
Chapter 4

Improving the Initialization

4.1 Introduction

In the literature many authors have suggested different techniques for initialization of

PSO. Qiang et al. [72] suggested chaotic initialization which uses something similar to

pheromone used in ACO. Ruksaphil et al. [73] proposed minimax initialization which

minimizes the maximum error. Paolo et al. [74] suggested alternate initialization technique

of log, normal and lognormal distribution which replaces uniform distribution, Babu et

al. [75] suggested two stage initialization, in which first stage is about selecting best

strings, by evaluating these strings repeatedly with equal number of population size and

in second stage these best strings get combined, and forms the new population, which is

used for further operations. Guo et al. [76] suggested a re-initialization technique, which is

based on estimation of the varieties and activities of the particles. In this method, group

of particles which satisfies re-initialization pre-conditions, will be used for initialization,

facilitating balance global search capabilities.

The above initialization methods are for general PSO algorithm; these are not specif-

ically for feature selection. In the case of feature selection, an initialization method should

ensure that distribution of strings in the population is uniform as far as a number of fea-

tures selected are concerned. In this chapter a new initialization method based on this

idea is developed and tested for feature selection problem.
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4.2 Proposed Distributed Sampled (DS) Initializa-

tion

In this work, a new initialization technique, has been proposed and has been implemented

for PSO and IDS techniques, discussed in the previous section for feature selection. This

initialization attempts to explore the search space in a uniform fashion. The proposed

initialization techniques distributes the search space in three parts and then takes candi-

date solutions (samples) randomly from each of three search spaces. Hence, this technique

is referred to as Distributed Sample Initialization (DS - initialization) in this paper, to

differentiate it from random initialization (RANDOM initialization) used conventionally.

This method of initialization takes advantage of population of solutions. This method ini-

tializes population with a mix of three types of solution. First One-third of the population

contains solutions with less number of features, second one-third part contains solutions

with medium number of feature and remaining one-third part of the population contains

solutions with large number of features. Presence of all the three types of solutions in the

population ensures that algorithm captures suitable reducts quickly.

The procedure of the method has been presented in the Table 4.1 and contrast of the

same has been shown with respect to conventional random initialization method. Here,

it can be seen that if total population is P, then one-third of the solution (0 to 1
3
P) are

biased towards selection of less number of feature due to the probability p1, which is

less than p2 and p3. Similarly, second one-third part of the solution ((1
3
P+1) to 2

3
P) are

having average number of features because p2 < p3. Last one-third part of the population

((2
3
P+1) to P) are having higher number of features. Whereas in random initialization

the above is not ensured as practical random number generators are biased towards mean.

4.2.1 PSO with DS Initialization: PSO-DS

The PSO algorithm initialized with DS-initialization is given in Algorithm 4. In the

present work, PSO of reference [4] has been implemented with the DS-initialization and

results have compared with that of RANDOM-initialization.
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Algorithm 4 DS-initialization for PSO (PSO-DS)

p1, p2, p3, probabilities between (0,1);

For first one third solutions i = 1 to i/3

if rand < p1 then

xi,j = 0;

else

xi,j = 1;

end if

For second one third solutions i = (i/3 + 1) to 2i/3, initialize Xi

if rand < p2 then

xi,j = 0;

else

xi,j = 1;

end if

For last one third solutions i = (2i/3 + 1) to i, initialize Xi

if rand < p3 then

xi,j = 0;

else

xi,j = 1;

end if

Use Algorithm 1 for PSO with xi,j; i = 1 to P; j = 1 to D
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Table 4.1: Initialization of solutions for random and proposed DS-initialization method

Proposed DS-Initialization Random Initialization

Part of For every Value For the whole For every Value

population solutions assigned population solutions assigned

0 to 1
3
P

If rand < p1 0

If rand < pi 0
otherwise 1

(1
3
P+1) to 2

3
P

If rand < p2 0 P

otherwise 1

otherwise 1
(2

3
P+1) to P

If rand < p3 0

otherwise 1

here, 0 < p1 < p2 < p3 < 1 here, 0 < pi < 1

4.2.2 IDS with DS Initialization: IDS-DS

The IDS algorithm initialized with DS-initialization is given in Algorithm 5. In the present

work, IDS of reference [29] has been implemented with the DS-initialization and results

have compared with that of RANDOM-initialization.

4.3 PSO and IDS with RST measure

In this paper, Rough Set Theory based Feature Selection (RST-FS) method has been

implemented. In this method, objective is to select an optimal set of reduced features

(reduct) from the set of unreduced features. The dependency of this reduced feature on

the corresponding class is maximized in terms of rough dependency measure, γP (Q). In

this work, swarm intelligence optimization methods (PSO and IDS) have been used to

find optimal reduced set of features (reduct) using a population of candidate solutions.

A candidate solution in a given population, consists of string of 0’s and 1’s. Sum

of number of 0’s and 1’s is equal to number of unreduced features in a given dataset.

Index of each ’1’ is the index of feature selected, in the candidate set of reduced feature.

