs are 5000, 50000, and 500000 for test function

g19− g24

FES g19 g20 g21 g22 g23 g24

5.0E+03

Min 4.6250E+01 3.3233E-01 4.5408E+01 2.3643E+02 5.0931E+01 3.3000E-14

Median 7.5536E+01 8.7700E-01 1.1814E+02 1.1161E+04 1.7079E+02 3.5000E-14

Worst 1.4028E+02 2.7133E+00 4.7765E+02 1.9764E+04 3.3621E+02 6.3000E-14

Mean 7.9671E+01 9.5601E-01 1.9748E+02 1.0220E+04 1.8187E+02 4.0160E-14

Std 2.3452E+01 4.6699E-01 1.4443E+02 6.1985E+03 7.0989E+01 1.0499E-14

5.0E+04

Min 8.8876E-01 5.2239E-03 1.0848E-02 2.7760E+01 1.1941E+01 3.3000E-14

Median 1.9566E+00 3.0857E-02 2.3503E-02 5.6483E+02 9.3792E+01 3.3000E-14

Worst 3.6198E+00 6.5630E-02 7.5191E-02 4.7803E+03 4.2806E+02 6.3000E-14

Mean 2.0812E+00 2.9412E-02 2.7678E-02 1.0215E+03 1.2093E+02 3.4200E-14

Std 7.4010E-01 1.7922E-02 1.6356E-02 1.2441E+03 9.7208E+01 6.0000E-15

5.0E+05

Min 1.2800E-13 1.3662E-10 0.0000E+00 0.0000E+00 0.0000E+00 3.3000E-14

Median 4.1254E-11 1.4826E-08 0.0000E+00 3.6988E+03 0.0000E+00 3.3000E-14

Worst 4.0478E-08 9.7700E-06 0.0000E+00 1.8277E+04 2.1237E-10 6.3000E-14

Mean 4.6628E-09 7.7288E-07 0.0000E+00 6.1451E+03 1.1155E-11 3.4200E-14

Std 1.0834E-08 2.1255E-06 0.0000E+00 5.6814E+03 4.3122E-11 6.0000E-15

solution for 23 test problem in all run, except test problem g22 (only 3 out of 25 run,

result is equal to known feasible optimal solution).
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Table 3.16: Best, Median, worst, mean, and standard devi-

ation of NFES to achieve the fixed accuracy level. ((f(x) −

f(x∗)) ≤ 0.0001), feasibility rate, success rate and successful

performance over 25 runs of BCO on the CEC 2006 [147]

Prob. Min Max median Mean STD FR SR SP

g01 19758 24259 22245 22034 1088 100 100 22034

g02 120145 183451 158284 158293 14441 100 100 158293

g03 65224 89439 81640 80632 5769 100 100 80632

g04 39213 48906 44509 44488 2015 100 100 44488

g05 47230 59218 53852 54437 3287 100 100 54437

g06 258 6166 4050 3784 1425 100 100 3784

g07 179375 206245 197446 196558 7325 100 100 196558

g08 1412 4514 3617 3492 759 100 100 3492

g09 67591 81014 75322 74973 4100 100 100 74973

g10 22443 45100 34998 34192 5103 100 100 34192

g11 468 5902 4083 3705 1381 100 100 3705

g12 120 279 173 198 53 100 100 198

g13 879 18118 14178 13345 4039 100 100 13345

g14 55595 66731 62183 62221 2710 100 100 62221

g15 5415 15677 12365 11761 2911 100 100 11761

g16 34337 41579 38472 38373 2008 100 100 38373

g17 23173 31630 27209 27450 1873 100 100 27450

g18 106449 150370 129525 129224 12341 100 100 129224

g19 212636 265169 245241 241430 14914 100 100 241430

g20 22323 210350 172071 152074 59050 0 100 152074

g21 104454 119499 111879 112507 3858 100 100 112507

g22 250708 297360 284473 277514 92303 32 12 2312617

g23 142823 400000 222973 253267 78025 100 100 253267

g24 132 561 403 360 146 100 100 360

Comparison with other state-of-the-art on CEC 2006 test problems

The NFES required for reaching the optimum value is reported in Table 6.11. Table 6.11

shows the best, worst, median, mean, and standard deviation of NFES to achieve the

fixed accuracy level, (f(x̄) − f(x̄∗))≤ 0.0001), Feasible Rate (FR), Success Rate (SR),

and Success Performance (SP) over 25 runs of BCO on the cec 2006 [147]. FR denotes

the percentage of runs where atleast one feasible solution is found in 5×105 by algorithm.

