
Chapter 8

Conclusions and Future Scope of

Work

8.1 Conclusions

Following the overall conclusion of the thesis are drawn from the work reported in the

various chapters. The method of eGA used in Chapter 2 produces the optimal feature set

and using the proposed method of feature selection the redundant and irrelevant/noisy

features are identified. Results of the experiments show that the proposed method is

able to select the most informative features in terms of classification accuracy. In this

Chapter 4, UCI datasets have been used to validate the efficacy of the proposed approach

of feature selection using eGA. An analysis of irrelevant/noisy features has also been

performed. In later chapters, fuzzy rough set based fitness functions have been used,

hence to compare the performance of fuzzy rough set with respect to the feature selection

method which use classification accuracy as fitness function, this study has been done.

A decision tree method with feature selection is presented for predicting the electricity

prices. The method uses eGA and decision tree classifier for feature selection. The result

explains the efficacy of the feature selection method. It is established from the results

that feature selection method provides better forecast accuracy of electricity prices in

comparison to that of using full set.

Chapter 3 covered the preliminaries of rough set and fuzzy rough set along with an

example explaining calculation procedure to obtain dependency measures for both the

methods. Following motivations were drawn in favour of using L-FRFS measure in the
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present work.

1. For the case of real valued features, for applying rough set method, we need to

discretize the feature values. The discernibility of features are affected by the quan-

tization and therefore becomes dependent on the quantization of feature values.

2. In case of fuzzy rough sets, the real feature values are taken as it is and therefore no

such quantization is done and discernibility of features are therefore more accurate

as well as meaningful.

3. For real valued features the number of quantization levels can be large or infinite.

Thus to capture the feature values in discrete sense is not simply possible.

4. If a real valued feature based problem is solved using rough set through discretiza-

tion, it is highly possible that while application, a newer intermediate value for

which the quantization level was not fixed may arise, making the rough set based

method of no use since the nominations to values are predefined. In other words,

new value is a new nomination and the rough set based feature reduction has to be

done once again including the new nominations.

Chapter 4 developed a new initialization method for PSO and IDS algorithms. DS

initialized swarm algorithms always produce smaller reducts, as they are able to pick the

appropriate reducts in early generation. Following conclusion can be drawn with respect

to the RST and L-FRFS measures.

1. Using RST measure, PSO-DS and IDS-DS, in general, achieve better performance

as compared to PSO-RANDOM and IDS-RANDOM. PSO-DS and IDS-DS, outper-

form PSO-RANDOM and IDS-RANDOM in such cases where feature reduction is

actually sought after, i.e. datasets having large number of features. DS-initialized

PSO and IDS outperform random initialized PSO and IDS for large datasets, with-

out compromising with classification accuracy.

2. Using L-FRFS measure, PSO-DS and IDS-DS, in general, achieve better perfor-

mance as compared to PSO-RANDOM and IDS-RANDOM, which has been estab-

lished using a t-test, Wilcoxon test and Friedman test.
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3. It is observed from the Friedman test, that for RST measure, rank of PSO-RANDOM

method is better than that of IDS-DS, but in L-FRFS measure, rank of IDS-DS

method is better than that of PSO-RANDOM.

In Chapter 5, new feature selection methods viz. Hybrid-P and Hybrid-S have been

proposed. The methods use RST and L-FRFS measures as their fitness function. These

methods were developed employing hybridization of PSO and IDS to take the advantage

of random exploration of IDS and guided search of PSO. These two hybrid methods were

tested for different datasets and the effectiveness of the methods was established in terms

of reducts achieved. The proposed methods have shown their effectiveness on large and

practical datasets where feature selection are relevant and significant. It is observed that

in most of the datasets, Hybrid-P method performs better than Hybrid-S method. It

is also observed from Friedman ranking test, that with RST measure, rank of Hybrid-P

method is better than that of Hybrid-S, but with L-FRFS measure, rank of Hybrid-S

method is better than that of Hybrid-P.

Chapter 6 proposes new feature selection method based on BO using RST and L-

FRFS measures as fitness function. Effectiveness of the BO was established in terms of

number of reduct size, classification accuracy, t-test, Wilcoxon test and Friedman test.

The BO has shown its effectiveness on large and practical datasets. It was demonstrated

that the proposed feature selection method using BO is successful in identifying the ir-

relevant and redundant features. It is observed that BO ranks the best as compared to

Hybrid-P and Hybrid-S methods, in case of RST as well as L-FRFS measures.