Similarly index of each ’0’ represents index of feature which is not selected in the above

set of reduced features. Fitness function of each solutions is calculated in terms of Rough

Dependency Measure, γP (Q).
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Algorithm 5 DS-initialization for IDS (IDS-DS)

p1, p2, p3, probabilities between (0,1);

For first one third solutions i = 1 to i/3, initialize Xi

if rand < p1 then

xi,j = 0;

else

xi,j = 1;

end if

For second one third solutions i = (i/3 + 1) to 2i/3, initialize Xi

if rand < p2 then

xi,j = 0;

else

xi,j = 1;

end if

For last one third solutions i = (2i/3 + 1) to i, initialize Xi

if rand < p3 then

xi,j = 0;

else

xi,j = 1;

end if

Use Algorithm 3 for IDS with xi,j; i = 1 to P; j = 1 to D
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4.3.1 Experiments, Results and Discussions

We have used MATLAB version R2013a for writing the program and core i3 processor 1.7

GHz for running the program. Parameters related to experiment are discussed as follows.

Dataset

All the benchmark dataset are taken from the UCI data repository of machine learning.

[77]. Characteristics of the datasets chosen for the present study are described in Table

4.2. Since all the datasets chosen for this work used in this work are having continuous

values, discretization (i.e. converting continuous values to nominal values) of all the

datasets has been performed in this case when RST-FS method is being implemented.

Table 4.2: Description of benchmark datasets

S. No. of No. of

No. Dataset Objects Features

1 Cleveland 303 13

2 Ecoli 336 7

3 Glass 214 9

4 Ionosphere 351 34

5 Lung 32 56

6 Soybean small 47 35

7 Wine 178 13

8 LSVT 126 310

Parameter Setting

Using trial and error on various dataset we came to the conclusion about the parameters

that will be suitable for our experiments. In Table 4.1, for random initialization, we took

pi = 0.5, and while doing proposed DS-initialization, we took p1 = 0.1, p2 = 0.5, and

p3 = 0.9 after trying many combinations of these probabilities. In Equation (1.1), C1 and

C2 will be having their usual value 2. In PSO the inertia weight decreases from 1.4 to 0.4

using following equation, generation by generation [4].
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weight = (weight− 0.4) ∗
(
Max iter − Current iter

Max iter

)
+ 0.4 (4.1)

Parameters in IDS are set as follows. Cw = 0.1, Cp = 0.4, Cg = 0.9.

We executed programs corresponding to all the methods with 100 generations, and

with population size of 100. Execution of program was done a 12 times and the all these

runs were averaged.

Fitness value

The expression of fitness value uses the expression of rough dependency measure as first

term. In the expression of fitness value, second term is introduced to evolve minimal

reduct. The weightage of rough dependency measure is higher as compared to second

term [4]. This is done because reducts of different sizes may have value of dependency

measure as 1. Thus the expression for the fitness value is as follows.

Fitness V alue = 0.9 ∗ γP (Q) + 0.1 ∗
(
|C| − |R|
|C|

)
(4.2)

Here γP (Q) is the fuzzy rough dependency measure of selected feature set, R, relative to

decision feature D. C is the total number of features in the dataset.

Statistical Analysis

In order to validate results, statistical t-tests (denoted ’S’), Wilcoxon (denoted ’WT’),

and Friedman ranking are performed for both classification accuracy and for the reduct,

with respect to DS initialization of PSO and IDS methods. Statistical analysis establishes

that the results found are not by chance. The t-test is a parametric test based on the

assumption that the subject data groups under comparison are drawn from the normal

distribution. In general cases, the normality of data is assumed rather than verified and

therefore, the validity of t-test under such circumstances is not reliable. In view of this,

non-parametric tests such as the Wilcoxon and Friedman tests are used. Therefore, in

this chapter results have also been validated using Wilcoxon and Friedman tests. In

t-tests and Wilcoxon test, significance value of 0.05 is taken. The symbol ”*” denotes

that the proposed methods perform worse than the indicated method, ”-” denotes that

the proposed methods perform equally well as compared to the indicated method and
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”v” denotes that the proposed methods performs better than the indicated method. For

example in Table 4.8, Lung dataset, the symbol ”v” marked against IDS-RANDOM

indicates that IDS-DS performs better than IDS-RANDOM. Similarly, the symbol ”-”

marked against PSO-RANDOM indicates that performance of IDS-DS is equally good to

that of PSO-RANDOM. Thus, more number of ”v” or ”-” indicates that IDS-DS is either

better or equally good as compared to other methods given in the Table 4.9.

Results and Discussions

Randomly initialized and DS-initialized PSO and IDS have been executed for each of the

benchmark datasets using lower approximation based rough sets. Classification accuracies

are computed using J48, JRip and PART classifier in terms of their best, mean and

standard deviation values. It is observed from the Tables 4.3 and 4.4 that rough set

methodology facilitates the drastic reduction in the size of the feature subset. Here PSO

and IDS with random initialization and proposed DS initialization are used to perform

the feature selection task. The significance of DS initialization is visible in the reasonably

large dataset like Soybean small, Lung and LSVT. For example in case of LSVT, PSO-DS

gives size of reduct as 14 as compared to 113 given by PSO-random and 119 given by

IDS-random, where the unreduced feature size is 310. Similar is the case of Lung dataset.

IDS-DS also yields similar results. Feature sets have high rough dependency measure

even with this reduced reduct size. However, in smaller datasets all the methods provide

stable sized reducts, i.e. s.d = 0.

PSO-DS and IDS-DS are better as compared to random PSO and random IDS

respectively. Further, effect of optimized reducts on classification accuracy has been

investigated.