SR denotes percentage of run where atleast one solution satisfies success condition. SP

denotes the ratio of mean of NFES required to find optimal feasible solution and SR.

As shown in table 6.11, FR of BCO for every test cases is 100% except problems

g20, and g22. In case of problem g20, the optimal solution is slightly infeasible. Problem

g22 is hard to solve, so in case of BCO only 32% FR is recorded. Regarding SR of BCO,
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Table 3.17: Mean NFES to achieve the accuracy level (f(x)− f(x∗))≤ 0.0001 and SR over 25 runs on the CEC 2006 [147]

Proposed Work DE

Prob.
BCO EPS-DE [146] MPDE [132] GDE [148] MDE [149] jDE-2 [150] DPDE [151] ICDE [152] (mu+lm)CDE [153]

NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR

g01 22034 100 59308 100 43430 100 40519 100 75373 100 50386 100 42180 100 105776 100 89000 100

g02 158293 100 149825 100 280573 92 107684 72 96222 16 123490 92 95102 94 283528 100 277379 96

g03 80632 100 89407 100 209298 84 143086 4 44988 100 – 0 88260 100 212657 100 111025 100

g04 44488 100 26216 100 20883 100 15281 100 41562 100 40728 100 25160 100 36770 100 30620 100

g05 54437 100 97431 100 216469 100 178023 92 21306 100 206620 68 100506 100 27933 100 165079 100

g06 3784 100 7381 100 10574 100 6503 100 5202 100 29488 100 13400 100 13040 100 11032 100

g07 196558 100 74303 100 57400 100 123996 100 194202 100 127740 100 99060 100 134789 100 141038 100

g08 3492 100 1139 100 1515 100 1469 100 918 100 3236 100 1960 100 1943 100 2010 100

g09 74973 100 23121 100 21044 100 30230 100 16152 100 54919 100 31820 100 37929 100 39953 100

g10 34192 100 105234 100 48628 100 82604 100 164160 100 146150 100 143300 100 325007 100 188725 100

g11 3705 100 16420 100 22422 96 8460 100 3000 100 49700 96 90310 100 4404 100 79475 100

g12 198 100 4124 100 4238 100 3149 100 1308 100 6356 100 5626 100 6488 100 4908 100

g13 13345 100 34738 100 356433 48 336306 40 21732 100 0 81980 100 34325 100 148237 100

g14 62221 100 113439 100 42715 100 220921 96 291642 100 97845 100 107480 100 85758 100 176671 100

g15 11761 100 84216 100 200174 100 71889 96 10458 100 222460 96 94600 100 10074 100 130622 100

g16 38373 100 12986 100 13063 100 13224 100 8730 100 31695 100 18650 100 25001 100 19154 100

g17 27450 100 98861 100 204791 28 343740 16 26364 100 17971 4 128690 100 103230 100 183962 100

g18 129224 100 59153 100 44045 100 364861 76 103482 100 104460 100 80280 100 138998 100 215068 100

g19 241430 100 35635 100 118274 100 202648 88 – 0 199850 100 163080 100 296145 100 268374 100

g20 152074 100 – 0 0 – 0 – 0 – 0 – 0 – 0 148506 100

g21 112507 100 135143 100 142159 68 347653 60 112566 100 107080 92 164068 92 317447 100 209896 92

g22 277514 12 – 0 – 0 – 0 – 0 – 0 – 0 – 0 – 0

g23 253267 100 200765 100 210661 100 425342 40 360420 100 302550 92 204450 94 364806 100 263695 100

g24 360 100 2952 100 4342 100 3059 100 1794 100 10196 100 5860 100 574 100 5059 100

Proposed Work PSO Others

Prob.
BCO PSO COPSO [154] PESO [155] AP-CMA-ES [156] ASR-ES [157] PCX [158] Shade [159]

NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR NFES SR

g01 22034 100 73314 100 95397 100 101532 100 181110 52 35406 100 55204 100 50386 100

g02 158293 100 – 0 179395 73 231193 56 – 0 – 0 87900 64 123490 92

g03 80632 100 – 0 315123 100 450644 100 18302 100 – 0 34937 100 – 0

g04 44488 100 37802 100 65087 100 79876 100 4992 100 15104 100 30989 100 40728 100

g05 54437 100 366824 100 315257 100 452256 100 82365 100 19281 100 94765 100 206620 68

g06 3784 100 37802 100 53410 100 56508 100 3269 100 9603 100 33821 100 29488 100

g07 196558 100 405156 100 233400 100 352592 96 14445 100 76782 8 117121 100 127740 100

g08 3492 100 3656 100 6470 100 6124 100 1661 100 1027 100 2826 100 3236 100

g09 74973 100 103677 100 79570 100 97544 100 5882 100 30618 100 46527 100 54919 100

g10 34192 100 487525 100 224740 100 452575 16 24891 100 – 0 89028 100 146150 100

g11 3705 100 33073 100 315000 100 450100 100 25803 100 2792 100 38688 100 49700 96

g12 198 100 6906 100 6447 100 8088 100 31247 100 2996 100 8960 100 6356 100

g13 13345 100 – 0 315547 100 450420 100 – 0 11292 84 53735 100 – 0

g14 62221 100 – 0 326900 3 – 0 14477 100 92820 8 59237 100 97845 100

g15 11761 100 267821 100 315100 100 450100 100 131822 100 8519 100 46936 100 222460 96

g16 38373 100 56612 100 40960 100 49040 100 6106 100 16179 100 30395 100 31695 100

g17 27450 100 – 0 316609 76 – 0 – 0 21491 76 136110 100 17971 4

g18 129224 100 238706 100 167089 90 214322 92 68741 100 40840 92 70027 100 104460 100

g19 241430 100 426101 100 264414 47 – 0 75669 100 – 0 129676 100 199850 100

g20 152074 100 – 0 – 0 – 0 – 0 – 0 – 0 – 0

g21 112507 100 – 0 – 0 – 0 184302 56 – 0 38217 100 107080 92

g22 277514 12 – 0 – 0 – 0 – 0 – 0 – 0 – 0

g23 253267 100 – 0 – 0 – 0 200158 84 – 0 167119 100 302550 92

g24 360 100 1986 100 19157 100 19980 100 1663 100 3638 100 11646 100 10196 100

All the results are taken from their corresponding papers.

−: NFES is not available.
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Table 3.18: Ranking based on the SP of all algorithm over 25 runs on the CEC 2006 [147]

Prob. BCO EPS-DE MPDE GDE MDE jDE-2 DPDE ICDE (mu+lm)CDE PSO COPSO PESO AP-CMA-ES ASR-ES PCX Shade

g01 1 9 5 3 11 6 4 15 12 10 13 14 16 2 8 6

g02 7 6 11 5 13 2 1 9 10 14 8 12 14 14 4 3

g03 4 6 9 12 3 13 5 8 7 13 10 11 1 13 2 13

g04 6 14 4 3 13 11 5 9 7 10 15 16 1 2 8 11

g05 4 7 11 10 2 12 8 3 9 15 14 16 5 1 6 13

g06 2 5 7 4 3 11 10 9 8 14 15 16 1 6 13 11

g07 12 3 2 6 11 7 4 9 10 15 13 14 1 16 5 7

g08 13 3 5 4 1 11 8 7 9 14 16 15 6 2 10 11

g09 13 4 3 5 2 11 7 8 9 16 14 15 1 6 10 11

g10 2 6 3 4 10 8 7 13 11 14 12 15 1 16 5 8

g11 3 6 7 5 2 12 14 4 13 9 15 16 8 1 10 11

g12 1 5 6 4 2 9 8 12 7 13 11 14 16 3 15 9

g13 1 5 11 12 3 13 7 4 8 13 9 10 13 2 6 13

g14 4 9 2 11 12 6 8 5 10 15 14 15 1 13 3 6

g15 4 7 11 6 3 12 8 2 9 14 15 16 10 1 5 13

g16 13 3 4 5 2 11 7 9 8 16 14 15 1 6 10 11

g17 2 4 12 13 1 10 6 5 8 14 9 14 14 3 7 10

g18 10 3 1 16 7 8 6 11 13 15 12 14 4 2 5 8

g19 9 1 3 8 14 6 5 11 10 12 13 14 2 14 4 6

g20 2 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3

g21 2 6 8 12 3 5 7 10 9 13 13 13 11 13 1 4

g22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

g23 6 2 3 12 10 8 4 11 7 13 13 13 5 13 1 9

g24 1 6 9 7 4 12 11 2 10 5 15 16 3 8 14 12

sum 123 125 142 172 137 209 155 181 207 292 288 319 140 162 157 211

rank 1 2 5 9 3 12 6 10 11 15 14 16 4 8 7 13

BCO is capable to provide 100% SR in every test cases except problem g22. In problem

g22, BCO only provide 12% SR. In Table 6.11, SP indicates that the BCO requires less

than 4× 103 FEs for 5 problems, 1× 105 FES for 16 problems, 2.6× 105 for 23 problems,

to achieve the success condition of optimum.