A new evolutionary optimization algorithm, AGA-MO, has been proposed in Chapter

7. The proposed AGA-MO optimization method has been applied for feature selection

using RST and L-FRFS measures. AGA-MO utilizes DS-initialization and gives better

reducts without compromising with classification accuracy. Superiority of AGA-MO over

BO and eGA has been established in terms of reduct size, classification accuracy, t-test,

Wilcoxon test and Friedman test. Further, AGA-MO has the edge, i.e. its performance

is better than BO and eGA, in case of RST as well as L-FRFS measures, as suggested by

Friedman ranking test. The AGA-MO has shown its effectiveness on large and practical

datasets where feature selection is significant.
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Table 8.1: Best known result for each dataset along with their description

Dataset Data Object No. of classes Total no. of Features

Best known result Best known result

using RST using L-FRFS

(for discrete dataset) (for continuous dataset)

Cleveland 303 5 13 3 6

Ecoli 336 8 7 3 5

Glass 214 6 9 2 8

Ionosphere 351 2 34 2 6

Lung 32 2 56 3 3

Soybean small 47 4 35 2 2

Wine 178 3 13 2 4

LSVT 126 2 310 1 5
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Figure 8.1: Computational time vs Number of features with RST technique
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Figure 8.2: Computational time vs Number of Objects with RST technique
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Figure 8.3: Computational time vs (Number of Features x Objects) with RST technique
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The graph of computational time vs number of features is shown in Figure 8.1. It is

observed that the computational time required by a method does not have a discernible

dependency on the number of features. However, a clear dependency of computational

time on the number of objects in the dataset can be observed from Figure 8.2. Also

the dependency of computational time can be approximated to be linearly related to the

product of number of objects and number of features. For a given dataset, all the methods

take almost similar amount of computational time, as evident from Figure 8.3.
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Figure 8.4: Computational time vs Number of features with L-FRFS technique
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Figure 8.5: Computational time vs Number of Objects with L-FRFS technique
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Figure 8.6: Computational time vs (Number of Features x Objects) with L-FRFS technique
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Similar trend related to computational time was observed for L-FRFS based method-

ology. A corresponding plot of computational time vs object count is shown in Figure

8.4, similarly plot of computational time vs object count is shown in Figure 8.5. Also

the dependency of computational time can be approximated to be linearly related to the

product of number of objects and number of features. For a given dataset, all the methods

take almost similar amount of computational time, as evident from Figure 8.6.
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Figure 8.7: Computational time vs Number of Objects with RST and L-FRFS technique
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It is clearly observed from Figure 8.7 that the computational time taken by the

RST technique for all the search methods is more than those of L-FRFS technique, as

we go for the higher number of objects. In Figure 8.7, prefix R in R-PSO-RANDOM,

R-IDS-RANDOM, R-PSO-DS, R-IDS-DS, R-Hybrid-P, R-Hybrid-S, R-BO, R-AGA-MO

and R-eGA corresponds to RST and prefix L in L-PSO-RANDOM, L-IDS-RANDOM, L-

PSO-DS, R-IDS-DS, L-Hybrid-P, L-Hybrid-S, L-BO, L-AGA-MO and L-eGA corresponds

to L-FRFS.

At last let us have the best results out of this work, for all the dataset are shown in

Table 8.1. Here we have best result for both RST and L-FRFS, and we observe that the

reduct produced by RST method is smaller to L-FRFS method.

The following qualitative reasons explains the smaller feature subset of RST method

compared to L-FRFS approach.

1. L-FRFS is not used for improved performance in terms of accuracy or reduct size,

rather it was used for capturing fuzziness in description of datasets. Hence, in the effort

to capture fuzziness, reduct may not be smaller as compared to a rough set approach.

Fuzzy lower approximation maintains dependency of data which will never be zero,

whereas, rough set is crisp and hard-limits the approximation. Due to this, RST may

ignore or preserve features in a crisp manner resulting in loss of dependency and therefore

reduct produced may be smaller in size.

2. In RST, there is a need to discretize the feature values. The discernibility of

features are affected by the quantization and therefore become dependent on the quanti-

zation of feature value. Whereas, in L-FRFS the real feature values are taken as it is and

no quantization is required and discernibility of features are therefore more accurate as

well as meaningful. This is the reason why the RST approach may provide smaller size

features compared to L-FRFS approach.

For the dataset Cleveland, Ecoli, Glass and Wine all methods proposed in this work

produce stable results i.e. standard deviation in the number of features is zero. For

Ionosphere and Lung, BO and AGA-MO produce the smallest and stable reduct (i.e.

standard deviation is zero) with high and stable accuracy (i.e. standard deviation is

zero). For Soybean small and Lung the reduct size is same in both method i.e. RST and

L-FRFS.

While comparing results in Tables I and II, it be observed that the results are superior
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to that of the state-of-the-art methods reported in the literature in terms of both, reduct

size as well as classification accuracy.

8.2 Future Scope of Work

Following are the future scope of the work. DS-initialization proposed in this thesis can

be further investigated for its applicability in other swarm and evolutionary algorithms.

The methods proposed in this thesis can be extended for other datasets. Boundary

approximation of fuzzy rough set can also be investigated for feature selection problems.

Studies similar to this thesis can be performed for unsupervised datasets, where labels are

unknown. The work can be extended by exploring further hybridization of the algorithms

proposed in this thesis with other algorithms. The proposed methods can be extended to

the other real life application areas.
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