Through this investigation it has been demonstrated that in most of the cases classifi-

cation accuracy is acceptable. Table 4.3 show results of t-test (denoted ’S’) and Wilcoxon

test (denoted ’WT’) for PSO-DS method in terms of classification accuracy. In this table,

statistical significance of PSO-DS as compared to PSO-random and IDS-random has been

tabulated. From these values it is evident that the proposed PSO-DS is always compara-

ble in terms of statistical significance in at least one of the three classifiers used in this

work.
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Table 4.3: PSO-DS with RST measure: Comparison of reduct size and classification accuracy with statistical t-test, and Wilcoxon test.

[Classification accuracy is denoted as ’CA’. Statistical t-test is denoted as ’S’. Wilcoxon test is denoted as ’WT’. Mean Subset Size is

denoted as ’MSS’.]

Dataset Feature Feature Classification Accuracy (CA) Best result reported

(Total Selection Subset size Classifier : J48 Classifier : JRip Classifier : PART in literature

features) Method Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT MSS CA

Cleveland(13)

PSO-RANDOM 3 3(0) - - 55.44 51.89(3.067) - - 56.1 53.18(1.032) - - 54.78 50.84(2.976) - -

IDS-RANDOM 3 3(0) - - 55.44 52.08(1.948) - - 56.1 53.1(1.038) - - 54.78 51.01(2.577) - - 7.81 [30] 52.6 [30]

PSO-DS 3 3(0) 55.44 51.92(2.85) 53.46 52.82(0.328) 54.78 52(2.652)

Ecoli(7)

PSO-RANDOM 3 3(0) - - 79.46 76.99(2.43) - - 80.95 76.11(3.52) - - 80.95 76.31(3.93) - -

IDS-RANDOM 3 3(0) - - 79.46 77.03(2.49) - - 80.95 77.4(3.67) - - 80.95 77.3(3.7) - - 3 [52] 77.38 [52]

PSO-DS 3 3(0) 79.46 76.47(3.25) 80.95 75.32(4.44) 80.95 75.59(4.55)

Glass(9)

PSO-RANDOM 2 2(0) - - 66.36 58.43(6.18) - - 64.95 57.98(6.8) - - 68.22 57.9(7.01) - -

IDS-RANDOM 2 2(0) - - 66.36 58.29(7.35) - - 63.08 55.41(6.51) - - 68.22 55.41(8.07) - - 8.44 [30] 65.14 [30]

PSO-DS 2 2(0) 66.36 56.81(7.07) 64.95 55.96(8.23) 68.22 57.43(8.7)

Ionosphere(34)

PSO-RANDOM 2 4.33(1.49) v v 88.89 85.35(2.58) - - 87.75 86.01(1.69) - - 87.75 85.11(2.84) * *

IDS-RANDOM 4 6.5(1.08) v v 88.89 87.27(1.42) * * 91.45 87.31(2.15) - - 89.17 86.82(2.3) * * 7.3 [30] 86.17 [30]

PSO-DS 2 2.67(0.49) 89.74 83.9(2.89) 89.17 85.47(2.68) 88.89 82.69(2.87)

Lung(56)

PSO-RANDOM 4 9.83(2.94) v v 87.5 72.65(9.62) - - 87.5 70.31(11.88) - - 87.5 73.17(8.58) - -

IDS-RANDOM 13 14.58(0.9) v v 84.37 65.62(8.104) v v 87.5 66.15(8.409) v v 75 64.32(6.314) v v NA NA

PSO-DS 3 5(1.04) 87.5 77.08(8.25) 87.5 76.03(8.671) 84.37 75.51(8.922)

Soybean PSO-RANDOM 2 2.16(0.39) - - 100 99.82(0.61) - - 100 99.64(1.22) - - 100 99.82(0.61) - -

small(35) IDS-RANDOM 3 3.66(0.49) v v 100 98.93(2.12) - - 100 98.75(2.3) - - 100 98.58(2.91) - - 2 [29] 100 [29]

PSO-DS 2 2.16(0.39) 100 99.29(2.13) 100 99.29(2.93) 100 99.29(2.13)

Wine(13)

PSO-RANDOM 2 2(0) - - 88.2 78.41(8.62) - - 88.52 77.27(8.74) - - 88.21 78.46(7.96) - -

IDS-RANDOM 2 2(0) - - 94.94 74.43(10.11) v v 90.45 72.56(8.73) v v 93.26 73.64(10.16) v v 2 [52] 90.44 [52]

PSO-DS 2 2(0) 94.94 81.46(11.1) 90.45 80.52(10.09) 93.82 81.27(10.77)

LSVT(310)

PSO-RANDOM 113 121(4.53) v v 80.16 74.73(3.73) - - 83.33 75.59(4.11) - - 81.75 75.13(3.52) - -

IDS-RANDOM 119 122.83(1.94) v v 79.37 74.66(3.44) - - 86.51 79.3(3.94) - - 81.75 75.46(3.67) - - NA NA

PSO-DS 14 17.75(1.86) 79.37 75.26(3.66) 84.92 75.6(4.3) 80.16 75.4(3.68)
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Table 4.4: IDS-DS with RST measure: Comparison of reduct size and classification accuracy with statistical t-test, and Wilcoxon test.

[Classification accuracy is denoted as ’CA’. Statistical t-test is denoted as ’S’. Wilcoxon test is denoted as ’WT’. Mean Subset Size is

denoted as ’MSS’.]