SR and Mean FEs of BCO required to solve CEC 2006 problems against state-of-the-

art that do not use the traditional techniques to solve constrained problems are compared.

For convenience, we grouped all the state-of-the-art in three groups: DE-based, PSO-

based, and other metaheuristic which is based on CMA-ES and hybrid variant of DE. Most

of the state-of-art methods, has taken for comparison, are DE and PSO based because

perching and patrolling follows the similar procedure to DE and PSO respectively. Be-

sides metaheuristics, these state-of-the- arts also use different type of constraint-handling

techniques to solve COP. Most of the state-of-arts use ε-constraint handling, three feasi-

bility rules, and penalty function to handle the constraint. So, effectiveness of proposed

constraint handling techniques is also analysed as compared to other constraint handling

technique.

Table-3.17 shows the comparison of performance of BCO with other state-of-arts in
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Table 3.19: Average rank-

ing of the Friedman test

Algorithm Average Ranking

BCO 5.4375

EPS-DE 5.8333

MPDE 6.4375

GDE 7.6875

MDE 6.3125

jDE-2 9.6875

DPDE 6.9792

ICDE 8.0625

(µ+λ)CDE 8.875

PSO 13.0833

COPSO 12.6875

PESO 14.0833

AP-CMA-ES 6.5

ASR-ES 7.5833

PCX 7.0625

Shade 9.6875

χ2− distribution : 114.64614.

P-value : 0.

terms of NFES and SR. In table-3.17, the bold face in NFES shows the best performance

in terms of NFES. Table-3.18 shows the ranking basad on the SP of all algorithms. In

Table-3.19, result of Friedman ranking test is reported. Average ranking of the Friedman

test is done based on the SP of all the algorithms on every problem of CEC 2006 [147].

Comparison with DE-based state-of-arts

To compare the performance of BCO with respect to the popular DE-based state-of-

arts, eight different algorithms EPS-DE, MPDE, GDE, MDE, jDE-2, DPDE, ICDE, and

(mu+lm)-CDE are chosen. The results of these algorithms are used in comparison is same

as reported in their original paper.

A closer examination of Table-3.17 at the first sub-table, reveals that the perfor-

mance of BCO in terms of NFES and SR is better than the DE-based state-of-art design.

Performance of BCO as compared to other DE-based state-of-arts are summarized below:

• Comparison based on NFES: In case of seven problems g01, g06, g10, g12, g13,

g22, and g24, BCO are converged fastly on feasible optimum value i.e. takes less
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number of NFES to achieve the accuracy level (f(x)−f(x∗)) ≤ 0.0001, as compared

to others algorithms. Other algorithms like EPS-DE, MPDE, GDE, MDE, jDE-2,

DPDE, ICDE and (mu+lm)-CDE take less number of NFES in case of 2 (g19, g23),

3 (g07, g14, g18), 1 (g04), 6 (g03, g05, g08, g09, g11, g16), 2 (g17, g21), 1 (g02), 1

(g15) and 1 (g20) problems respectively.

• Comparison based on SR: In case of all test problems except g22 (12%), BCO

achieve 100% SR. It can seen from Table- 3.17, BCO outperforms all the DE-based

state-of-arts in terms of SR. It is interesting to note that only BCO can found

feasible optimal solution for test problem g22. Owing to its special characteristic,

test problem g22 is very hard to solve for different DE-based state-of-arts.

Through this comprehensive comparison with chosen DE-based state-of-art designs,

BCO can be considered very competitive with respect to the chosen DE-based state-of-art

in case of COPs.

Comparison with PSO-based state-of-art designs

Three PSO-based state-of-the-art design PSO, COPSO, and PESO, are chosen to compare

the performance of BCO. The results of these algorithm is directly taken from their original

paper. All the chosen PSO-based algorithms use the three feasibility rule as a constraint

handling technique.

Second sub-table of Table-3.17, shows that the BCO performs better than chosen

PSO-based state-of-art design in terms of NFES and SR. Performance of BCO as com-

pared to chosen PSO-based state-of-the-arts are summarized below:

• Comparison based on NFES: In case of test problem except g04, BCO are converged

fastly i.e. takes less number of NFES to find feasible optimal value. In case of test

problem g04, PSO converges fastly than BCO.

