
Chapter 5

Stability study of the proposed

controller

5.1 Introduction

In the last chapter details of the hardware setup based on the proposed roof-top wind

energy conversion system has been discussed. Also, the implementation of the generator

field-weakening based DC-link voltage controller has been discussed. It is a typical process

of conducting the stability study of any controller to comment upon the stability of the

complete system. The following section conducts the stability study of the proposed

controller.

5.2 Transfer function model of proposed RWECS

Fig. 5.1 shows the control circuit diagram of the proposed DCV controller based on

proposed model as given in Fig. 4.1. However, to simplify the control circuitry, a

resistive load has been used to load the generator in place of an induction motor load.

The mathematical models of the physical systems are as follows. Eq. 5.1 presents the
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Fig. 5.1 Control circuit diagram of the proposed DC-link voltage controller.

mechanical dynamics of turbine-generator coupling.

Tt(t)−Tg(t) = Jtg
dω(t)

dt
+ ftgω(t) (5.1)

Tt is the WTE torque, Tg is the generator electromagnetic torque, Jtg is the combined inertia

of turbine-generator mechanical coupling while ftg is the combined viscous friction force

of turbine-generator against its rotor speed, and ω is the rotor speed in rad/sec. Taking the

Laplace transform of the above equation

ω(s)
∆T (s)

=
1

Jtgs+ ftg
=

1/ ftg
τtgs+1

(5.2)

Here, τtg is the time constant of the turbine-generator model. Furthermore, the

generator output voltage, Vg, is directly proportional to the rotor speed and is given by Eq.

5.3 and 5.4
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Vg(t) = kgω(t) (5.3)

Vg(s) = kgω(s) (5.4)

Here, kg is the voltage constant of the generator that depends upon the air-gap flux

linkage with the armature winding.

The wind generator three-phase output is then rectified through a three-phase rectifier

and filtered by a DC-bus bar capacitor, C. The load, RL, is then directly fed by a DC

transmission line or inverted to AC power and then distributed through an AC distribution

line. Eq. 5.5 represents the electrical transients.

Vg(t)−VDC(t) = Lg
dig(t)

dt
+ ig(t)Rg (5.5)

Here, Lg and Rg are generator armature leakage inductance and resistance, respectively.

Furthermore, the generator output current, ig is divided among capacitive current ic and

load current iL as in Eq. 5.6. Eq. 5.7 and 5.8 give the expression of capacitive current and

load current.

ig(t) = iL(t)+ iC(t) (5.6)

iC(t) =C
dVDC(t)

dt
(5.7)

iL(t) =
VDC(t)

RL
(5.8)

Furthermore, taking the Laplace transform of Eq. 5.5-5.8, the transfer function is

written as in Eq. 5.9.
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Fig. 5.2 Simplified mathematical model of stepper motor.

VDC(s)
Vg(s)

=
RL

(Lgs+Rg)(CRLs+1)+RL
(5.9)

The DC-link voltage is then compared to a reference voltage, Vre f , and generates a

control signal for the mechanical actuator.

The actual mechanical actuator used in the experimental setup is a two winding

stepper motor. Fig. 5.2 presents a simplified mathematically model of the stepper motor

[140, 141], and Eq. 5.10 gives the transfer function of the model.

φ(s)
Va(s)

=
ka/Ra fas

s((τas+1)(τass+1)+ k2
a/Ra fas)

(5.10)

Here, φ is Stator displacement angle (SDA) and Va, is the external supply to the

stepper motor, τa is the electrical time constant of the stepper motor, and La and Ra are the

leakage inductance and resistance of the armature winding. ka is the voltage constant of

the actuator. The mechanical actuator rotates the generator RS, and therefore, the actuator

and the RS are coupled to each other. Thus, τas represent the combined time constant of

the actuator-RS system, and fas is the combined viscous friction force coefficient against

the rotation.
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The mechanical actuator is excited through a driver upon receiving the DC-link

voltage error signal. The driver, thus, feeds the stepper motor through an external supply

Va. The approximate mathematical model of the driver has no time delay. Thus, represented

by Eq. 5.11

δVDC(s)ks =Va(s) (5.11)

Also, Eq. 5.12 gives the active power of the wind generator.