Dataset Feature Feature Classification Accuracy (CA) Best result reported

(Total Selection Subset Size Classifier : J48 Classifier : JRip Classifier : PART in literature

features) Method Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT MSS CA

Cleveland(13)

PSO-RANDOM 3 3(0) - - 55.44 51.89(3.067) - - 56.1 53.18(1.032) - - 54.78 50.84(2.976) - -

IDS-RANDOM 3 3(0) - - 55.44 52.08(1.948) - - 56.1 53.1(1.038) - - 54.78 51.01(2.577) - - 7.81 [30] 52.6 [30]

IDS-DS 3 3(0) 55.44 52.69(1.581) 56.1 53.62(1.538) 54.78 51.39(2.092)

Ecoli(7)

PSO-RANDOM 3 3(0) - - 79.46 76.99(2.43) - - 80.95 76.11(3.52) - - 80.95 76.31(3.93) - -

IDS-RANDOM 3 3(0) - - 79.46 77.03(2.49) - - 80.95 77.4(3.67) - - 80.95 77.3(3.7) - - 3 [52] 77.38 [52]

IDS-DS 3 3(0) 79.46 77.13(2.46) 80.95 76.24(3.78) 80.95 76.34(3.52)

Glass(9)

PSO-RANDOM 2 2(0) - - 66.36 58.43(6.18) - - 64.95 57.98(6.8) - - 68.22 57.9(7.01) - -

IDS-RANDOM 2 2(0) - - 66.36 58.29(7.35) - - 63.08 55.41(6.51) - - 68.22 55.41(8.07) - - 8.44 [30] 65.14 [30]

IDS-DS 2 2(0) 66.36 60.51(5.31) 63.08 57.91(5.36) 68.22 59.58(6.07)

Ionosphere(34)

PSO-RANDOM 2 4.33(1.49) v v 88.89 85.35(2.58) - - 87.75 86.01(1.69) - - 87.75 85.11(2.84) - -

IDS-RANDOM 4 6.5(1.08) v v 88.89 87.27(1.42) - - 91.45 87.31(2.15) - - 89.17 86.82(2.3) - - 7.3 [30] 86.17 [30]

IDS-DS 2 3(0.43) 88.89 84.83(2.62) 88.89 84.71(2.3) 90.31 84.05(3.18)

Lung(56)

PSO-RANDOM 4 9.83(2.94) v v 87.5 72.65(9.62) - - 87.5 70.31(11.88) - - 87.5 73.17(8.58) - -

IDS-RANDOM 13 14.58(0.9) v v 84.37 65.62(8.104) - - 87.5 66.15(8.409) - - 75 64.32(6.314) - - NA NA

IDS-DS 5 5.92(0.67) 87.5 69(8.983) 87.5 69.78(8.463) 84.37 69.26(9.685)

Soybean PSO-RANDOM 2 2.16(0.39) * * 100 99.82(0.61) - - 100 99.64(1.22) - - 100 99.82(0.61) - -

small(35) IDS-RANDOM 3 3.66(0.49) v v 100 98.93(2.12) - - 100 98.75(2.3) - - 100 98.58(2.91) - - 2 [29] 100 [29]

IDS-DS 2 2.75(0.87) 100 98.94(2.13) 100 98.22(3.25) 100 99.11(2.12)

Wine(13)

PSO-RANDOM 2 2(0) - - 88.2 78.41(8.62) - - 88.52 77.27(8.74) - - 88.21 78.46(7.96) - -

IDS-RANDOM 2 2(0) - - 94.94 74.43(10.11) - - 90.45 72.56(8.73) - - 93.26 73.64(10.16) - - 2 [52] 90.44 [52]

IDS-DS 2 2(0) 94.94 76.69(8.32) 90.45 75.23(7.12) 93.26 76.78(8.39)

LSVT(310)

PSO-RANDOM 113 121(4.53) v v 80.16 74.73(3.73) - - 83.33 75.59(4.11) - - 81.75 75.13(3.52) - -

IDS-RANDOM 119 122.83(1.94) v v 79.37 74.66(3.44) - - 86.51 79.3(3.94) - - 81.75 75.46(3.67) - - NA NA

IDS-DS 18 20.67(2.1) 84.13 75.4(4.69) 80.95 75.13(3.83) 79.37 73.74(4.59)
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Table 4.4 show results of t-test and Wilcoxon test for IDS-DS, it is observed from

Table 4.4 that performance of IDS-DS is also comparable to random version of PSO or

IDS in terms of statistical significance in case of classification accuracy. The significance

of IDS-DS is visible in the reasonably large dataset like Soybean small, Lung and LSVT.

In smaller datasets all the methods provide the stable sized reducts, i.e. s.d = 0.

Tables 4.3 and 4.4 show best results reported in literature in terms of Mean Subset

size (denoted as MSS) and classification accuracy (denoted as CA). Further, It is evident

from Table 4.3 and 4.4 that the performance of PSO-DS and IDS-DS is better than that

of state-of-the-art methods suggested in the literature. While using rough dependency

measure as fitness function, these method provides smaller reduct with comparable or

more accuracy than the existing best method reported in the literature, for all the dataset.