• Comparison based on SR: As shown in second sub-table of Table-3.17, for test prob-

lems g20, g21, g22, and g23, PSO-based algorithms did not converge on feasible

optimum value for any run out of 25 independent run i.e. SR is zero. The perfor-

mance of BCO is effectively much better than PSO-based algorithms in terms of SR

is case of test problems g02, g03, g13, g14, g17, g19, g20, g21, g22, and g23.
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Based on the above comparison result, we conclude that the performance of BCO is far

better than the performance of PSO-based state-of-art designs in case of COPs.

Table 3.20: Multiple solution obtained using BCO for ill-conditioned CASE13

solution-1 solution-2

Bus Va 6 a Vb 6 b Vc 6 c Bus Va 6 a Vb 6 b Vc 6 c

1 1.00 0.00 1.00 -120.00 1.00 120.00 1 1.00 0.00 1.00 -120.00 1.00 120.00

2 0.99 -0.25 0.99 -120.18 0.99 119.98 2 0.99 -0.25 0.99 -120.18 0.99 119.98

3 0.62 102.02 3 0.92 122.58

4 0.94 -120.73 1.01 119.59 4 0.94 -120.73 1.01 119.59

5 0.92 -121.05 1.02 119.46 5 0.92 -121.05 1.02 119.46

6 0.93 -13.74 6 0.27 -33.10

7 0.96 -13.96 1.07 -118.37 0.64 104.44 7 0.39 -34.92 1.21 -131.26 0.93 123.30

8 0.93 -15.18 1.08 -118.95 0.63 104.21 8 0.31 -41.56 1.22 -132.73 0.94 123.20

9 0.96 -13.96 1.07 -118.37 0.64 104.44 9 0.39 -34.92 1.21 -131.26 0.93 123.30

10 0.95 -14.05 0.63 103.39 10 0.35 -35.99 0.93 123.21

solution-3 solution-4

Bus Va 6 a Vb 6 b Vc 6 c Bus Va 6 a Vb 6 b Vc 6 c

1 1.00 0.00 1.00 -120.00 1.00 120.00 1 1.00 0.00 1.00 -120.00 1.00 120.00

2 0.99 -0.25 0.99 -120.18 0.99 119.98 2 0.99 -0.25 0.99 -120.18 0.99 119.98

3 0.97 96.51 3 0.26 90.58

4 0.94 -120.73 1.01 119.59 4 0.94 -120.73 1.01 119.59

5 0.92 -121.05 1.02 119.46 5 0.92 -121.05 1.02 119.46

6 1.14 9.45 6 0.09 -39.62

7 1.16 9.39 0.15 -164.30 0.98 97.52 7 0.42 -44.17 1.28 -124.24 0.32 97.82

8 1.15 9.41 0.15 -183.44 0.99 96.91 8 0.37 -50.61 1.29 -125.05 0.29 95.65

9 1.16 9.39 0.15 -164.30 0.98 97.52 9 0.42 -44.17 1.28 -124.24 0.32 97.82

10 1.16 9.23 0.97 97.08 10 0.32 -48.98 0.29 97.47

Comparison with Other State-of-Art Designs

To broaden our comparative analysis, we considered some other state-of-art designs AP-

CMA-ES, ASR-ES, and PCX and SHADE that combine a population-based algorithm

(DE, PSO, and GA) with other programming techniques for example SQP. The perfor-

mance of BCO as compared to other state-of-art designs are summarized below.

• Comparison based on NFES: In the case of five problems g01, g12, g20, g22, and

g24, BCO has provided optimum feasible solutions with minimum Mean NFES as

compared to other algorithms. The performance of AP-CMA-ES and ASR-ES on

the basis of Mean NFES is better than the performance of BCO. Mean NFES of

AP-CMA-ES and ASR-ES is better than BCO for 9 (g03, g04, g06, g07, g09, g10,
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g14, g16, and g19) and 6 (g05, g08, g11, g13, g15, and g18) problems respectively.

BCO outperforms the PCX and Shade on the basis of Mean NFES.

• Comparison based on SR: It can seen from Table-3.17, BCO outperform all the

state-of-art designs on the basis of SR. AP-CMA-ES and ASR-ES, PCX, and Shade

provides 100% SR on 16, 11, 21, and 13 problems respectively.