Pg(t) =Vg(t)IL(t) =
V 2

g (t)
RL

(5.12)

Where, as per Eq. 3.2

Vg(t) =Vo cos(
φ

2
)) (5.13)

Therefore, the generator power reduces by a factor cos2(φ/2). Thus, the generator

torque equation is given as Eq. 5.13

Tg(t) =
Pg(t)
ω(t)

(5.14)

Tg(t) =
k2

gω cos2(φ/2)
RL

(5.15)

The generator torque is a nonlinear function. Thus, the torque equation is linearized

around an operating point ω = ωo and φ = 90o by Taylor’s equation. Eq. 5.16 gives the

final expression.
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δTg(t) = k2
gωo(−φ(t)) (5.16)

As per Eq. 5.16, upon rotation of the rotatable stator by φ electrical angle the change

in torque is negative. Here, it should be noted that the generator torque feedback is negative

feedback, invariant to the operating region of the wind turbine.

Fig. 5.3 presents a simplified control circuit diagram involving all the equations. It

is to be noted that in the control circuit diagram, the summer between the turbine and

generator has been shifted to the left to simplify the whole system into its open-loop gain

G(s) and feedback H(s) as per Fig. 5.4.

Eq. 5.17 and 5.18 give expressions of G(s) and H(s), respectively.

G(s) =
(kgRLKt)/( ftgRg)

(τtgs+1)((τgs+1)(CRLs+1)+RL/Rg)
(5.17)

H(s) =
(KsKaK2

g ω0)/(KtRa fas)

s((τas+1)(τas +1)+K2
a/(Ra fas))

(5.18)

T (s) =
VDC(s)
V (s)

=
G(s)

1+H(s)G(s)
(5.19)

1+G(s)H(s) = 0 (5.20)

Eq. 5.19 represents the final transfer function, whose characteristic equation is given

by Eq. 5.20. The characteristic equation is found to be of sixth-order. Therefore, to reduce

the order of the function following assumption are taken into consideration

1. Generator electrical time constant is neglected in comparison to turbine-generator

mechanical time constant [142].



5.2 Transfer function model of proposed RWECS 87

Fig. 5.3 Simplified control circuit diagram of the Proposed system.

Fig. 5.4 Final control circuit diagram of proposed controller.



88 Stability study of the proposed controller

2. Similarly, actuator electrical time constant is neglected in comparison to actuator-RS

mechanical time constant.

A reduced-order expression of G(s) and H(s) are as follows

G(s) =
(kgRLKt)/( ftgRg)

(τtgs+1)(CRLs+1+RL/Rg)
(5.21)

H(s) =
(KsKaK2

g ω0)/(KtRa fas)

s(τass+1+K2
a/(Ra fas))

(5.22)

Thus, the characteristic equation reduces to a fourth-order equation. Rewriting the

equation and represented as in Eq. 5.23 and 5.24

G(s) =
Kng

(τtgs+1)(CRLs+1+Kdg)
(5.23)

H(s) =
Knh

s(τas +1+Kdh)
(5.24)

T (s) =
G(s)

1+H(s)
(5.25)

Here, kdg and kdh are large quantities in comparison to mechanical time constant τas

and τtg owing to low values of Rg and Ra.

5.3 Time-domain stability analysis

The stability of the transfer function modelled in by Eq. 5.25 can be studied in the

time-domain or frequency-domain. In some work [143–145], the stability of the transfer

function has been studied using frequency domain analysis. In [143–145], the controlled

variable is studied at high frequency, such as closing and opening of a valve in an internal

combustion engine. In such type of systems, frequency domain analysis is preferred [146].
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However, in this paper, the system dynamics is slow owing to the high time constant of

the wind velocity and the mechanical systems. Therefore, in this system, time-domain

analysis has been preferred.

Here, the stability test of the proposed controller uses the Routh-Hurwitz stability

criterion. The necessary equations are given in the appendix. For the controller to be stable,

quantities such as a0, a1, b1, c1, and d1 should be positive. Variable a0, a1, and d1 are

easily identified as to be positive. For b1, the positive part of the expression a1a2 contains

expressions with third degrees of high quantities, such as kdg and kdh. On the other hand,

the negative part of b1 contains the expression of two degrees of the same quantities kdg

and kdh. Therefore, b1 is bound to be positive in all real systems. For c1 also, the same

logic follows.

In the controller, the mechanical actuator rotates generator-RS in a direction to

maintain VDC at Vre f and, thus, apply negative feedback in the control logic at all con-

ditions.Therefore, any system based on the proposed controller is stable invariant to the

operating region of the wind turbine. The reason is due to the inherent property of the

control logic of giving negative feedback at all operating conditions.

5.4 Conclusion

In this chapter the steady state stability study of mechanical field-weakening based DC-

link voltage controller in the proposed roof-top wind energy conversion system has been

conducted. The proposed system has been found stable invariant to the operating region

of the wind turbine. In the next chapter experimentations have been performed on the

hardware setup to validate the principle of concept of this thesis.