Table 4.5 depicts the statistical analysis of convergence of PSO-DS. It is observed

from the Table 4.5 that for all the datasets used in this work, DS initialization based

PSO converges in early generation with respect to randomly initialized PSO. Table 4.6

depicts the statistical analysis of convergence of IDS-DS. It is observed from the Table

4.6 that for all the datasets used in this work, DS initialization based IDS converges in

early generation with respect to randomly initialized IDS.

It is also observed from the Table 4.6 that, in general, DS initialization based IDS

converges in early generations compared to randomly initialized IDS. Especially, in the

case of Ionosphere, Lung, Soybean small and LSVT IDS DS converges very fast. Thus, it

is observed that DS version of PSO and IDS are superior to their random version. Table

4.7 ranks all the methods discussed above using Friedman ranking. It shows that the

DS-initialized version are better than their corresponding random version and PSO-DS is

better than IDS-DS.

4.4 PSO and IDS with L-FRFS measure

In this work PSO and IDS have been applied for simultaneous feature selection. The

fitness functions have been computed using fuzzy rough dependency measure of L-FRFS

suggested in [8,30,32]. All the particles are initialized randomly, and fuzzy lower approx-

imation for all classes are computed using Lukasiewicz fuzzy implicator. In the next step,

the fuzzy positive regions, are computed. Consequently fuzzy rough dependency measure
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Table 4.5: Statistical analysis of number of generations taken by the dataset for converging

to a solution for PSO with RST measure

PSO-RANDOM PSO-DS

Dataset Min Mean s.d. Min Mean s.d.

Cleveland 1 12 14.83 1 3.25 2.59

Ecoli 1 8.33 10.81 1 1.25 0.45

Glass 1 13.66 11.72 1 1.08 0.28

Ionosphere 2 19.41 10.17 1 1.58 1.44

Lung 1 30.5 17.23 1 3.41 1.78

Soybean Small 7 20.33 11.64 1 5.91 5.86

Wine 1 1.58 1.16 1 1 0

LSVT 37 79.16 19.32 11 16.33 13.5

Table 4.6: Statistical analysis of number of generations taken by the dataset for converging

to a solution for IDS with RST measure

IDS-RANDOM IDS-DS

Dataset Min Mean s.d. Min Mean s.d.

Cleveland 1 8.58 10.63 1 8.16 10.89

Ecoli 1 1 0 1 1.08 0.28

Glass 1 1 0 1 1.16 0.38

Ionosphere 3 33.33 21.33 1 1 0

Lung 10 40.16 19.33 1 1 0

Soybean Small 1 26.83 17.23 1 9.16 15.4

Wine 1 2.41 1.67 1 1 0

LSVT 3 48.67 34.92 1 1 0

62



Table 4.7: Friedman ranking with RST measure

Methods FR Rank

PSO-DS 2.2969 1

PSO-RANDOM 2.4219 2

IDS-DS 2.5000 3

IDS-RANDOM 2.7813 4

is computed and used as a part of the fitness function.

4.4.1 Experiments, Results and Discussions

Parameters and assumptions considered regarding experiments are discussed as follows.

Data Normalization

In this work the data discussed in Section 4.3.1 has been scaled in the range [0,1], using

the following equation.

Enorm
i =

Et
i − Emin

i

Emax
i − Emin

i

(4.3)

where Enorm
i is a normalized value of the ith element of a given feature, Emin

i and Emax
i

are respectively minimum and maximum values of all the elements of the corresponding

feature.

Further, Fuzzy Similarity Matrices (FSMs) have been computed separately using

Equation (3.19) for each of the individual feature of the corresponding dataset individually.

These FSMs are utilized to compute dependency measure corresponding to the feature

set and combination of feature sets.

Parameter Setting

Parameters used for PSO [4] referenced in Equation (1.1) are as follows. C1 and C2 will

have their frequently used value 2. The inertia weight, w decreases from 1.4 to 0.4 and

w = (w − 0.4) ∗
(
Max iter − Current iter

Max iter

)
+ 0.4 (4.4)

Parameters used for IDS [29], are set as; Cw = 0.1, Cp = 0.4, Cg = 0.9.
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Fitness value

The value of fitness will depend upon fuzzy rough dependency measure γ
′
P (Q) as shown

in Equation (3.21). The value of fitness is computed using the following formula [4].

Fitness V alue = 0.9 ∗ γ′

P (Q) + 0.1 ∗
(
|C| − |R|
|C|

)
(4.5)

where γ
′
P (Q) is the dependency measure of the selected reduct, R. C and D are respec-

tively total number of features and decision feature in the dataset.

Classification Accuracy

In this work J48 [78], JRip [79] and PART [80] classifiers are used on each of the dataset,

to calculate S-10FCV classification accuracy for comparison purposes.

Results and Discussions

PSO-RANDOM, IDS-RANDOM, PSO-DS and IDS-DS have been executed 12 times for

each of the benchmark datasets. Each run is of 100 generations with a population size

of 100. Classification accuracies are computed using J48, JRip and PART classifiers in

terms of their best, mean and s.d. values. Statistical t-test (denoted ’S’), Wilcoxon test

(’WT’) and Friedman ranking are also performed for classification accuracy and for the

reduct size, with respect to PSO-DS and IDS-DS. Table 4.8 shows results of t-test, and

Wilcoxon test and Friedman ranking for PSO-DS method and Table 4.9 shows results of

t-test and Wilcoxon test for IDS-DS in terms of classification accuracy. In these tables,

statistical significance of PSO-DS and IDS-DS are compared to the PSO-random and

the IDS-random has been tabulated. From these values, it is evident that the proposed

PSO-DS and IDS-DS are always comparable or better in terms of statistical significance

for all the three classifiers used in this work.