Based on the above discussion, we can conclude that the ASR-ES and AP-CMA-ES are

having better convergence speed as compared to BCO, but the problem-solving capability

of these algorithms are poorer than the BCO. PCX algorithm has the better problem-

solving capability with good convergence speed, but BCO outperforms this algorithm on

the basis of both property. The BCO also outperforms the performance of Shade.

Ranking of all the selected state-of-art algorithms along with BCO on the

basis of Success Performance

Rank based on SP of all competitive algorithms are reported in Table 3.18. It is clear

from the Table 3.18, the overall normalized rank of BCO is 1, and the performance of

the BCO is better than all other competitive algorithms. In the table 3.18, the number

in boldface represents the normalized rank of all ranks. From Table 3.18, Performance

of BCO on test problems g01, g12, g13, g22, and g24 based on SP, is better than all

another state of art designs and takes the top position in the ranking table 3.18 of these

test problems.

ε-DE is obvious at the second rank in Ranking Table 3.18, because it is the winner of

CEC-2006. In support of Ranking, non-parameter Friedman test is reported in Table 3.18.

In Table 3.18, BCO is globally at the first rank with the minimum value. P-value and χ2

distribution of Friedman test are also reported at the bottom of Table 3.19. It is clear

from these values; there is a significant difference in the performance of all competitive

algorithm and Ranking is valid.

3.4.9 BCO based Power Flow for Loadability Evaluation

BCO can be used to obtain multiple solution of PF problems. Multiple PF solutions

can be useful in voltage stability analysis of power system. In this section, validation of

performance of BCO is done on CASE13 test system.
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Four different PF solutions of CASE13 are obtained using BCO and are reported in

Table 3.20. It can be seen from Table 3.20 that the solutions are low voltage solutions of

PF problem which can be used in voltage stability analysis.

For further analysis of performance of BCO, voltage profile of less stable buses of the

system at different loading condition is obtained. In this analysis, CASE11 and CASE25

are considered as test systems. In CASE13, bus 7c, 8c, 9c, and 10c are the least stable

buses in which voltage level reduces rapidly with increase of load. Similarly, bus 7a, 9a,

10a, 11a, 12a, 13a, 14a, 15a, 16a, and 17a are least stable buses in CASE25. Voltage

profile of these buses with different loading condition are depicted in Figure 3.1, 3.2 and

3.3.

It can be seen from Figure 3.1 that after the loading factor of 10, bus voltage start

decreasing due to insufficient power generation. After loading factor of 11.291, the voltage

collapses because this point is critical point of CASE13 under defined operating conditions.
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Figure 3.1: Voltage profile of Bus 7c, 8c, 9c, and 10c of CASE13 for different loading

condition.

From Figures 3.2 and 3.3, it can be seen that the voltages start reducing rapidly
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after loading factor of 11 and voltage collapses at loading factor of 12.612. Therefore,

loading factor of 12.612 is the critical point of CASE25 under given operating condition.

3.5 Summary

The SS algorithm has been proposed in this chapter. The SS algorithm is an unconstrained

optimization algorithm that can be used to calculate initial seed for the conventional PF

algorithms. SS based initial seed can not be the competitor to the flat start used in

conventional algorithms but it becomes necessary to use this in the situations where flat

start does not converge. From the extensive analysis of the proposed approach, it can be

concluded that this approach improves the performance of the conventional algorithm on

the heavily loaded and ill-conditioned test systems.

In this chapter, a PF problem is also formulated as a COP to compute the PF

solutions of the system at critical points (notch points). To solve this non-convex and

highly non-linear COP, the BCO algorithm is proposed for PF. BCO is able to provide

multiple solutions specially low voltage solutions for the PF problems. From the extensive

study of the performance of BCO as a PF tool, it can be concluded that the BCO can

provide continuation PF solutions for the distribution networks.

In the case of the islanded operation of microgrids, the system frequency and power

generations at a distribution generation are not pre-defined before PF analysis. Therefore,

the proposed algorithms of this chapter cannot be applicable to the PF problems of

islanded microgrids. In the next chapter, novel algorithms are proposed to solve the PF

problems of islanded microgrids.
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Figure 3.2: Voltage profile of Bus 7a, 9a, 10a, 11c, 12a and 14c of CASE25 for different

loading condition.
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Figure 3.3: Voltage profile of Bus 13a, 15a, 16a, and 17a of CASE25 for different loading

condition.
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