It is observed from Tables 4.8 and 4.9, that fuzzy rough set methodology facilitates

the reduction in the size of the feature subset, with acceptable and comparable classifica-

tion accuracies. Resulting reducts yield high fuzzy rough dependency measures even with

the reduced size features, in the reduct. The significance of DS-initialization is visible in

the reasonably large dataset like Soybean small, Lung and LSVT.
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Table 4.8: PSO-DS with L-FRFS measure: Comparison of reduct size and classification accuracy with statistical t-test, and Wilcoxon

test. [Classification accuracy is denoted as ’CA’. Statistical t-test is denoted as ’S’. Wilcoxon test is denoted as ’WT’. Mean Subset Size

is denoted as ’MSS’.]

Dataset Feature Feature Classification Accuracy (CA) Best result reported

(Total Selection Subset Size Classifier : J48 Classifier : JRip Classifier : PART in literature

features) Method Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT MSS CA

Cleveland(13)

PSO-RANDOM 6 6.26(0.46) - v 52.47 52.09(0.7) - v 53.79 53.54(0.5) - v 52.14 51.24(1.89) - v

IDS-RANDOM 6 6.51(0.53) v v 52.47 51.69(0.8) - v 53.79 53.52(0.29) - v 52.14 51.14(1.87) - v 7.81 [30] 52.6 [30]

PSO-DS 6 6(0) 52.47 52.47(0) 53.79 53.79(0) 52.14 52.14(0)

Ecoli(7)

PSO-RANDOM 5 5(0) - - 82.44 82.44(0) - - 81.25 81.25(0) - - 80.65 80.65(0) - -

IDS-RANDOM 5 5(0) - - 82.44 82.44(0) - - 81.25 81.25(0) - - 80.65 80.65(0) - - 3 [52] 77.38 [52]

PSO-DS 5 5(0) 82.44 82.44(0) 81.25 81.25(0) 80.65 80.65(0) -

Glass(9)

PSO-RANDOM 8 8(0) - - 64.49 64.49(0) - - 69.16 69.16(0) - - 68.69 68.69(0) - -

IDS-RANDOM 8 8(0) - - 64.49 64.49(0) - - 69.16 69.16(0) - - 68.69 68.69(0) - - 8.44 [30] 65.14 [30]

PSO-DS 8 8(0) 64.49 64.49(0) 69.16 69.16(0) 68.69 68.69(0)

Ionosphere(34)

PSO-RANDOM 6 7.34(0.89) - v 91.74 89.51(1.34) - v 91.45 89.63(1.24) - - 91.46 89.58(1.67) - -

IDS-RANDOM 7 8.17(0.72) - v 93.73 90.2(2.05) - * 92.02 89.18(1.87) - - 93.73 89.37(2.42) - v 7.3 [30] 86.17 [30]

PSO-DS 6 7(0.6) 91.74 89.57(1.72) 91.74 89.06(1.78) 91.7 89.53(1.53)

Lung(56)

PSO-RANDOM 5 6.51(1.32) v v 71.87 65.89(3.88) v v 78.12 66.93(4.89) v v 84.37 66.91(8.26) v v

IDS-RANDOM 13 13.42(0.68) v v 87.5 71.62(8.99) - v 84.37 72.14(8.66) - v 81.25 66.13(12.83) - v NA NA

PSO-DS 4 4.91(0.79) 87.5 74.2(7.77) 87.5 76.28(7.1) 87.5 75.26(7.94)

Soybean PSO-RANDOM 2 2.59(0.5) - v 100 99.47(1.33) - v 100 99.12(1.43) - v 100 99.63(0.81) - -

small(35) IDS-RANDOM 3 3.75(0.63) v v 100 99.12(1.92) - v 100 98.94(1.44) - v 100 99.28(1.87) - v 2 [29] 100 [29]

PSO-DS 2 2.25(0.45) 100 99.65(0.82) 100 99.65(0.83) 100 99.65(0.83)

Wine(13)

PSO-RANDOM 4 4(0) - - 93.82 91.55(2.93) - v 92.13 90.39(1.7) - v 93.82 91.74(2.42) - v

IDS-RANDOM 4 4(0) - - 93.82 93.15(0.67) - - 92.13 90.62(1.03) - v 93.82 92.73(1.22) - - 2 [52] 90.44 [52]

PSO-DS 4 4(0) 93.82 93.08(0.81) 92.13 90.92(1.07) 93.82 92.77(1.13)

LSVT(310)

PSO-RANDOM 113 120.95(4.35) v v 80.15 75.13(3.31) - * 82.53 77.16(2.67) - * 81.75 75.39(3.84) - *

IDS-RANDOM 119 122.8(1.98) v v 79.37 74.96(3.13) - * 86.51 78.72(2.96) - * 81.75 75.21(3.33) - * NA NA

PSO-DS 13 16.51(2.12) 82.54 73.15(5.13) 80.95 74.21(3.94) 80.95 73.42(5.52)
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Table 4.9: IDS-DS with L-FRFS measure: Comparison of reduct size and classification accuracy with statistical t-test, and Wilcoxon

test. [Classification accuracy is denoted as ’CA’. Statistical t-test is denoted as ’S’. Wilcoxon test is denoted as ’WT’. Mean Subset Size

is denoted as ’MSS’.]

Dataset Feature Feature Classification Accuracy (CA) Best result reported

(Total Selection Subset Size Classifier : J48 Classifier : JRip Classifier : PART in literature

features) Method Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT Best Mean(s.d.) S WT MSS CA

Cleveland(13)

PSO-RANDOM 6 6.26(0.46) - * 52.47 52.09(0.7) - * 53.79 53.54(0.5) - - 52.14 51.24(1.89) - *

IDS-RANDOM 6 6.51(0.53) v v 52.47 51.69(0.8) - - 53.79 53.52(0.29) - - 52.14 51.14(1.87) - * 7.81 [30] 52.6 [30]

IDS-DS 6 6.41(0.51) 52.47 51.8(0.82) 53.79 53.53(0.3) 52.14 50.41(2.39)

Ecoli(7)

PSO-RANDOM 5 5(0) - - 82.44 82.44(0) - - 81.25 81.25(0) - - 80.65 80.65(0) - -

IDS-RANDOM 5 5(0) - - 82.44 82.44(0) - - 81.25 81.25(0) - - 80.65 80.65(0) - - 3 [52] 77.38 [52]

IDS-DS 5 5(0) 82.44 82.44(0) 81.25 81.25(0) 80.65 80.65(0)

Glass(9)

PSO-RANDOM 8 8(0) - - 64.49 64.49(0) - - 69.16 69.16(0) - - 68.69 68.69(0) - -

IDS-RANDOM 8 8(0) - - 64.49 64.49(0) - - 69.16 69.16(0) - - 68.69 68.69(0) - - 8.44 [30] 65.14 [30]

IDS-DS 8 8(0) 64.49 64.49(0) 69.16 69.16(0) 68.69 68.69(0)

Ionosphere(34)

PSO-RANDOM 6 7.34(0.89) - * 91.74 89.51(1.34) - v 91.45 89.63(1.24) - - 91.46 89.58(1.67) - *

IDS-RANDOM 7 8.17(0.72) - v 93.73 90.2(2.05) - * 92.02 89.18(1.87) - - 93.73 89.37(2.42) - * 7.3 [30] 86.17 [30]

IDS-DS 7 7.83(0.57) 93.73 89.87(2.16) 92.02 89.32(1.83) 93.73 89.06(2.4)

Lung(56)

PSO-RANDOM 5 6.51(1.32) v v 71.87 65.89(3.88) v v 78.12 66.93(4.89) v v 84.37 66.91(8.26) v v

IDS-RANDOM 13 13.42(0.68) v v 87.5 71.62(8.99) - v 84.37 72.14(8.66) - v 81.25 66.13(12.83) - v NA NA

IDS-DS 5 6.25(0.62) 87.5 78.13(7.18) 87.5 75.25(10.94) 87.5 74.74(8.05)

Soybean PSO-RANDOM 2 2.59(0.5) - * 100 99.47(1.33) - - 100 99.12(1.43) - v 100 99.63(0.81) - -

small(35) IDS-RANDOM 3 3.75(0.63) v v 100 99.12(1.92) - v 100 98.94(1.44) - v 100 99.28(1.87) - v 2 [29] 100 [29]

IDS-DS 2 2.75(0.62) 100 99.29(1.38) 100 99.64(0.82) 100 99.64(0.82)

Wine(13)

PSO-RANDOM 4 4(0) - - 93.82 91.55(2.93) - v 92.13 90.39(1.7) - - 93.82 91.74(2.42) - v

IDS-RANDOM 4 4(0) - - 93.82 93.15(0.67) - v 92.13 90.62(1.03) - * 93.82 92.73(1.22) - - 2 [52] 90.44 [52]

IDS-DS 4 4(0) 93.82 93.55(0.51) 91.57 90.33(0.75) 93.82 93.12(1.26)

LSVT(310)

PSO-RANDOM 113 120.95(4.35) v v 80.15 75.13(3.31) - v 82.53 77.16(2.67) - * 81.75 75.39(3.84) - *

IDS-RANDOM 119 122.8(1.98) v v 79.37 74.96(3.13) - * 86.51 78.72(2.96) - * 81.75 75.21(3.33) - * NA NA

IDS-DS 16 20.76(2.87) 80.95 75.54(4.3) 83.33 75.15(3.84) 78.57 72.61(3.75)
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For example in case of LSVT, PSO-DS gives 16.51 reduct size, and IDS-DS gives

20.76 reduct size, as compared to 120.95 reduct size given by PSO-random and 122.8 given

by IDS-random, where the unreduced feature size is 310, and the feature subsets(reducts)

evaluated from all these method produce the comparable classification accuracy.

Similar is the case of Lung dataset, where PSO-DS and IDS-DS produce the smaller

reducts with high classification accuracies, when compared to random version (Tables 4.8

and 4.9). In Soybean small, accuracies achieved are very near to 100 percent with smallest

reducts. In datasets Cleveland and Ionosphere also, PSO-DS and IDS-DS reduce the size

of the reduct with acceptable classification accuracies. In smaller datasets Ecoli, Glass

and Wine, all the methods provide the stable sized reducts, i.e. s.d = 0.

Through these investigations, it has been demonstrated that in almost all of the

cases, classification accuracy is acceptable. It is observed from Tables 4.8 and 4.9 that

PSO-DS and IDS-DS are also always comparable to or better than PSO-RANDOM and

IDS-RANDOM in terms of statistical significance of classification accuracy.

Tables 4.8 and 4.9 show best results reported in literature in terms of Mean Subset

size (denoted as MSS) and classification accuracy (denoted as CA). Further, It is evident

from the Tables 4.8 and 4.9 that the performance of PSO-DS and IDS-DS is better than

that of state-of-the-art methods suggested in literature for the dataset Cleveland, Glass

and Ionosphere. While using fuzzy rough dependency measure as fitness function, these

method provides better accuracy for Ecoli and Wine dataset at the cost of relatively large

reduct size than the existing best method reported in literature.

Thus, it is established that optimal reducts obtained using PSO-DS and IDS-DS,

having maximum possible fuzzy rough dependency measure have acceptable accuracies,

with relatively smaller reduct size than in the case of PSO-RANDOM and IDS-RANDOM.

The following qualitative reasons explains the smaller feature subset of RST method

compared to L-FRFS approach.

1. L-FRFS is not used for improved performance in terms of accuracy or reduct size,

rather it was used for capturing fuzziness in description of datasets. Hence, in the effort

to capture fuzziness, reduct may not be smaller as compared to a rough set approach.

Fuzzy lower approximation maintains dependency of data which will never be zero,

whereas, rough set is crisp and hard-limits the approximation. Due to this, RST may

ignore or preserve features in a crisp manner resulting in loss of dependency and therefore
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Table 4.10: Statistical analysis of number of generations taken by the dataset for con-

verging to a solution for PSO with L-FRFS measure

PSO-RANDOM PSO-DS

Dataset Min Mean s.d. Min Mean s.d.

Cleveland 2 13.67 25.43 3 8.16 5.5

Ecoli 1 1.58 0.67 1 1.75 0.62

Glass 1 1.91 0.67 1 1.08 0.28

Ionosphere 1 14.16 12.91 2 8.16 10.72

Lung 24 45.16 9.87 1 2.58 1.67

Soybean Small 8 12.67 5.53 1 3.33 2.34

Wine 1 9.67 16.87 1 16.75 14.83

LSVT 72 84.41 8.24 1 14.83 8.5

reduct produced may be smaller in size.

2. In RST, there is a need to discretize the feature values. The discernibility of

features are affected by the quantization and therefore become dependent on the quanti-

zation of feature value. Whereas, in L-FRFS the real feature values are taken as it is and

no quantization is required and discernibility of features are therefore more accurate as

well as meaningful. This is the reason why the RST approach may provide smaller size

features compared to L-FRFS approach.

It is observed from the Table 4.10 that for all the dataset used in this work, PSO-

DS converges in early generation compared to PSO-RANDOM. It is also observed from

the Table 4.11 that in general, IDS-DS converges in early generation compared to IDS-

RANDOM. It is observed that especially in the case of Soybean small and LSVT, IDS-DS

converges very fast.

Table 4.12 shows ranking of the above discussed methods obtained from Friedman

ranking. It is observed from these ranking that performance of PSO-DS and IDS-DS are

superior with respect to PSO-RANDOM and IDS-RANDOM.
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Table 4.11: Statistical analysis of number of generations taken by the dataset for con-

verging to a solution for IDS with L-FRFS measure

IDS-RANDOM IDS-DS

Dataset Min Mean s.d. Min Mean s.d.

Cleveland 2 44.41 30.3 2 48.91 33.14

Ecoli 1 2.08 1.5 1 2.41 2.06

Glass 4 11.58 8.9 1 3.41 6.06

Ionosphere 8 35.41 22.15 1 41.91 32.09

Lung 4 37.75 20.32 1 1 0

Soybean Small 5 45.33 34.37 1 2.67 5.77

Wine 14 53.75 25.07 10 42.75 28.46

LSVT 1 48.16 35.22 1 1 0

Table 4.12: Friedman ranking with L-FRFS measure

Methods FR Rank

PSO-DS 2.250 1

IDS-DS 2.750 2

PSO-RANDOM 2.969 3

IDS-RANDOM 3.281 4

4.5 Conclusion

Due to distributed sampled seed population, DS initialized swarm algorithms always pro-

duce smaller reducts, as they are able to pick the appropriate reducts in early generation.

Following conclusion can be drawn.

1. Using RST measure, PSO-DS and IDS-DS, in general, achieve better performance

as compared to PSO-RANDOM and IDS-RANDOM. PSO-DS and IDS-DS, out-

perform PSO-RANDOM and IDS-RANDOM in such cases where feature reduction

is actually sought after, i.e. datasets having large number of features. PSO-DS

and IDS-DS, outperform PSO-RANDOM and IDS-RANDOM for large datasets,

without compromising with classification accuracy.
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2. Using L-FRFS measure, PSO-DS and IDS-DS, in general, achieve better perfor-

mance as compared to PSO-RANDOM and IDS-RANDOM, which has been estab-

lished using t-test, Wilcoxon test and Friedman test.

3. It is observed from Friedman test, that using RST measure, rank of PSO-RANDOM

is better than that of IDS-DS, but with L-FRFS measure rank of IDS-DS is better

than that of PSO-RANDOM. Other methods namely IDS-RANDOM and PSO-DS

preserve their ranking order of performance, regardless of feature selection measures

used.
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